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D i s c r e t e  G a b o r  T r a n s f o r m s :  t h e  
G a b o r - G r a m  M a t r i x  A p p r o a c h  

Sigang Qiu 

Communicated by Joshua Zeevi 

ABSTRACZ The fundamental problem of discrete Gabor transforms is to compute a set of Gabor 
coefficients in efficient ways. Recent study on the subject is an indirect approach: in order to compute 
the Gabor coefficients, one needs to find an auxiliary bi-orthogonal window function g. 

We are seeking a direct approach in this paper. We introduce concepts of Gabor-Gram matrices and 
investigate their structural properties. We propose iterative methods to compute the Gabor coefficients. 
Simple solutions for critical sampling, certain oversampling, and undersampling cases are developed. 

1. Introduction 

The Gabor transform was originally formulated by Gabor [9] in 1946. The idea is to represent 

or best-approximate a signal by a set of  coefficients over a set of TF-translated copies of a window 
function g. In the discrete case, given a Gabor window g 6 C jv and W-la t t i ce  constants pair (a, b), 
the discrete Gabor representation of  a signal x ~ C Iv is of the form: 

a-1 b-1 

X = ~ Z C n , m g n . m .  
n = O  m = 0  

(1.1) 

For n = 0, 1 . . . . .  ~ - 1 and m = 0, 1 . . . . .  /~ - 1, gn,m : =  MmbTnag are the discrete time- 
frequency shifted copies of g, Cn,m are the Gabor coefficients. (g, a, b) is called a Gabor  triple. We 

N call (fi,/~) with ~ = a and/~ = ~- the dual lattice constants. We say (g, a, b) generates a Gabor 
frame if  {gn,m}n,m is a frame [3, 4]. 

The advantage of  the Gabor transform is based on TF-localizations of the Gabor ' family.  
The subject has been studied by mathematicians and engineers [1, 3, 4, 5, 12, 23, 25]. Since the 
Gabor family {gn,m } need not be orthogonal, difficulties arise from the determination of  the Gabor 
coefficients. 
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In 1980, Bastianns [2] introduced a bi-orthogonal function y and turned the representation (1.1) 
to an orthogonal-like form: 

x = ~ .  ~ (x, Yn,m)gn.m. 
n-----0m=0 

(1.2) 

The active studies on the subject turn to seek y in efficient ways. Many interesting approaches have 
been developed [7, 14, 16, 17, 18, 19, 20, 22, 24]. However, this ~, is an auxiliary function. We only 
need to use y to determine the coefficients Cn,m. 

Can we have an efficient way of computing On, m without using ) /?  In this article, we present a 
conjugate-gradient (CG) approach to compute the Gabor coefficients without using y.  We consider 
general cases: critical sampling, oversampling, and undersampling cases. We do not assume (g, a ,  b) 
generates a Gabor frame. 

In Section 2, we fix notation and present preliminaries. The concept of Gabor-Gram matrices is 
introduced. In Section 3, the structural properties of  Gabor-Gram matrices are investigated. Then we 
present fast algorithms for computing the Gabor coefficients and the dual Gabor windows [ 18, 19, 20] 
in Section 4. Special cases including critical sampling cases are considered. Simple algorithms are 
derived to compute both the Gabor coefficients and the dual Gabor windows. Numerical results are 
illustrated in Section 5. 

2. Notation and Prel iminaries  

Throughout this article, we use notation introduced in [18, 19, 20]. Bold letters (e.g., g, A) 
denote row vectors and matrices. We use A = (Ak,l)pxq to denote a matrix in C p• where Ak,t 

Ix AN-I (or (x(j))~__~ 1) denotes the row vector in C N, where denotes the (k, l)th entry o f A .  x = ~ J/ j=o 

xj or x ( j )  is the ( j  + l)th entry of  g. Superscripted uppercase bold letters, such as A (p'q), refer to 
submatrices of  A. A' denotes the conjugate and transpose of A, while A t is the transpose of A. If  
A -~- (Ak,l)plxql and B = (Bk.l)p2xq2, the tensor product A | B is defined to be  the partitioned 

matrix [13, p.407]: A | B = (Ak3B) ~ C plp2xqlq2. 

We view C N - L2(ZN). Signals are considered as N-periodic row vectors in C m. The in- 
~X ~ N - I  C N N - I  C N ner product of  two signals x = ~ k)k=O ~ and y = (Yk)k=O ~ is given by (x, y) = 

N - ,  - 

surnk= o xkyk. I lxl l  = Ixkl 2 is the norm of x. We use "*" to denote the usual matrix 
multiplication, x �9 A is the matrix-vector multiplication of x and A. 

