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ABSTRACT.. We characterize, f o r  finite measure spaces, those orthonormal bases with the following 
positivity property: i f  f is a non-negative function, then the partial sums in the expansion o f f  are non- 
negative. The bases are necessarily generalized Haar functions and the partial sums are a martingale 
closed on the right by f . 

1. Introduction 

Suppose that Pc' is a set in a Euclidean space, e.g., the unit interval, and that {05m : m = 1 . . . .  } 
is an orthonormal basis, 051 --- 1, with respect to Lebesgue measure. If f 6 L2(X) is a non-negative 
function, then the partial sums, 

M 

r f dtCm(t)f(t), x ~ A~, 
m = l  

(1.1) 

are not necessarily non-negative, as is well known. We begin by pointing out that a generalized 
version of the Haar functions does preserve the positivity of  the partial sums (1.1), for positive f 
Lp(PQ, p > 1. We prove a converse without the Euclidean assumptions: assume that for each M > 
1, Eq. (1.1) is non-negative a.e. whenever f is non-negative; then the 05m are a generalized version 
of the Haar functions Definition I, and (1.1) is a martingale closed on the right by f (Theorem 3). 

This article was motivated by issues in medical image reconstruction, in particular [1], but 
relates to other imaging areas, for example, astronomy. Images are typically defined by non-negative 
functions f and it happens that one reconstructs or estimates the image by computing the first M inner 
products (the "Fourier" coefficients) of the image relative to some orthonormal system, taking (1.1) 
as the image. Although one can always "adjust" any negative values appearing in (1.1), an alternate 
approach is to employ an orthonormal system which ensures that positivity is preserved. 
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We turn to the assumptions. Let A" be a set, let .,4 be sigma-algebra of  subsets of  X, and let 
/~ be a measure on -A, 0 < /z(X) < ~ .  We write/Zx - /~(P(), and when/z  is a probability we 
write P.  We assume the measure/z is non-atomic (continuous): if B �9 .4 and/z(B)  = y > 0, then 
{/z(C) : C C B} = [0, y],  an interval. 

2. Martingales and Generalized Haar Functions 

We assume that the reader is familiar with martingales and the Haar functions. For the definition 
of martingales we refer to [5], and among other sources for martingales, we mention [3, 4], and [6]. 
For the Haar functions defined on the unit interval, we follow the notation in [4] and also cite [6], 
among others. A discussion of  the Haar functions as a wavelet basis on the real line can be found, 
for example, in [2]. 

For n = 1, 2 . . . . .  let/3n = { Bn,k : k = 1 . . . . .  2 n-I  } C -A satisfy 

BI,I = X ; (2.1) 

assuming that/3n is defined, let/3n+I satisfy 

Bn+l.k fq Bn+l,j = 13, j ~ k ; (2.2) 

Bn+lAk-I t.J Bn+l,2k = Bn.k, k = 1 . . . . .  2 n - I  ," (2.3) 

P(Bn+l,k)  > 0, k =  1 . . . . .  2 n .  (2.4) 

Following the paradigm of the Haar functions, we define a sequence of functions { hn,k : k = 1 . . . .  , 2  n-2 } 
by 

hl,l(X) ~ 1 , 

and for n = 2 . . . .  by 

~n,2k-I X E Bn,2k-I 
hn,k(X) = --t~n,2k X �9 Bn,2k , (2.5) 

0 elsewhere 

choosing the {~n,k } SO that {hn,k } is an orthonormal sequence; {hn,k } is a basis if and only if the class 
of  sets U/3n is a set of  generators for .A. 

