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ABSTRACT.  The fundamental problem of discrete Gabor transforms is to compute a set of Gabor
coefficients in efficient ways. Recent study on the subject is an indirect approach: in order to compute
the Gabor coefficients, one needs to find an auxiliary bi-orthogonal window function y .

We are seeking a direct approach in this paper. We introduce concepts of Gabor-Gram matrices and
investigate their structural properties. We propose iterative methods to compute the Gabor coefficients.
Simple solutions for critical sampling, certain oversampling, and undersampling cases are developed.

1. Introduction

The Gabor transform was originally formulated by Gabor [9] in 1946. The idea is to represent
or best-approximate a signal by a set of coefficients over a set of TF-translated copies of a window
function g. In the discrete case, given a Gabor window g € CV and TF-lattice constants pair (a, b),
the discrete Gabor representation of a signal x € CV is of the form:

d~1 b1
X=chn,mgn.m . (1.1
n=0m=0
Forn=0,1,...,a—landm =0,1,...,b—1, €n.m = MmpTy,g are the discrete time-

frequency shifted copies of g, ¢, , are the Gabor coefficients. (g, a, b) is called a Gabor triple. We
call (@, b) with a = % and b = % the dual lattice constants. We say (g, a, b) generates a Gabor
frame if {gn.m}n.m i a frame [3, 4].

The advantage of the Gabor transform is based on TF-localizations of the Gabor family.
The subject has been studied by mathematicians and engineers [1, 3, 4, 5, 12, 23, 25]. Since the
Gabor family {g, =} need not be orthogonal, difficulties arise from the determination of the Gabor
coefficients.
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In 1980, Bastianns [2] introduced a bi-orthogonal function y and turned the representation (1.1)
to an orthogonal-like form:
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(X, Yn.n)8nm - (1.2)
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The active studies on the subject turn to seek y in efficient ways. Many interesting approaches have
been developed [7, 14, 16, 17, 18, 19, 20, 22, 24]. However, this y is an auxiliary function. We only
need to use y to determine the coefficients ¢, p;.

Can we have an efficient way of computing ¢, ,, without using y ? In this article, we present a
conjugate-gradient (CG) approach to compute the Gabor coefficients without using y. We consider
general cases: critical sampling, oversampling, and undersampling cases. We do not assume (g, a, b)
generates a Gabor frame.

In Section 2, we fix notation and present preliminaries. The concept of Gabor-Gram matrices is
introduced. In Section 3, the structural properties of Gabor-Gram matrices are investigated. Then we
present fast algorithms for computing the Gabor coefficients and the dual Gabor windows [18, 19, 20]
in Section 4. Special cases including critical sampling cases are considered. Simple algorithms are
derived to compute both the Gabor coefficients and the dual Gabor windows. Numerical results are
illustrated in Section 5.

2. Notation and Preliminaries

Throughout this article, we use notation introduced in [18, 19, 20]. Bold letters (e.g., g, A)
denote row vectors and matrices. We use A = (Ak'l)pxq to denote a matrix in CP>9, where Ay,

denotes the (k, [)th entry of A. x = (xj)j'i—ol (or (x( j))j’.v=’01) denotes the row vector in CV, where

xj or x(j) is the (j + 1)th entry of g. Superscripted uppercase bold letters, such as A(?-9), refer to
submatrices of A. A’ denotes the conjugate and transpose of A, while A’ is the transpose of A. If
A= (A/”)qu1 and B = (Bk.l)quz: the tensor product A ® B is defined to be the partitioned

matrix [13, p.407]: A® B = (Ak,tB) € CP1P2xX01q2

We view CVY = L2(Zy). Signals are considered as N-periodic row vectors in CV. The in-
ner product of two signals x = (xk);:'____oI e CVNandy = (yk);:’;bl e CV is given by (x,y) =

sum,’c\':_olxkﬁ. l1x}| = \/Zk;ol |x]? is the norm of x. We use “*” to denote the usual matrix
multiplication. x * A is the matrix-vector multiplication of x and A.