In addition, ~'r denotes the discrete Fourier transform (Db-'r) and Fr denotes the Fourier 
matrix [6, p.32] of  order r..T'r (x) = x * Fr is the DFT o f x  E C r. diag(dl, d2 . . . . .  dr) denotes the 
r • r diagonal matrix with diagonal elements dk for k = 1, 2 . . . . .  r. Ir is the r x r identity matrix and 
er is the r-dimensional unit row vector whose first entry is 1. We use circ(cl,  c2 . . . . .  Cr) to denote 
the circulant matrix [6, p.66] and bcirc(A1, A2 . . . . .  At)  to denote the block circulant matrix [6, 
p.176]. 
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2.1 Gabor-Gram Matrices 

form: 

N 2 
Given (g, a, b), we define GAB(g,a,b) as an ~r x N (A /=  h-~') matrix of the following block 

g 

Mbg 

M(b-l)bg 

GAB (g,a.b) = 

T<a-l)ag 
MbT(h-l)ag 

M(~_ l)b T( a -  1)a g 

(2.1) 

We call GAB(g.a,b) the Gabor-Gram basic matrix associated with (g, a, b). 

R e m a r k .  Obviously, GAB(g,a,b) and the Gabor basic matrix GAB(g, a, b) introduced in [18, 19] 
are the same, except for their row vectors being arranged in different order. Both the row vectors of 
GAB(g.a.b) and GAB(g, a, b) form the Gabor family {gn,m }n,m. It is not difficult to check that 

[GAB(g,a,b)]' * [GAB(g,a,b)] = [GAB(g, a, b)]' * [GAB(g, a, b ) ] .  [ ]  (2.2) 

Defini t ion 1. (Gabor -Gram Matr i x )  

For Gabor triples (gl, a, b) and (g2, a, b), we call the N x N matrix 

GM(gt,g2,a.b) --~ [ GAB(g l,a,b) ] * [ GAB(g2,a,b ]t (2.3) 

the Gabor-Gram matrix. In particular,/ fgl  = g2 = g, we write GM(g.a,b) = GM(g,g,a,b) and call 
GM(g,a,b) the Gabor-Gram matrix associated with (g, a, b). If  no confusion occurs, we simply use 
GM to denote the Gabor-Gram matrix. 

It is easy to verify the following bi-orthogonality [23] in matrix forms. 

Proposi t ion  1. 

Given (g, a, b) and a signal h and set ~ = ~-N(g) and fl = .T'(h). The following statements 
are equivalent: 

1. (g, a, b) generates a Gabor frame. 

2. GM(g.h,b,~ ) = GM(h,g.E, fi) = ~Iab .  
ab 3. h * [GAB(g,b,~)]' = -N-eab. 
ab 4. g * [GAB(h,b,a)] ~ = T-eab. 

5. (~, b, a) generates a Gabor frame. 

6. GM0~,~,a,b ) = GM(~,fi,a,b ) = I a b .  

Z h * [GAB(~,a,b)]' = eab. 

8. ~ * [GAB(fi,a,b)]' = eab. 

The last four conditions are based on the commutative relation [18, p.2262]. The fact is that 
(g, a, b) generates a Gabor frame if and only if (~, b, a) does. 
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2.2 T e n s o r  Discrete Fourier Transform ( T D F T )  

Defini t ion 2. [Tensor Discrete  Fourier  Trans form ( T D F T )  ] 
Let rl and r2 be integers and r = rlr2, we call 

Fr t , r z , r  = Fn ~ Fr2 , 

FO,r2,r ~-~ I n @ Fr2 , 

Fr  1,0,r = F n  @ Ir2 

the tensor Fourier matrices of order (rl,  r2, r), (0, r2, r) and (rl,  0, r), respectively. 
The linear mapping: 

ffTrl.r2, r : C r I-'--> C r ,  .~r l . r2 , r (X  ) = X * Fr l , r2 ,r  

is called the tensor discrete Fourier transform (TDFT) of order (rt,  r2, r). Similarly, Y'0,rz,r and 
-~n.O,r can be defined. 

Proposit ion 2. 
Tensor Fourier matrices Frl.r2,r, Frl.0,r and F0.r2,r a r e  r • r unitary matrices. 

Proof. By the properties of  tensor products of  matrices [13, pp.406--411], 

F'rl,r2,r * Frt,r2,r = (Frl | F r2 ) ' *  (Frt @ Fr2) = (F'r, @ F'r2) * (Frt ~ Fr2) 

= ( F I r l * F r l ) @ ( F I r 2 * F r 2 ) = i r l |  

Hence, Frl,r2.r is a unitary matrix. With the same arguments, we show that F0,r2,r and Frl,O,r are  

unitary matrices. [ ]  

In practice, the discrete Fourier transform (DFT) is performed by the fast Fourier transform 
(FFT). For a signal x 6 C r, we show that the TDFT of x can be computed by FFT  with the total 
complexity no more than O (r log r ) .  