We write {h,,k} as {era : m = 1 . . . .  } with the natural ordering and let .AM denote the sigma- 
algebra generated by {r m = 1 . . . . .  M}. Fix p > 1 and let f �9 Lp (X) .  Let E ( f I -A M)  denote the 
conditional expectation of  f given the sigma-algebra -AM, defined up to a set (in .AM) of  probability 
zero (see, e.g., [5, p. 341]; but here, the only set of  probability zero is the null set). Then, as is 
known, at least for the Haar functions (see, e.g., [6, p. 482]), 

M 

 m<X, f P(dt )  ~m( t ) f ( t )  = E ( f  IAM) �9 
m---1 

(2.6) 

If  moreover f > 0 a.e., then E ( f  I-AM) >-- 0 so that the left side of (2.6) is non-negative everywhere. 
In addition, { E (fI-AM) : M = 1 . . . .  } is a martingale closed on the right by f ,  and if t_J13n (=  U,AM) 
is set of  generators for -A then the well-known theorems of Lrvy and Doob imply that 

M 

 m<X, f P(dt )  d~ra(t)f(t) ~ f ,  a.e. and in L v ( X )  
m=l 

(see, e.g., [5, p. 396]). 
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3. Non-Negative Partial Sums 

We need an elementary result, whose proof follows the lemma. 

T h e o r e m  1. 
Fixot > O. Letqb : X ~ [-1/oe,  ~] satisfy 

f lz(dx) dp(x) = O. 

Then 

f lz(dx) < lZx �9 q~2(x) 

Equality holds in (3.2) if and only iffor an A ~ .4, Iz(A) = ~Zx/(1 + t~2), 

or, x E A  
O(x) = - - I / u ,  x E A c a .e . .  

Corollary 1. 
Let d~ : P( ~ R be a bounded function satisfying (3.1). I f  

(ess sup dp)less inf q~l < 1 , 

then 

153 

(3.1) 

(3.2) 

(3.3) 

f lz(dx) 4~2(x) < f lz(dx) V/2(x) 

= ~2/z (C +) + ( l /u)  2 (C-)  , (3.6) 

where C + and C -  correspond to the sets C of the lemma for ~b + and q~-, the inequality following 
from (3.5). A calculation shows that (3.6) equals /z(C + U C - )  < /~x, proving (3.2), and this 

have 

and equality holds in (3.5) if and only if qb = ot on B a.e.. 

P r o o f  o f  T h e o r e m  1. Write q~ = q~+ - 4~-, where q~+ = max(4h 0), ~b- = - min(q~, 0), and 
associate with ~b + and q~- the functions ~ +  and ~ -  of Lemma 1. Then, letting ~ = ~ +  - ~ - ,  we 

and let ~ = u l o  Then 

f ~(dx)r = f ~(dx)r (3.4) 

f f 

f lz(dx) < IZx �9 ~2(X) 

We omit the easy proof of the next lemma. 

L e m m a  1. 
LetO : P( ~ [0, or], l e tB  = {x : 4~(x) > 0}, andlet  

c = 

Then c < ottx( B), and equality holds if and only if  r = ot on B a.e. . Let C C B satisfy Iz( C) = c /ot, 
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inequality is an equality if and only if/.t(C +) = / . t (B+) ,  / z (C- )  = / z ( B - ) ,  and/x(B + U B - )  =/Zx,  
which is true if and only if ~b satisfies (3.3). [ ]  

Theorem 2. 
Let r satisfy 

f /z(dt)q~(t) = O, 

f lz(dt)r = /Zx, 

and so that if f E L2(X) and f > 0 then 

f lz(dt) f ( t )  + q~(x) f lz(dt) f(t)qb(t) > Oa.e. 

Then there exists A E ,4 so that a.e. 

ta, x E A  
qS(x) = -1lot, x E A c ' 

where ot = (lz(AC)/lz(A)) 1/2. Consequently, (3.8)holds for f E LI(A'), f > 0. 

P r o o f .  For B E ,4, let f = In, so that (3.8) becomes 

lz(B) q- ~b(x) fB lz(dt) ()(t) >_ Oa.e. 