In addition, F, denotes the discrete Fourier transform (DFT) and F, denotes the Fourier
matrix [6, p.32] of order r. F,(x) = x * F, is the DFT of x € C". diag(d|, da, ..., d;) denotes the
r x r diagonal matrix with diagonal elements d fork = 1, 2, ..., r. I, is the r X r identity matrix and
e, is the r-dimensional unit row vector whose first entry is 1. We use circ(cy, ¢2, . .., ¢,) to denote
the circulant matrix [6, p.66] and bcirc(A, A3, ..., A,) to denote the block circulant matrix [6,
p.176].
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2.1 Gabor-Gram Matrices

Given (g, a, b), we define GAB(g 4,p) as an NxN®N = %bz) matrix of the following block
form:
/ g

Mg

Mg_ 18
GAB(g'a,b) = . 2.1
Ta-1)a8
MpTG_1)a8

M 1ypTa-1a8
We call GAB g,4.5) the Gabor-Gram basic matrix associated with (g, a, b).

Remark. Obviously, GAB (g 4.5) and the Gabor basic matrix GAB(g, a, b) introduced in [18, 19]
are the same, except for their row vectors being arranged in different order. Both the row vectors of
GAB (g 4.5) and GAB(g, a, b) form the Gabor family {gn m}n.m- It is not difficult to check that

[GAB@ar] *[GABgas] = [GAB(g,a, b)) x[GAB(g,a,5)]. O (22)

Definition 1. (Gabor-Gram Matrix)
For Gabor triples (g1, a, b) and (g, a, b), we call the N x N matrix

GM (g, g, a.b) = [GAB(g, a.] * [GAB(g,.06] 2.3)

the Gabor-Gram matrix. In particular, if g1 = g2 = g, we write GM(g 4 p) = GM(g g 4 b) and call
GM(g 4 ) the Gabor-Gram matrix associated with (g, a, b). If no confusion occurs, we simply use
GM to denote the Gabor-Gram matrix.

It is easy to verify the following bi-orthogonality [23] in matrix forms.

Proposition 1.

Given (g, a, b) and a signal h and set g = Fy(g) and h = F(h). The following statements
are equivalent:

1. (g, a, b) generates a Gabor frame.

- GM s =My 5 = Flab
- h*[GAB; 51 = %eus.

. g*[GABy ; 1)1 = Leq.

. (&, b, a) generates a Gabor frame.
GM(ﬁ.ﬁ,&,E) = GM(Q,E,&,E) = Izp.

- hx[GAB ; ;)1 = eap.

g * [GAB(E.&,E)]/ = €zp.

G N O A W N

The last four conditions are based on the commutative relation [18, p.2262]. The fact is that
(g, a, b) generates a Gabor frame if and only if (g, b, a) does.
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2.2 Tensor Discrete Fourier Transform (TDFT)

Definition 2. [Tensor Discrete Fourier Transform (TDFT) ]
Let ry and rp be integers andr = riry, we call

Frl,rz.r = Frl ® Frz »
FO,rz,r = Irl ® Frz ’
Frl,O.r = Fr1 ® Irz

the tensor Fourier matrices of order (ry, ra, r), (0, r2,r) and (r1, 0, r), respectively.
The linear mapping:

N ald r —_
frl.rz.r - C g (C ’ ]:rl.rz.r(x) =X* Frl,rz,r

is called the tensor discrete Fourier transform (TDFT) of order (ry, ra, r). Similarly, Fy ., , and
Fri.0.r can be defined.

Proposition 2.
Tensor Fourier matrices ¥y, »,.», ¥, .0.- and Fo ,,r are r x r unitary matrices.

Proof. By the properties of tensor prodﬁcts of matrices [13, pp.406—411],

F e *Frn, = (Fr,® F,z)' * (F,, ®F,,) = (F’,l ® F',z) * (Fr, ® F,)

= (Fi'l*Frl)®(F:‘2*F’2)=I’l®I"2=I'

Hence, F,, ,, - is a unitary matrix. With the same arguments, we show that Fo ,, , and F, o, are
unitary matrices. O

In practice, the discrete Fourier transform (DFT) is performed by the fast Fourier transform
(FFT). For a signal x € C”, we show that the TDFT of x can be computed by FFT with the total
complexity no more than O (r logr).

Proposition 3.

For a signal x = (xk),’c;(l) € C" (r = r\ry), the TDFT of x are determined via FFT.

(). Lety = Forr(x) := g Forj =0,1,...,r — 1, sety! := (yk),(ci*}lrl’z'l and
x0) 1= ()5 2! Then .
9 =F, (x9) . 2.4)
The total complexity is O (rlogry) .