Proposit ion 3. 
:X ~r--I C r For a signal x = ~ k)k=O E (r = rl r2), the TDFT o fx  are determined via FFT. 

r--I ,'. \ (J+l)r2-1 
(i). Let y = ~'O,r2,r(X) := (Yk)k= O. For j ---- O, 1 . . . . .  rt -- 1, set y(J) :=  ~Yk)k=jr 2 and 

r X x(J+l)r2 - l  X (j) : =  t, k ) k = j r  2 . T h e n  

y(J)_-- ~'r2 (X ( j ) )  . (2.4) 

The total complexity is (.9 (rlogr2) . 
r--1 t \r l--I  

(ii). Let y = ~'n,O,r(X) := (Yk)k=O" For j = O, 1 . . . . .  rE -- 1, set y(J) :----- ~YJ+sr2)s=O and 
/ ~rl--1 

X (j) :~--- ~Xjq_sr2)s..~.O . T h e n  

y ( J ) =  .~'rl (X ( j ) )  . (2.5) 

The total complexity is 0 (rlogrl) .  
(iii). Let y = ffTrl ,r2,r(X),  then 

Y ----- ~'0,r:,r (.~'rl,0,r(X)) = ffTrl,O,r (-~'0,r2,r(X)) - (2.6) 

The total complexity is 0 (rlogr) . 

Proof. (i). For j = 0, 1 . . . . .  rl - 1, let e (j+l) be the rvdimensional  unit vector whose ( j  + 1)th 
~--',rl- 1 e(J+l  ) x(j)" entry is 1. Then x = z...,j=0 t~ Thus, 

Y = ,7"0,r2,r(X) = x * (Ir, | Fr2) 
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Therefore, 

rl--1 

= ~ { ( e ( J + l ) | 1 7 4  
j=O 
r l -1  

= ~ { ( e ( J + l ) * I r l ) |  (x(J)*Fr2)}  
j=O 
rl--I 

= E {e(J+l)|  " 
j=O 

r l -1  r l -1  

y ]  e<J+') | y<Y) = y = ~=] le<J+~) | Jrr= (X<Y)) }.  
j =0 j =0 

This leads to Eq. (2.4). The complexity is rl O (r2 log r2) < O (r log r2). 
Equation (2.5) can be shown similarly. The complexity is r20 (rl log rl) < O (r log r l ) .  
SinceFrl | = (Frt | Ir2)*(Irt | Fr2) = (Irt | Fr2)*(Frl | Ir2), Equation (2.6) follows 

and the complexity is r i o  (r2 log r2) + r20 (rl logrl)  < O (r log r2) + O (r logrl)  = O (r logr) .  
[] 

-1 ~-~10 r' and ~.-1 Similarly, the inverse tensor discrete Fourier transforms (ITDFT) f f T O , r 2 , r  , , , r!,r2,r 
can be defined. They are performed with the total complexity O(r logr2) ,  (9 (r log rl), and 
O (r log r ) ,  respectively. 

2.3 Rotation Operator Cr a 

Definition 3. (%)  
Given a matrix A = (Ak,l)pxq and a positive integer a, we define B = era(A) : =  (nk,l)pxq , 

where Bk.l is given by 
Bk,l = A l+mod(k+p-2.p), l+mod(l+a-  l.q) , 

f o rk  = 1,2 . . . . .  p a n d l  = 1,2 . . . . .  q. 
Inductively, we define err(B) = cr r-1 (cr(B)) for r > 1. 

Proposition 4. 

For a matrix B = (Bk,l)ax[ ~ E C a'b, Cra~ ( B ) =  B. 

Proof .  By the definition of %, we derive inductively that 

%a(B) = (Bl+mod(k+a_(fi+l),fi).l+mod(t+fia_l,~))a• ' 

"= (Bl+(k-l).l+(l-l))fixb 

= (Bk,,)a• �9 

Thus, ~a a(B) = B. [ ]  

3 .  C h a r a c t e r i z a t i o n s  o f  G a b o r - G r a m  M a t r i c e s  

In this section, we show that the Gabor-Gram matrices are determined by the unitarily equiv- 
alent Gabor-Gram matrices (UEGM) via TDFT. We characterize the banded and block structures 
of UEGM matrices. If N divides ab, we show that the Gabor-Gram matrices are block-circulant 
matrices. The structural observations on these matrices are the key to derive fast algorithms. 
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3.1 Gabor-Gram Matrix Structures 

T h e o r e m  1. 
Let G M  = GM(gl,g2,a,b ) : =  (Gk,/)DxD �9 

(1) Foranyk  = j l b + r l  andl = j 2 b + r 2  with j l ,  J2 = 0, 1 . . . . .  f i -  1 andrl ,  r2 = 1,2  . . . . .  b, 

N - I  

a k "  = E {~ ' (3 .1 )  

s=O 

where co = e -2rri/N. 

(2) For p, q = 1 2, , fi, define D (p'q) { rJ(P,q)'~ with D (p'q) . . . . .  ~,"k,l ]/;x~ k.l = G(p-l)g+k,(q-1)~+l 

for k, l = I, 2 . . . . .  b. Then D (p'q) are/~ x/~ circulant matrices and G M  is of  the following block 
form. 

D(2,1) D(2,2) ,.. D (2,~) 
G M  = . . -. . . (3.2) 

D(a,l) D(a,2) . . .  D(a,a) 

( 3 ) F o r p ,  q = 1 ,2  . . . . .  f i -  1, 

D(P+l,q+l) n(P,q) . n r i - I  f o rk ,  l = 1,2,  ,/~ (3.3) k,l = L~k,l "'" ' 

where ~ = e -2alri/f~. 