Define a measure v on X x ,~ by 

v(A x B) = 

(3.7) 

(3.8) 

(3.9) 

fA lz(dx) x lz(dt) (1 + qb(x)q~(t)) 
• 

= f A l Z ( d x ) ( / ~ ( B ) + ~ ( x ) f o / x ( d t ) ( ~ ( t ) ) .  

Since v > 0, we have r > -1  a.e. (/x •  that is, 

(ess sup r inf~l  < 1 . (3.10) 

Because of Corollary 1 and (3.7), the inequality in (3.10) must be an equality, and the theorem 
follows from Theorem 1. [ ]  

Although an orthonormal sequence remains an orthonormal sequence after a re-arrangement of 
its terms, a re-arrangement of an orthonormal sequence preserving positivity of its partial sums may 
lose the positivity property. For example, Theorem 2 shows that if we define the new orthonormal 
sequence {hi, 1 (x), h3,1 (x), h2,1 (x), h2,2 (x), h3,2 (x) . . . .  } (the ellipsis means the natural order), then 
positivity of the partial sums is not preserved. This becomes transparent after a calculation with the 
Haar functions on the unit interval. Clearly, re-arranging the terms hn,k by changing the order of the 
k for a fixed n preserves positivity. But consider the following sequence: 

{hl,l(X), h2,1(x), h3,1(x), h3,2(x), h2,2(x), h3,3(x), h3,4(x) . . . .  } �9 

Because the associated sets Bn,k are ordered by an inclusion relation (see Definition 1), the partial 
sums of this sequence form a martingale, implying that positivity is preserved. Or consider the 
following sequence: 

{hL,(x),h2.~(x) . . . . .  h . . ,  . . . .  } . 
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Positivity of partial sums is preserved, but the sequence is not a basis. In other words, if an orthonor- 
mal sequence preserves positivity, some of the re-arrangements and deletions of the sequence do the 
same, and some do not. 

Recall that .AM denotes the smallest sigma-algebra generated by given functions {era " m = 
1 . . . . .  M}. The following definition describes the orthonormal sequences of interest. 

Definition 1. 
Fix M > 2. A (finite) orthonormal sequence {qbm : m = 1 . . . . .  M} defined up to a set of 

probability zero by 

q~l -- 1 , (3.11) 

{ ot2,1,  x ~ B 2 . 1 (  ) 
r = -ct2,2, x ~ B 2 2  = B  c ' (3.12) 

�9 2 .1  

Otn.j(n), X E Bn.j(n) 

--Otn,j(n)+l, x E Bn. j(n)+l 
0 elsewhere 

~b m , m = 3  . . . . .  M ,  ( 3 . 1 3 )  

where 

(3.14) 

is said to be an M-pyramid if for 2 <_ m <_ M, the {Bn, j (n) .Bn, j (n)+l  } associated with Cm 
through(3.12)and(3.13)satisfy: thereisanatom Am_l ~ Am-I  sothat Bn,j(n)tABn,j(n)+l C Am-I 
and P(Bn,j(n) U Bn, j (n )+l )  = P(Am-I);  by definition, {r is a 1-pyramid. And {era : m = 1 . . . .  } 
is a pyramid if it is an M-pyramid for each M > 1. 

We omit the elementary proof of the next lemma. 

L e m m a  2. 
Let f ~ LI(X) .  lf{q~m} is apyramid, then for M > I, 

M 

E era(X) f P(d t ) r  = E ( f  I.AM) a.e. ,  
m = l  

a martingale closed on the right by f .  

Corollary 2. 
I f  x E Bn,j(n), an atom of.AM, and if P(Bn,j(n)) > 0 then 

M 

E r P(d t ) r  = P (Bn,j(n)) ~.i(~) 
m = l  

L e m m a  3. /~" 
Suppose for B E .,4, 0 < P(B)  < 1, ~b E L2(X) is a function which does not vanish on B, 

satisfies 

f P(dt)  r  --- 0 ,  (3.15) 
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and for a.e. x E B, 

1 s P ( d t ) f ( t ) + d p ( x ) f  P(dt) q~(t)f(t)>O, 
P(B) 

for f e L2(X), f > O. Then r = Oa.e. on B c. 