(i). Lety = Fp 0., (X) := (yk)k;(l). Forj=0,1,...,r0— 1, set y) := (y]q.s,z):’____ol and
xU) = (xj+s,2)”—l . Then

= D =7, (x) . @.5)
The total complexity is O (rlogry).
(iii). Lety = F, r,,r(X), then
Y = Forar (Fri,00®) = Frpor (Fornr (X)) - (2.6)
The total complexity is O (rlogr) .
Proof. (i). Forj=0,1,...,r1—1,letel*D) be the r;-dimensional unit vector whose (j + 1)th

entry is 1. Then x = Z;l=—01 eU+D @ x(7 Thus,

Yy = fO,rz,r(x) =Xx* (Irl ® F"Z)
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ri—1

= Z {(eUH) ® x(j)) * (I, ® Frz)}
j=0
— rlz_l {(e(j+1) * Irl) ® (x(j) " Frz)}
f=0
— :;Z—(:{e(jH) ® F, (x(j)>} _
Therefore,
rn-1 ri—1
Z eUt) @ y) =y = Z {e(m) ® %, (x(j))} _
j=0 j=0

This leads to Eq. (2.4). The complexity is rjO (r2logry) < O(rlogra).
Equation (2.5) can be shown similarly. The complexity is r,O (ry logr)) < O (rlogry).
Since F,, ®F,, = (F, ® I,)*(I;, ® F,) = (I;, ® F,)*(F,, ® I,) , Equation (2.6) follows
and the complexity is r1O (r2logr2) + roO (rilogr)) < O(rlogra) + O(rlogr) = O (rlogr).
O

Similarly, the inverse tensor discrete Fourier transforms (ITDFT) F(I rlz, o ]-',_] '10' ,» and fr_; '1,2‘,

can be defined. They are performed with the total complexity O (rlogr2), O (rlogr;), and
O (rlogr), respectively.

2.3 Rotation Operator o,

Definition 3. (o,)
Given a matrix A = (A1)
where By is given by

and a positive integer a, we define B = o,(A) = (Bk‘l)

pxq pxq’

B = Al+mod(k+p~2.p). 1+mod(I+a—1.q) »

fork=1,2,....,pandl =1,2,...,4.
Inductively, we define o’ (B) = 0"~ (o (B)) forr > 1.

Proposition 4. )
For a matrix B = (By)) ;. ; € C**, 0Z(B) = B.

Proof. By the definition of o,, we derive inductively that

o, (B) = (Bl+mod(k+ﬁ—(&+l)v‘i)'l+m°d(l+&a—l'5)>&xg
= (Bl+(k-1).1+(l—l))ax5
(Bk-[)&xl; '

i

Thus,c2(B)=B. [

3. Characterizations of Gabor-Gram Matrices

In this section, we show that the Gabor-Gram matrices are determined by the unitarily equiv-
alent Gabor-Gram matrices (UEGM) via TDFT. We characterize the banded and block structures
of UEGM matrices. If N divides ab, we show that the Gabor-Gram matrices are block-circulant
matrices. The structural observations on these matrices are the key to derive fast algorithms.
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3.1 Gabor-Gram Matrix Structures

Theorem 1.
Let GM = GMg, g, a,5) = (Gkvl)l\_lxl‘_l )
(1) Foranyk = jib+ryandl = jab+rawithjy, j2 =0,1,...,d—landr;,r =1,2,..., b,

N—-1
Grr= Y {0 ! 081 () a2 . 3.1)
=0

where w = e~ 27N ) )
- N — qu b p'q — - -
(2) For p,q = 1,2,...,a, define DD = (Dk.l )BxE with D% = G(p-l)b+k.(q—l)b+l

fork,l =1,2,...,b. Then D'»"9 are b x b circulant matrices and GM is of the following block
Jorm.

pd.b pt2a - pdd
p&L p@d . p@d
GM = : . : : (3.2)
p@h p@d  p@d
3 Forp,gq=1,2,...,a-—1,
DD — pBD gkl fork,1=1,2,...,5, 3.3)

where @ = e~2ami/b,
Proof. (1) The (k, I)th entry of GM is given as

Gt = (Mi—1pTjia81) * (M6 TaB2)
N-1
= > (w’("‘”" leagl(s)> * (‘”J('z—l)bTﬁ“gZ(s))
=0
N-1

- Z {ws(rl—rz)bnlagl(s)rhagz(s)] .