Proof. (1) The (k, l)th entry of  G M  is given as 

Gk,l = (M(q- l )bThagl )  * (M(r2-1)bTj2ag2)' 
N-1 

= ~ ( o f l ( r l - 1 ) b T j l a g l ( s ) ) * ( o f l ( r 2 - 1 ) b T j 2 a g 2 ( s ) )  

s=O 
N- I  

= ~ {('Os(rl-r2)bTjlagl(S)7)2ag2(s)} �9 

s=O 

We obtain Eq. (3.1)�9 
(2) By Eq. (3.1), 

N - 1  
D(P.q) = k,l "'~" G(p-1)[~+k,(q-l)[~+l ~ {~  } " 

s=0 

For any two pairs (k t, l l) and (k2,12) with k l, l l, k2, 12 = 1 ,2  . . . . .  /~, if k l - I i  = kz --12 (rood/~), 
then (kl - l l)b = (k2 - 12)b (mod N)�9 This yields w s(kl-ll)b = w s(k2-12)b. Hence,  

G (p_ l )[~+kl ,(q_ l )b+ll --- G (p_ l )~+k2,(q_ l )[~+l 2 �9 

The,-,.f,~r,. n(P,q) --  r~(P,q) . . . . . . .  kl,lt -- ~k2,12 �9 Dp,q is  a circulant matrix. 
(3) Using Eq. (3.1), 

D(P+l.q+l) 
k,l ---- G p[~+k.qb+l 

N - I  
= ~ {t~ 

s--O 
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N-1 
= E { O')(s+a)(k-l)bz(p-1)agl(S)z(q-l)ag2(s) } 

s = 0  

N - I  

= E { O)a(k-l)bO)s(k-l)bT(p-l,agl(s)T(q-1)ag2(s) } 
s=O 

N-1 
"~" o)a'k-l)b Z { O')s(k-l,bz(p-l)agl(s)z(q-l)ag2(s)'} 

s = 0  

,.~a(k-t)b r)(P,q) = ~0-(k-l) D(P,q) = ~ "'k,l k,l " 

Equation (3.3) is derived. [ ]  

Corollary 1. 

Let Q = (Qk,/)t;• be the circulant matrix whose first row vector is q = ~r  /j=o �9 Then 

D (p+l'q+l) is the Hadamardproduct ofD (p'q) and Q [10, 11]: 

D(p+l,q+ 1) - { n(p,q) ) for p, q = O, 1, ~ - 1 
- -  ~ k . l  " Q k , l  [~xb . . . . .  

Theorem 2. (Banded  Structure) 
Let GM := U' * GM * U with U = F0,~, ~. Then all the possible nonzero entries of GM are 

in the kth diagonals f o rk  = 0, +(/~ - I) . . . . .  -4-(/~ - 1)(fi - 1). 

P roo f .  By th e properties of tensor products of matrices [ 13, pp.406--411 ], 

G M  = U ' *  G M . U  = F0.~. ~ *GM*Fo , / ; . ~  

D(kO D(1.2) . . .  D O,a ) 
D(2,1) D(2.2) .. D(xA) 

= ( I ~ |  . �9 i. �9 * ( I a |  

D(fi, D D(a,2) . . .  D(&fi) 

( F~,D(I ' I ) ,F  b F~,D(I'2),Fg . . .  F ,D(l';i),Ft? , '~ 
/ ' * D (2'2) * FE, .. F * D (2"'~) * F/; F/; * D  (2'1) *Ft; F/, 

J : " . . .  " 

F ~ * D  ('~'D*Ft; F b * D  (a '2)*F b . . .  F b * D  (a'a)*F~ 

By Theorem 1, D (p'q) (p, q = I, 2 . . . . .  fi) are circulant matrices. Thus [6, pp.72-80], F~,.D (p'q),Fb 

(p, q = 1, 2 . . . . .  /~) are diagonal matrices. Therefore, G'-M holds the banded structure as stated. 
The proof is complete. [ ]  

We call GM the unitarily equivalent Gabor-Gram matrix (UEGM) associated with Gabor 
triples (gl, a, b) and (g2, a, b). When gl = g2 := g, we say GM is the UEGM matrix corresponding 
to (g, a, b). It is clear that GM and GM are determined by each other via F0.b,g. The total number 

of possible nonzero elements of G"M is ft.  ( f t . / 0  = Eft. 

Corollary 2. 
I f  a = N, G"M is a [~ x b diagonal matrix. 

Corollary 3. 

IfG'-M = (Gk,/)/~x/~, then ak, l  = 0 if  Ik - 1[ • 0 (mod/~). 
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Corollaries 2 and 3 are straightforward consequences of Theorem 2. Now let us do the 
/ (1)~ nO) = following "zero-extracting" trick. Set B(I)  = ~ Bk'l )a• with ~k,t = G(k-l)~+l,l" Similarly, 

B(2) / u  (2)'~ with ~(2) - [B(j)'~ ~" ~k, l  ] a x b  ~'k,l = G(k-l)b+l,[~+l" In general, for j = 1, 2, fi, B (j) = . . . .  \ k,Z ]a• 

wi th  B (j) = k,l = G(k-1)b+l,(j-l)b+l fo rk  = 1,2 . . . . .  ~ a n d / =  1,2 . . . . .  /~. 