P r o o f .  Consider f > 0 which vanish on B. Then for a.e. x e B, 

r  s  P(dt)r  > O. 

If  it is false that r = 0 a.e. on B c, then either r > 0 a.e. or r < 0 a.e. on B. But if, e.g., r > 0 
on B, then necessarily r > 0 on B c, contradicting (3.15). [ ]  

Lemma 4. 
Let f ~ L2(Pd). Let M > 1. Let {r : m = 1 . . . . .  M} be an orthonormal sequence which is 

an M-pyramid. Let CM+I be orthonormal to {era : m = 1 . . .  M}. Assume that f > 0 implies 

g;l  -; 
era(x) f P(dt) dpm(t)f(t) > Oa.e. . (3.16) 

m=l  

Then {r : m = I . . . . .  M + 1} is an M+l-pyramid. Also, (3.16) holds for f E L ! (X), f > O. 

P r o o f .  Theorem 2 proves the case M = 1. We argue inductively and assume the lemma is proved 
for an M > 1. Let Bn,j(n) be an atom of.AM on which CM+l does not vanish, P(Bn,j(n) ) > O. 
Using Corollary 2, (3.16) becomes for a.e. x ~ nn,j(n), 

1 s P(dt ) f ( t )+dPn+l(X) fP(dt )r  
P 

(3.17) 

By Lemma 3, ~bM+l vanishes a.e. off Bn.j(n) and (3.17) becomes fora.e.x ~ Bn.j(n), 

1 ~ P(dt)f(t)+dPM+l(x)fB P(dt)dPM+l(t)f(t)>O. 
P (Bn.j(n)) n,j(n) n,/(.) 

(3.18) 

If  we set 
= (? 

then (3.18) becomes for a.e. x ~ Bn,j(n), 

fB P(dt) f ( t )  -4- ~(x) fB P(dt) ~( t ) f ( t )  > O. 
n,j(n) n,j(n) 

Since 

fB ?(at) = ? 
n.j(n) 

satisfies the hypotheses of  Theorem 2, upon setting X = Bn,j(n). In other words, ~bM+ 1 has 
the form (3.13), where ~bg+l vanishes a.e. off Bn,j(n), nn+l,j(n+l) 12 Bn+l,j(n+l)+l C Bn,j(n) and 
P(Bn+l,j(n+l) 12 Bn+l,j(n+l)+l) = P(Bn,j(n)). The last assertion is immediate. [ ]  

The following theorem, stated for orthonormal bases, summarizes the preceding results; we 
omit the version of  the theorem for orthonormal sequences, the only difference being the final 
assertion. 
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T h e o r e m  3. 
Let (2(, .A, P)  be a probability space and let {qbm : m = 1 . . . .  } be an orthonormal basis, 

~l =- 1. The following four  assertions are equivalent: 
( i ) foreach  f E L z ( X )  satisfying f > 0 andeach M > 1, 

M 

Z dpm(x) f P(d t )dpm(t ) f ( t )  > Oa.e. ; 
m=l 

(ii) {q~rn : m = 1 . . . .  } is a pyramid; 
(iii) for  each f E L I (X)  satisfying f > 0 and each M > 1, 

M 

E +m(X  f P(dt )  cbm(t)f(t)  > Oa.e. ; 
m=l 

(iv) letting .AM be the sigma-algebrageneratedby {qSm : m = 1 . . . . .  M} , foreach  f E L I  (X),  

M P 

Z q~m(X)] P(d t )  qbm(t)f(t) = E ( f  ].AM) a .e . ,  
d m=l 

a martingale closed on the right by f .  
Under these conditions, for  f ixed p > 1 and f E Lp( P(), 

M # ,  

Z qbm(X) ] P(d t )qSm(t ) f ( t )  ~ f ,  a.e. and Lp(P() . 
m=l d 
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