§=0

We obtain Eq. (3.1).
(2) By Eq. (3.1),
N-1

q) k~1)b N5 Y
Dg’zq = G )btk (- D)5+ = Z [“’s( : T(p—l)agl(S)T<q—1)agz(s)} .
s=0

For any two pairs (k{, [{) and (ky, I3) withky, Iy, k2,1 = 1,2, ..., b, ifkj =11 =ka—I3 (mod b),
then (k; — I[1)b = (ky — I2)b (mod N). This yields @ k1~I0b = sa—l)b Hence,

G (p-1)btk. (g~ Db+ = G (p-)btks, (g— Db+l -

Therefore, D,(cﬁ ’,‘{) = D,(c‘z7 "Z ), D, 4 is a circulant matrix.
(3) Using Bq. (3.1,
(p+lg+l) . .
Dk.l - pr+k.qb+l
N-1
= Z[wx(k_l)bTPagl(S)TanZ(S)}

s=0
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.

_ [w(”“)("")bT(,,_nagl(S)MI

o
Il
S

=

= 3 {0t T 081 ()T nag20)
0

«
]

N-1

= kDb [ws(k_l)bT(p—l)agl(S)T(q—l)agZ(S)}
s=0

— coa(lc—l)bDl(c’pl,q) - D/E’pl.q) )

Equation (3.3) is derived. U
Corollary 1.

Let Q = (Qk.1);, ; be the circulant matrix whose first row vector is q = (@ ™/ );:; . Then
DP+1.9+D is the Hadamard product of D?P? and Q [10, 11]:

pPHLa+D) — (Dl(cpl'q) . Qk,l)5 ; forp,g=0,1,...,a—-1.
M X

Theorem 2. (Banded Structure) ~
Let GM :=U' *GM #* U with U = Fy ;. 5~ Then all the possible nonzero entries of GM are

in the kth diagonals fork =0, (b — 1), ..., £(b - )@ - 1).
Proof. By the properties of tensor products of matrices [13, pp.406-411],

GM = Us+GM+U=F . +GMxF,; ;

0.b.N
pl.h pd2  ptad
p@b p@a = pea
= (15®F;;)* , o B Y Y
D@ p@2 p@d
F.«DUD xF; F,+DUDxF; ... F.xD!4 xF;
_ | F#D@D«F; F«DED«Fp . Fpx DD xF;
F,+D@D «F; F,+D@DxF; ... F;xD@? xF;

By Theorem 1,D®9 (p, q = 1,2, ..., @) are circulant matrices. Thus [6, pp.72-80], F;,*D(p"I) *F,
(r,.g=1,2,..., b) are diagonal matrices. Therefore, GM holds the banded structure as stated.
The proof is complete. O

We call GM the unitarily equivalent Gabor-Gram matrix (UEGM) associated with Gabor
triples (g1, @, b) and (g2, a, b). When g| = gz := g, we say GM is the UEGM matrix corresponding
to (g, a, b). It is clear that GM and GM are determined by each other via Fo, b The total number

of possible nonzero elements of GMisa - (@-b) = Na.
Corollary 2. L

Ifa= N, GM s ab x b diagonal matrix.
Corollary 3.

IfGM = (Gk'l)ﬁxﬁ’ then Gy =0 if k—1]#0 (mod b).
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Corollaries 2 and 3 are straightforward consequences of Theorem 2. Now let us do the
following “zero-extracting” trick. Set B(D = (B’S'l’))axé with B/E,lz) =G (k—D)p4+1,- Similarly,

2 )
B® = (Bk.l)

. N _. A _ . — ~ —
with Bk., = G(k-—l)b+l,(j—l)b+l fork=1,2,...,aand! =1,2,...,b.

: 2) _ A L . - N o 6]
s with B} = G _ 15, 540 In general, for j = 1,2,..., 3, BY) = (B,d,)

axh

Theorem 3. (Block Structure)
BUHD =g/ BW) for j=1,2...,a— 1.
5
Proof. The proof is based on Eq. (3.3). For p,q = 1,2,...,d, set d?9) ;= (D§{’,"”)l . the

first row vector of D@ Let b be the pth row vector of B@. By the construction of B@, b'?
P p

is the diagonal vector of F;; * DP9 x F;. Thus,

b

@ DY . (D
by = F; (aP) := (le’,q)l=l .

By Eq. (3.3) we deduce that

(bifllH‘qH))il — b;q‘:-ll) =F; (d(p+1.q+l))
- 5 ((e6)L)
= 7 (=2,
- ()

= 5 ((eZn'ia(l—l)/E . Dgp’,q))b )
' =1

b
AP
(Dlv“'“)t:l '

Therefore, forl =1,2,...,b,

[)(p+l-q+l) — prd )
Ll 1. 1+mod(l+a—1.6)

This yields
B@+D O’a(B(q)) forg=1,2,...,a-1.