T h e o r e m  3. ( B l o c k  S t r u c t u r e )  
B (j+D = crJ (B(1 ) ) for j  = 1, 2 . . . .  ~ - 1. 

I'D (p'q) '~ b the  P r o o f .  The proof is based on Eq. (3.3). For p,  q = 1, 2 . . . . .  fi, set d (p'q) :=  \ 1,l ] l= t  ' 

first row vector of  D (p'q). Let b(p q) be the pth row vector of B (q). By the construction of B (q), b(p q) 

is the diagonal vector of F~ * D (p'q) * F/~. Thus ,  

By Eq. (3.3) we deduce that 

b(q) =.F~ (d(P,q)) := [L)(P'q)~ b 
\ l,t ] l=l"  

( ~)(p+ l,q+ l)'~ ~ 
l,l ]l=l 

p + l  = ~'g d ( P + l ' q + l )  

f (O(P+l,q+l)'~ g 
-~" "~[~ ~k \ l,l ,] l=l ) 

-- .~[~((o3rl-l.D(P'q)'~ b 
- l,z 2l=1) 

: "~b ( (  ('Oa(l-l,'o(p'q,'~b ]l=l] 

---- "~b((  e2zria(,-l,/[7" o(P'q"~b ]'=1] 

[ ~-3(P,q) ~ b 
= \ ~ l , t + a ] t  I �9 

Therefore, for I = 1, 2 . . . . .  /~, 

/~)(p+l ,q+l)  = ~)(p,q) 
l,l 1, l+mod( /+a-  1,b) " 

This yields 
B (q+l) = cra(B (q)) for q = 1, 2 . . . . .  fi - 1.  

Inductively, we obtain that 

B (q+l) -- o'q(B (1)) for j = 1, 2 . . . . .  ~ - 1.  [ ]  

R e m a r k .  Theorems 2 and 3 imply that G"M is determined completely by the f i x / ~  matrix B (1). 
For simplicity, we write B = B (1). We call B the unitarily equivalent Gabor-Gram nonzero-block 
matrix (UEGNB) associated with GM. [ ]  

3.2 Block-Circulant Gabor-Gram Matrices 

In this section we consider the cases that N divides ab. In particular, if N -~ ab,  it is critical 
sampling. We show that the Gabor-Gram matrices are unitarily diagonalized by TDFT. 
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Theorem 4. 
lf  N divides ab, then G M  is a block circulant matrix and G M  is diagonalizable by the unitary 

matrix V = Fa.i,.y ~. Moreover, if 

d )rO,b,s (-T'fi,O, ~ (gl GAB(g2,a,b))) [d "l~l-1 * "~  t J]j----O ' 

then 
V' * G M  * V = diag (do, dl . . . . .  ds . (3.4) 

P r o o f .  (i) Based on Eq. (3.1) in Theorem 1, we show that 

G M =  bcirc (D(I ' I ) ,D  (1'2) . . . . .  D(l'a))  . (3.5) 

For any two pairs of  indices (P l, q l) and (P2, q2) with P l, P2, q l, q2 = 1, 2 . . . . .  fi, we  need to show 
that 

D (m 'q~)=D (p2'q2), i f p l - q l = p 2 - q 2  ( m o d f i ) .  

In fact, by Theorem 1, D (pl'qO k.l = G(pl_l)[~+k.(ql_l)~+l and D (p2,q2) k,l = G(p2_l)~+k.(q2_l)~+l, for 

k, l = 1, 2 . . . . .  /~. Since 

G (pl - l)/~+k, (ql - l)/~+l 
s=0 
N - I  

= E  
s-----0 
N--I 

= E  
s=0 
N - I  

= Z  
s=0 

N- I  

Z { ('Os(k-l)bz(pl-l)agl(s)z(ql-l)ag2(s) } 

{coS(k-l)bT(p2-l)agl (s -- (Pl -- p2)a)T(q2-l)ag2(s - (Pl -- p2)a)  } 

{o)(S-(p'-p2)a)(kTl)bT(p2_l)agl (S)T(q2-1)ag2(s) } 

{co -(pl-p2)(k-l)N Og(s(k-l)bT(p2_l)agl (s)r(q2-1)ag2(s) } 

= G(p2 - l)b+k, (q2- l)b+/ ' 

D(Pl,ql) = D(P2,q2) Therefore, D (pI'qD = D (p2,q2) k,l k,l " k,l k,l " 
(ii) Let Jr be the/~ x/~ basic circulant matrix [6, p.67]. Then G M  can be written as the following 

form [6, p.178]: 

G M  = In | D 0 ' l )  + Jr | D (1'2) + . . .  + rt "~-1 | D (l'a) . (3.6) 