Inductively, we obtain that
BYtD =gIBD) forj=1,2,...,a~1. O

Remark. Theorems 2 and 3 imply that éE’I is determined completely by the @ x b matrix B(D,
For simplicity, we write B = B(). We call B the unitarily equivalent Gabor-Gram nonzero-block
matrix (UEGNB) associated with GM. O

3.2 Block-Circulant Gabor-Gram Matrices

In this section we consider the cases that N divides ab. In particular, if N = ab, it is critical
sampling. We show that the Gabor-Gram matrices are unitarily diagonalized by TDFT.
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Theorem 4.
If N divides ab, then GM is a block circulant matrix and GM is diagonalizable by the unitary
matrixV = F&_E,/s'/- Moreover, if

d=Fy 55 (Faon 81+ CABgan)) = (&) -

then
V' xGM x V = diag (do, d1, ..., dg_,) . (3.4)

Proof. (i) Based on Eq. (3.1) in Theorem 1, we show that
GM = bcirc (D("”, pt?, D“ﬁ)) . (3.5)
For any two pairs of indices (py, 1) and (p2, g2) with p1, p2, 91,92 =1, 2, ..., a, we need to show

that
DP9 = pP2®) if p) —q; = py —q2 (mod @) .

(p1.q1) _ _ . (p2.92) _ . -
In fact, by Theoiem 1L, DY = G (py—1)b+k.iqi~ b+t 2nd Dy = G () )itk (ga—Db+1» 1O
k,1=1,2,...,b. Since
N-1
k—D)b —
G (pr-Dbtk(q-Db+ = [wx( ) T(m—l)agl(S)Tm—l)agz(S)]
s=0
N—1
_ stk=Db o T —
= W (p2—1a&1(s — (p1 — p2)a)T(g,-1a82(s — (P1 — p2)a)
s=0
N-1
= {w(s°("'_”2)”)(k71)bT(pz—l)agl(S)T(qz—l)agz(s)]
s=0
N-1
= [w‘(”‘"’2)("")”w(“"")”T(,,2_1>ag1(s)T(qZ_l)agz(s)}
s=0

G(p2—1)5+k.(qz—l)l;+l g

D,ﬁf’,“q‘) - DIE‘,DIZ‘qZ)' Therefore, D[((!"[lv‘ll) - Dl(c{le.qz)'

(it) Let r be the b x b basic circulant matrix [6, p.67]. Then GM can be written as the following
form [6, p.178]:

GM =L D!V + 7 @D 4+ +ri-lgpld, (3.6)

By the properties of matrix-tensor-products [13, p.408],

a—1
V «GM*V = HZV’ * (n" ® D‘”‘“’) «V
=0

a—1
_ / k o py(Lk+1) o
= ZFa'E’ﬁ*(n ®D )*F&‘M
k=0
a-1

=3 (F;i ® F;;) * (n" ® D“"‘“’) * (F; ® Fj)
k=0
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t
I
—

= (F:i * 7k % Fa) ® (F’b * DULAHD F,;)

[T
_0

= Y @ o (F«DDAF;)
k=0

where Q is a diagonal matrix [6, p.72]:
Q = diag (1, w,..., wa"l) with w = exp(—2ri/a)
and
o = diag (1, wk, ..., w(""l)") .
The last equality follows from [6, Theorem 3.2.1].

Since FIE *DUED 4 Fy (k =0, 1,...,a— 1) are diagonal matrices, V' *GM x V is a diagonal

matrix.
Equation (3.4) follows from the above formula that V'*GMx*V = Y~ k;(l) e (F’E x DD FE) .

The proof is complete. O

Corollary 4.
If ab = N, then (g, a, b) generates a Gabor frame if and only if all the entries of d =

Fob.i (.7-'5'0‘ 7 (g * GAB(g.a‘b))) are strictly positive. The Gabor frame upper and lower bounds
are given by the maximal and minimal elements of d.

Since the nonzero eigenvalues of GM(g .5y = [GAB(g.a.5)] * [GAB(g 4,5)]" are the same as
those of S = [GAB g.4.5)]’ * [GAB(g.4,5)] from [10, p.53], Corollary 4 follows.