By the properties of  matrix-tensor-products [ 13, p.408], 

V ' * G M * V  
h--I 
Z V t ,  (Trk ~ D( l ' k+ l ) )  , V 

k=O 
fi-I  

k=O 
fi-I  

k=O 
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k=O 
~z-I 

k=O 

where f2 is a diagonal matrix [6, p.72]: 

= diag (1, w . . . . .  w a - l )  with w = exp(-2r r i /~)  

and 
~k = diag (1, w k . . . . .  w(a_ ilk) " 

The last equality follows from [6, Theorem 3.2.1]. 
Since F~ �9 D (l'k+l) �9 F/~ (k = 0, 1 . . . . .  ~ - 1) are diagonal matrices, V' �9 GM �9 V is a diagonal 

matrix. 
Equation (3.4) follows fromthe above fo rmula tha tV ' .GM.V = >--]~_01= ~k |  (F~ �9 D (l,k+l) �9 F g ) .  

The proof is complete. [ ]  

Corollary 4. 
If ab = N, then (g, a, b) generates a Gabor frame if and only if all the entries of d = 

-T'0,/~,~ (-T'a,0, ~ (g* GAB(g,a.b))) are strictly positive. The Gabor frame upper and lower bounds 

are given by the maximal and minimal elements of d. 

Since the nonzero eigenvalues of GM(g,a,b) = [GAB(g.a,b)] * [GAB(g,a,b)]' are the same as 
those o fS  = [GAB(g,a.b)]' * [GAB(g,a,b)] from [10, p.53], Corollary 4 follows. 

4. Computat ions  o f  Gabor Coeff icients  and D u a l  Gabor 
Windows 

In this section, we show that the UEGM matrix-vector multiplications can be performed effi- 
ciently via B. Then we are able to present CG-algorithms for computing the Gabor coefficients and 
the dual Gabor windows. For the cases that N divides ab, simple algorithms are developed. 

4.1 UEGM Matrix-Vector Multiplication 

Algorithm 1 (UEGM Matrix-Vector Multiplication) For a vector ~ ~ C ~, :~ = ~ �9 G"M is 
determined as follows. 

1. Calculate the first column vector of GM by the short-time Fourier transform (STFT): 

2. Compute B : 

t "u ,N-I  
U = GAB(gl.a,b) * g2 := t k)k= 0 �9 (4.1) 

= ~-~-1 (b2) 
(4.2) 
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. 

where bj = (uCj_l)b+l)/=o (j  = 1, 2 . . . . .  fi) are/~-dimensional row vectors. 

Write B = (/}t,l)~xg, then compute ~: for k = p/~ + r  with p = 0, 1 . . . . .  h - 1 and 

r = l , 2  . . . . .  /~, 

Yk = ~ "~ l +mod(r +(p+ s -  1)/7-1, hi) n s, l +mod(r + p a -  l , /0  " 

s = l  

(4.3) 

Proof. 
[] 

The first two steps are based on Theorem 2. The third step follows from Theorem 3. 

4.2 Iterative Algorithms for Gabor Coefficients and Dual Gabor Windows 

The derivations of the following algorithms are based on the properties of  pseudo-inverse 
[8, 10]: p i n y ( A )  = A * p i n v ( A  �9 A') and pinv (A ' )  = p i n v ( A  * A') * A, where p iny (A)  denotes 
the pseudo-inverse of a matrix A. The idea has been used by Feichtinger [8]. 

Algor i thm 2 (Gabor Coefficients) For a signal x ~ C N, the Gabor coefficients c = {Cn,m }n.m with 
respect to (g, a, b) are determined via the following: 

1st step: Calculate xl = x �9 [GAB(g,a,b)]' by STFT. 

2nd step: Calculate x2 = ~'0,~,~,(Xl) by TDFT. 

3rd step: Solve the linear equation x2 = x3 * G'-'-M by CG-algorithm, where G'-M is the UEGM 
associated with (g, a, b). The matrix-vector multiplications in each iterative CG-step are performed 
by Algorithm I. 

- /v ~ - l  4th step: Compute c = {Cn.m}n,m by applying ITDFT. Set co = br0,~.~(x3) :=  ~ i / / j=o, then 

Cn,m = V,~+m for n = 0, 1 . . . . .  fi -- 1; m = 0, 1 . . . . .  /~ -- 1. 

Proof. First, we need to show the CG-alg.. orithm of the third step is convergent. In fact, it is easy 
to verify that x2 is in the column space of GM. By the same argument used in [20, Algorithm 3], we 
can show the CG-convergence. 

By Eq. (1.1), x = co * GAB(g,a.b). Write G M  = GM(g.a.b) = [GAB(g,a,b)] * [GAB(g,a,b)]', 
then 

xl = x * [GAB(g,a,b)]' = ev * G M .  (4.4) 

By Theorem 2, G M  = U'  * GM �9 U with U = Fo,b, ~. Equation (4.4) implies 

x2 = xt * U = co * U * G M  = x3 * G M ,  (4.5) 

w h e r e  x 3 = c v * U. Hence, co = x3 * U'  = ~'o,~,~ (x3). [ ]  

Algor i thm 3 (Dual Gabor Window ~) Given (g, a, b), ~ is determined as follows. 

1st step: Set Xl = ~--~(1 . . . . .  1,0 . . . . .  0). 

a ab-a  

2nd step: Solve the linear equation xl = x2 * GM by either (i) or (ii), where G M  is the UEGM 
associated with (g,/~, fi). 

(i) The sparse techniques: x2 = Xl/sparse(GM). 
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(ii) The standard CG-method if (g, a, b) generates a Gabor frame. 

-1 3rd step: Applying ITDFT, x3 = ffT;,a,ab(X2). 

4th step: Compute ~g = x3 * GAB(g,~,a ) by STFI'. 

Proof .  It is easy to check that Xl = .~'O,a,ab(~eab) = ab -~-~O,a.ab(eab), Let G M  = GM(g,&a). If 
(g, a, b) generates a Gabor frame, then GM is invertible. By Proposition 1, 

= > ,GM-I  

= (g * GABt(g,/),a,), IBM -1 �9 GAn(g,/~,fi) } 

-~- (-~-eab * G M -  1) * GAg(g,g,fi) 

, -1 = (Xl* G-~-I  FO,a,ab) * GAB(g,,,a ) 

= , �9 GAB(g,/;,a ) 

= x3 * GAB(g.E,,a), 

where x2 can be determined by (i) or (ii). If  (g, a, b) does not generate a frame, we use (i) to solve 
for x2. 

The proof is complete. [ ]  

R e m a r k .  By Algorithm 1, the UEGM matrix-vector multiplication is determined by B. Since 
can be pre-calculated, the matrix-vector multiplications of the CG-iterations in Algorithms 2 and 3 
are efficiently performed. The algorithms work fast. 

For Algorithm 3, wi.~out the assumption that (g, a, b) generates a Gabor frame, xl may not be 
in the column space of GM. The assumption is necessary for the CG-convergence. For Algorithm 2, 
however, we have shown the CG-convergence without assuming that (g, a, b) generates a frame. 
[] 

4.3 Special Cases: N Divides ab 

In this section, based on the results developed in Section 3.2, we present simple algorithms for 
computing the Gabor coefficients and the dual Gabor windows for the cases that N divides ab. By 
making use of the results in [18, 21], we can derive similar methods for the cases that ab divides N. 

Algorithm 4 (Gabor Coefficients: N divides ab) Given x ~ C N and assume that N divides ab, 
the Gabor coefficients e = {Cnm}n,m with respect to (g, a, b) are determined via the following steps: 

1st step: Calculate xl = x �9 [GAB(g,a.b)]' and u = g * [GAB(g,a.b)]' by STFT. 

t d A ~ - l  2rid step: Calculate d = .T'a,~, ~, (u) := ~ JJj=o ' by TDFT. 

/t AD-I 3rd step: Calculate x2 = .T'&/?,,~,(Xl) := ~ JJj=o ' by TDFT. 

step: Compute v = .~--_l. ((sj)~i.~l) ~-1 4th •,b,N . - - .  := (1)j)j= 0 , by TDFT, where sj is given by 

t j /dj f o r j = 0 , 1 ,  N - 1 .  Thencn,m=Vnb+m, f o r n = O ,  1, 
i fdj  # 0 

sj = 0 if dj = 0 . . . . . . . .  f i - 1  
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and m = 0, 1 . . . . .  /~ - 1. The Gabor coefficients e = {Cn.m}n,m are determined. 

Algorithm 5 (Dual Gabor Window: ab divides N) If ab divides N, then the dual Gabor window 
~g is computed as follows. 

1st step: Calculate u = g �9 [GAB(g,g,a)]' by STFT. 

2nd step: Calculate d = .~b,a,ab (U) 

{ V ' -~/ (Ndj)  ifdj ~ 0 
given by vj = 0 if dj = 0 

[d .'~ab-1 fl) Aab-1 := I J]j=O by TDFT and set v = t J}j=O with vj 

f o r j  = O, 1 . . . . .  a b -  1. 

3rd step: Calculate w - !  = "~b,a.ab (v) by ITDFT. 

4th step: Compute ~g = w �9 GAB(g,/~,a) by STFT. 

Proof .  Since ab divides the signal length N, N divides fib. By Theorem 4, GM(g,f,,a) is a 
block-circulant matrix and is unitarily diagonalized by V = Fb,a.ab. Noticing that ~b,a,ab (eab) -~- 
~ab(1, 1 . . . . .  1),~ the algorithm is deduced. [ ]  

v 

ab 

R e m a r k .  For undersampling cases in which N divides ab, we consider Gabor triple (g,/~, ~). By 
Algorithm 5, we are able to determine the dual Gabor window g,o associated with (g, b, fi). Applying 
the results in [18, 21], ~ = ab- N'go is the dual Gabor window corresponding to (g, a, b). 