4. Computations of Gabor Coefficients and Dual Gabor
Windows

In this section, we show that the UEGM matrix-vector multiplications can be performed effi-
ciently via B. Then we are able to present CG-algorithms for computing the Gabor coefficients and
the dual Gabor windows. For the cases that N divides ab, simple algorithms are developed.

4.1 UEGM Matrix-Vector Multiplication

Algorithm 1 (UEGM Matrix-Vector Multiplication) For a vector X € cV , ¥ = X% GM is
determined as follows.

1. Calculate the first column vector of GM by the short-time Fourier transform (STFT).

u=GABg, 4 * 85 = (Wb - (4.1)
2. Compute B:
F5 ' )
< | FHlm
B= . i 42)

_1:
-7:5 (b&)
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b-1

where b; = (u(f“)5+’)1=0 (j=12,...,a)are b-dimensional row vectors.
3. Write B = (Ek'l)axﬁ’ then compute §: fork = pb+r with p =0,1,...,@ ~ 1 and
r=1,2,...,b,
a
Fk =D F1 L modr+ (45— -1, ) Bs, L+mod(r-+pa—1.5) - (4.3)

s=1

Proof.  The first two steps are based on Theorem 2. The third step follows from Theorem 3.
U

4.2 Iterative Algorithms for Gabor Coefficients and Dual Gabor Windows

The derivations of the following algorithms are based on the properties of pseudo-inverse
[8, 10]: pinu(A) = A * pinv(A * A’) and pinv(A’) = pinv(A * A") * A, where pinv(A) denotes
the pseudo-inverse of a matrix A. The idea has been used by Feichtinger [8].

Algorithm 2 (Gabor Coefficients) For a signal x € CNV, the Gabor coefficients ¢ = {ch.m}n.m With
respect to (g, a, b) are determined via the following:

1st step: Calculate x| = x * [GAB(g 4] by STFT.
2nd step: Calculate x; = fo, . #(x1) by TDFT.

3rd step: Solve the linear equation X; = X3 * GM by CG-algorithm, where GM is the UEGM
associated with (g, a, b). The matrix-vector multiplications in each iterative CG-step are performed
by Algorithm 1.
N-1

4th step: Compute ¢ = {Cn.m}n.m by applying ITDFT. Set¢, = FoL (x3) = (vf)j=0 , then

0.b.N

Cnm = Vyj,,, for n=01...,.a-1;m=0,1,...,b— 1.

Proof.  First, we need to show the CG-algorithm of the third step is convergent. In fact, it is easy
to verify that x5 is in the column space of GM. By the same argument used in {20, Algorithm 3], we
can show the CG-convergence.
By Eq. (1.1), x = ¢, * GAB(g q.5). Writt GM = GMg 4.5) = [GAB(g.a.5)] * [GAB(g.a.5)),
then
x; = x*[GABgap] =cy *GM. (4.4)

By Theorem 2, GM = U’ + GM * U with U = F ; 1. Equation (4.4) implies
x2=x1*U=cv*U*éEI=X3*@, 4.5)
where x3 = ¢, * U. Hence, ¢, = x3 * U’ = F ; 5 (x3). d

Algorithm 3 (Dual Gabor Window g) Given (g, a, b), g is determined as follows.
1st step: Setx) = [A’;—b(l, ..., 1,0,...,0).
e s Ve o
a ab—a

2nd step: Solye the linear equation x| = X3 * GM by either (i) or (ii), where GM is the UEGM
associated with (g, b, a). _
(i) The sparse techniques: x» = x; /sparse(GM).
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(ii) The standard CG-method if (g, a, b) generates a Gabor frame.
3rd step: Applying ITDFT, x3 = F 1 ,(x2).

4th step: Compute g = x3 * GAB by STFT.

(@.b.a)
Proof. Itis easy to check that x; = Fo,a,ab(%eab) = %fo‘a‘ab(eab). Let GM = GM(g'&&). If
(g, a, b) generates a Gabor frame, then GM is invertible. By Proposition 1,

_ ’ -1 .
g = *{GABg‘g‘&)*GM *GAB(g'bv&)}

I
o
rat
*
Q
>
4

Lia ) % [GM—1 *GAB(gV&&)}

b
eab> * {GM“l * GAB(g'E'&)}

v

—1
* FO,a,ab) * GAB(g,I;,&)

—~1
(xz * Fo,a.ab) * GAB(g.E,&)
= X3%* GAB(g'I;‘&) ,
where x; can be determined by (i) or (ii). If (g, a, b) does not generate a frame, we use (i) to solve
for xs.
The proof is complete. O

Remark. By Algorithm 1, the UEGM matrix-vector multiplication is determined by B. Since B
can be pre-calculated, the matrix-vector multiplications of the CG-iterations in Algorithms 2 and 3
are efficiently performed. The algorithms work fast.

For Algorithm 3, without the assumption that (g, a, b) generates a Gabor frame, x| may not be
in the column space of GM. The assumption is necessary for the CG-convergence. For Algorithm 2,
however, we have shown the CG-convergence without assuming that (g, @, b) generates a frame.

O

4.3 Special Cases: N Divides ab

In this section, based on the results developed in Section 3.2, we present simple algorithms for
computing the Gabor coefficients and the dual Gabor windows for the cases that IV divides ab. By
making use of the results in [18, 21], we can derive similar methods for the cases that ab divides N.

Algorithm 4 (Gabor Coefficients: N divides ab) Given x € CV and assume that N divides ab,
the Gabor coefficients ¢ = {cqm }n.m With respect to (g, a, b) are determined via the following steps:

1st step: Calculate X; = X * [GAB(ga.5)]' and u = g * [GAB(g 4 )]’ by STFT.

N-1

2nd step: Calculate d = F; ; 5 (u) := (di)j=o , by TDFT.

N-1

=0 by TDFT.

3rd step: Calculate x; = F; ; 5(x)) i= ()

- v — N-1 L
4th step: Compute v = .7-'&}7.& ((sj)]).v=01) 1= (vj)j=0 , by TDFT, where s; is given by

{ t/d; ifdj #0
5jp=

0 ifd, =0 forn=0,1,...,a-1

for j =0, l,....N—1. Then cpm = v,5,,,
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andm =0, 1,..., b — 1. The Gabor coefficients ¢ = {cn.m}n.m are determined.

Algorithm 5 (Dual Gabor Window: ab divides N) If ab divides N, then the dual Gabor window
g is computed as follows.

1st step: Calculate u = g * [GAB(g,E,a)]I by STFT.

ab—1

2nd step: Calculate d = Fp 4 4p (0) = (d])ab : by TDFT and set v = (v,) _o With v;

given by Uj'—‘{ /O(Nd] lli“f;}z(()) forj=0,1,...,ab—1.

3rd step: Calculate w = F’ ; ab (V) by ITDFT.
4th step: Compute g = w % GAB(gJ;‘a) by STFT.

Proof.  Since ab divides the signal length N, N divides @b. By Theorem 4, GM, ;5 isa
block-mrculant matrix and is unitarily diagonalized by V = F} 4 45. Noticing that Fp g, ab (eab)

Ja—E(l‘ 1,..., 1), the algorithm is deduced. O

ab

Remark. For undersampling cases in which N divides ab, we consider Gabor triple (g, b, @). By
Algorithm 5, we are able to determine the dual Gabor window g, associated with (g, b, @). Applying

the results in [18, 21}, g = ab g, is the dual Gabor window corresponding to (g, a, b).
N %

In the 2D case, we can similarly define 2D-TDFT and show that 2D-TDFT can be performed
by 2D-FFT. Considering the 2D separable discrete Gabor transform [18], we are able to formulate
algorithms for computing the 2D Gabor coefficients and the dual Gabor windows. O

4.4 Connections with Previous Results

Discrete Gabor transforms have been studied by many authors via discrete Zak transforms [1,
16, 24]. However, the Zak transform methods are restricted to the cases that N divides ab, as
we studied in Sections 3.2 and 4.3. In [16, p.1788] and [24, p.944], the authors gave analytic
formulations of the Gabor coefficients {¢, n}, by using the Zak transforms and employing the bi-
orthogonal functions. The determination of the Gabor coefficients may be difficult because of the
occurrence of zeros in the Zak transform. Advantages of our methods are as follows.

For the cases that N divides ab and ab divides N, simple results are presented in Sections 3.2
and 4.3 based on standard linear algebra. Algorithms 4 and 5 can be easily implemented.

Algorithms 2 and 3 are general approaches. The algorithms can be used without any restrictions
on the lattice constants (a, b). We do not need to assume that {g, », } be a Gabor frame. Algorithm 2
is for computing the Gabor coefficients without precalculating the dual Gabor window.

Algorithms 2 and 3 are CG-iterative algorithms. For each CG-iteration, only a UEGM matrix-
vector multiplication is required and can be done easily by Algorithm 1. Moreover, we only need to
run a few CG-cycles to meet the required accuracy. This leads to efficient computations.