In the 2D case, we can similarly define 2D-TDFT and show that 2D-TDFT can be performed 
by 2D-FFT. Considering the 2D separable discrete Gabor transform [18], we are able to formulate 
algorithms for computing the 2D Gabor coefficients and the dual Gabor windows. [ ]  

4.4 Connections with Previous Results 

Discrete Gabor transforms have been studied by many authors via discrete Zak transforms [ 1, 
16, 24]. However, the Zak transform methods are restricted to the cases that N divides ab, as 
we studied in Sections 3.2 and 4.3. In [16, p.1788] and [24, p.944], the authors gave analytic 
formulations of the Gabor coefficients {Cn.m }, by using the Zak transforms and employing the bi- 
orthogonal functions. The determination of the Gabor coefficients may be difficult because of the 
occurrence of zeros in the Zak transform. Advantages of our methods are as follows. 

For the cases that N divides ab and ab divides N, simple results are presented in Sections 3.2 
and 4.3 based on standard linear algebra. Algorithms 4 and 5 can be easily implemented. 

Algorithms 2 and 3 are general approaches. The algorithms can be used without any restrictions 
on the lattice constants (a, b). We do not need to assume that {gn,m } be a Gabor frame. Algorithm 2 
is for computing the Gabor coefficients without precalculating the dual Gabor window. 

Algorithms 2 and 3 are CG-iterative algorithms. For each CG-iteration, only a UEGM matrix- 
vector multiplication is required and can be done easily by Algorithm 1. Moreover, we only need to 
run a few CG-cycles to meet the required accuracy. This leads to efficient computations. 

In [18, 19], different approaches have been derived for computing the dual Gabor window. 
The algorithms are based on the sparse structures of the Gabor matrix S [18, pp.2860-2862] and the 
block-diagonal matrix D [ 19, p.2874]..The total number of nonzero elements of S and D are Nb and 
Na, respectively. For L_Algorithm 3, GM is associated with (g,/~, fi). There are only ab 2 possible 
nonzero elements in GM. If ab < N (oversampling), then the advantage of Algorithm 3 is clear. 
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5. N u m e r i c a l  S i m u l a t i o n s  

In this section, we illustrate some numerical results. 
Figure 1 shows the explicit sparsity of the UEGM matrices. The structural properties of GM 

lead to efficient computations of Gabor coefficients. Cases (i) and (ii) are oversampling with (a, b) = 
(20, 8), (24, 8). Cases (iii) and (iv) with (a, b) = (30, 20), (48, 20) are undersampling. 

UEGM matrix (i) 
0 

1 0 0 ~  

200 

300 

0 100 200 300 
nz = 4320 

UEGM matrix (iii) 
of \  ,,..\ \ ..,-,, \ - - \ j  

. , ' % .  ~. N N. , ,  "k 

6%,\?\,\\,\\-\21 
8o~\ \ \  \ \  \ \-',j 

r \ , \ , , , \ ,  \ \ \  \l 
0 20 40 60 80 

nz = 768 

0 

100 

200 

300 

UEGM matrix (ii) 

,oi 
0 100 200 300 

nz = 3000 
UEGM matrix (iv) 

0 

!!iiii!i!iiiiiiiiiiiii!!iii!iiiii:!!iii!i!!i!i!!!ii!iii"  20 

60 
0 20 40 60 

nz = 300 

FIGURE 1. The sparse structures of the unitary equivalent Gabor-Gram matrices. The lattice constants (a, b) 

corresponding to (i), (ii), (iii), and (iv) are (20, 8), (24, 8), (30, 20), and (48, 20), respectively. The signal length N is 
128. 

Figure 2 illustrates a Gabor window g and a Chirp signal x. The signal length N = 240. Figure 
(k) 

IIX-Xanpll 
3 is the plot of reconstruction error I x ~" vs iteration number k. 

The iteration number refers to the ~- i te ra t ion  number of Algorithm 2. Fix a maximal iteration 

~cUnmb~.rk,oLG;)o=r c~2~, li0~,(2{07 ~)}, ~16c~ff)ul(~6d b~ A~gOdtoms~.~ucT~tien n (~lPadSveC)?pu~:drWi~hh 

the order of 10 -6 with 10, 6, 6, and 5 CG-iterations, respectively. The examples show that the 
CG-algorithm converges fast. If the lattice constants (a, b) are smaller, the convergence is faster. 

6. C o n c l u s i o n s  

In this article, we introduced the tensor discrete Fourier transforms (TDFT). We showed that 
TDFT can be performed by FFT. We have studied a class of Gabor-Gram matrices. We have shown 
that these matrices are unitarily equivalent to sparse matrices by TDFT. Based on the structural 
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The Gabor window and the Chirp signal. The signal length N = 240. 
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FIGURE 3. Reconstruction error IIx-x(k)appll llxll vs. iteration number k. The Gabor window and the original Chirp 

signal are illustrated in Figure 2. 
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properties of  the Gabor-Gram matrices, we were able to present CG-methods for computing the 
Gabor coefficients and the dual Gabor windows. The algorithms can be applied to the critical 
sampling, oversampling, and undersampling cases. We do not need to assume that the family 
{gn,m }n,m be a Gabor frame. In particular, if  ab divides N (or N divides ab), computations of the 
Gabor coefficients and the dual Gabor windows are simple. 
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