In [18, 19], different approaches have been derived for computing the dual Gabor window.
The algorithms are based on the sparse structures of the Gabor matrix S [18, pp.2860-2862] and the
block-diagonal matrix D [19, p.2874]. The total number of nonzero elements of S and D are Nb and
Na, respectively. For Algorithm 3, GM is associated with (g, b, @). There are only ab? possible
nonzero elements in GM. If ab < N (oversampling), then the advantage of Algorithm 3 is clear.
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5. Numerical Simulations

In this section, we illustrate some numerical results.

Figure 1 shows the explicit sparsity of the UEGM matrices. The structural properties of GM
lead to efficient computations of Gabor coefficients. Cases (i) and (ii) are oversampling with (a, b) =
(20, 8), (24, 8). Cases (iii) and (iv) with (a, b) = (30, 20), (48, 20) are undersampling.

UEGM matrix (i) UEGM matrix (ii)

0 0 <
100 100 \
200

200
300
300
0 100 200 300 0 100 200 300
nz = 4320 nz = 3000
UEGM matrix (iii) UEGM matrix {iv)
OF; .\ \\\. S, \ . 0
20PN \\ \\\ O\
\. . \ "' \\ . \ \ 20 "'-._
40 ., \._\.:'- "\._\ .\\ ..\.\'-.\.\’.\ .
S T N .
6 0 :\.\ -.\:\-s:‘\\\;\\... \\ \\ ., .'-.
\\\\ SONONUN \-\, 401,
8O NON OO ON
. \'\,\ \\ \\. \\ \\\\ 60 '-.'. . .. -, -, |
0 20 40 60 80 0 20 40 60
nz =768 nz = 300

FIGURE 1.  The sparse structures of the unitary equivalent Gabor-Gram matrices. The lattice constants (a, b)
corresponding to (i), (ii), (iii), and (iv) are (20, 8), (24, 8), (30, 20), and (48, 20), respectively. The signal length N is
128.

Figure 2 illustrates a Gabor window g and a Chirp signal x. The signal length & = 240. Figure
IX-X3 ol
3 is the plot of reconstruction error — 3PP vs. teration number k.

The iteration number refers to the (Eé-xterauon number of Algorithm 2. Fix amaximal iteration
number k, the Gabor coefficients {c, ., } are calculated by Algorithm 2. Then xa is computed with
{cn.m}. For (a, b) = (20, 10}, (20, 8), (16, 10), (16, 8), the reconstruction (relgtlve) errors reach
the order of 10~® with 10, 6, 6, and 5 CG-iterations, respectively. The examples show that the
CG-algorithm converges fast. If the lattice constants (a, b) are smaller, the convergence is faster.

6. Conclusions

In this article, we introduced the tensor discrete Fourier transforms (TDFT). We showed that
TDFT can be performed by FFT. We have studied a class of Gabor-Gram matrices. We have shown
that these matrices are unitarily equivalent to sparse matrices by TDFT. Based on the structural
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Gabor wavelet

0.8
0.6
0.4
0.2

T

20 40 60 80 100 120 140 160 180 200 220

Chirp signal

—T T T T T v T T v

-1t 1 1 1 1 L ) ]
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20 40 60 80 100 120 140 160 180 200 220

FIGURE 2. The Gabor window and the Chirp signal. The signal length N = 240.

0 a =20 and b=10 0 a =20 and b=8
10 10
107 1072
107 107
e ta
g 107 210
QO @
107 107
107"° 107"°
1 0-12 1 0-12
2 4 6 8 10 2 4 6 8 10
iterations iterations
o a=16 and b=10 0 a =16 and b=8
10 10
107 107
107 107
2107° 2107
@ @
107 107
107"° 107"°
107"% 1072
2 4 6 8 10 1 2 3 4 5
iterations iterations
Ix=x* appy|

FIGURE 3. Reconstruction error —ITJTH?EL vs. iteration number k. The Gabor window and the original Chirp
signal are illustrated in Figure 2.
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properties of the Gabor-Gram matrices, we were able to present CG-methods for computing the
Gabor coefficients and the dual Gabor windows. The algorithms can be applied to the critical
sampling, oversampling, and undersampling cases. We do not need to assume that the family
{gn.m }n,m be a Gabor frame. In particular, if ab divides N (or N divides ab), computations of the
Gabor coefficients and the dual Gabor windows are simple.
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