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RI~SUM I~ SUMMARY 

L'action des variations d'humidit6 et de temp6rature sur le 
b~ton, compte tenu des facteurs de dimension et de forme, 
ainsi que de la r6part i t ion des contraintes est traduite par 1'6qua- 
t ion fondamentale du fluage, du retrai t  et de la dilatation ther- 
mique. La pate de ciment et le b6ton sont 6tudi6s en tan t  que 
mat6riaux composites multiphases dans lesquels les conditions 
d'6quilibre, tant statique que thermodynamique, doivent ~tre 
consid~rSes. 

The constitutive equation for creep, shrinkage and thermal 
expansion, which reflects correctly the effect of variable humidity 
and temperature, including the effect of size, shape and stress 
distribution, is derived. Cement paste and concrete are treated 
as a multi-phase composite material, in which both the static and 
thermodynamic conditions of equil ibrium must be considered. 

N O T A T I O N S  

aT, a = ra te  cons t an t s  for the  local microscopic  
diffusion in  eq. (16), (40) a n d  (45); 

bT, b = ra te  cons t an t s  for the  macroscopic  diffusion 
in  eq. (7)-(8), (45); 

c, C = diffusion cons t an t s  for adsorbed  layers ,  
def ined b y  (7a), (7b); 

= average effective d i s tance  for microscopic  
diffusion (volumetr ic )  (eq. 16), d'  = s imi lar  va lue  for 
devia tor ic  diffusion;  

e i j =  to ta l  s t r a in  dev ia to r ;  

edl j = dev ia to r  of the  change  of th ickness  8d of 
h indered  layers ;  

f a ,  f d  = area fac tor  f o r p a  o r p d ,  respec t ive ly  (eq. 12, 
22); 

h = h u m i d i t y  = re la t ive  v ap o r  pressure  (in the  pores 
ins ide) ;  

bee = e q u i v a l e n t  h u m i d i t y  def ined  af ter  eq. (49); 

h~x = h u m i d i t y  of the  ex te rna l  a tmosphe re  ( a m b i e n t ) ;  

h s = h u m i d i t y  a t  se l f -des iccat ion of a sealed sample  
(eq. 5); 
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h o = t ime  decrease of  h u m i d i t y  a t  T o for which  
the  vo lume  change  w i t h o u t  stress is zero (eq. 20); 

k, k' = slopes of the  deso rp t ion  and  so rp t ion  iso- 
the rms  (eqs. 3, 5, 41); 

n = e x p o n e n t  in  eq. (10); 

p = pressure,  less the  a tmosphe r i c  pressure  1 a tm;  

Pa, Pv, Ps = P  in  free adsorbed  layers  (eq. it), in  
vapor ,  or in  cap i l la ry  wa t e r  (eq. 24); 

P d - = - P  in  the  h i n d e r e d  adsorbed  layer ,  Pd = its 
average va lue  (eqs. 2, t2 ) ;  

q = a c t i v a t i o n  ene rgy  for h y d r a t i o n  (apparen t ) ,  
eq. (52); 

r 1, r2 = p r inc ipa l  c u r v a t u r e  radi i  of cap i l la ry  
menisci ;  

sl j  = to t a l  stress dev i a to r ;  

SdU = dev ia to r  of t he  stress in  h inde red  layers ;  

t = t ime,  or age of concre te ;  

t e = e q u i v a l e n t  cu r ing  per iod,  def ined af ter  eq. (4); 

u = d i sp l acemen t  i n  the  sense of x; 

v = specific v o l u m e  = (mass densi ty)-X; 

v a, Vd, vc, vv  = v for free, or h inde red  adsorbed  layer ,  
capi l lary  wa te r  a n d  vapo r ,  r espec t ive ly ;  v c = I cm 3/g; 

w = t o t a l  mass of  wa t e r  (usua l ly  per  u n i t  v o l u m e  
of  porous  ma te r i a l  or per  u n i t  surface);  
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w,, w,  = evaporable and non-evaporable water at 
a given T; 

wa, Wa, w c = w corresponding to %, vd, vc; 

x, y,  z or xz, x2, Xz = cartesian coordinates; 
B = coefficient of water transmission at the surface, 

eq. (9); 
G = Gibbs' free energy (eq. AI)  or shear modulus 

(eq. 40); 
G 1 ----partial value of G per unit  of mass; 

Ga, Gb, Gc, Gd, G f,  Ka, Kb, K~, Kd, K f, K h = shear 
moduli  and v o l u m e  moduli for models in figures 6a, 
54 (defined by  eqs. 23, 24, 27, 40, 18); 

K = elastic volume modulus, eq. (27 ) ;  

L = volume stress memory function, cq. (32), (324), 
(32e); 

L~ = humidi ty  memory function, eq. (32b), (32c), 
(32f); 

LT = temperature  memory function, eq. (5i), (5ia); 

M = molecular weight of water;  

P., = disjoining pressure = p a l - - p r e s s u r e  in the 
free layer of equal thickness (eq. (A5); 

Q, Q' = act ivat ion energies (enthalpies) in eq. (45); 
R =- universal gas constant;  

S = entropy;  

T, T O ----absolute temperature and chosen refer- 
ence temperature;  

V = volume; 

%, %, %, %, =~ = thermal expansion coefficients, 
eq. (47)-(49); 

~T = relative hydra t ion  rate defined by  eq. (4); 

= ST at reference temperature,  eq. (52); 

~o = volume compressibility of adsorbed water, 
eq. (14); 

T = surface tension, eq. (2a) (or shear strain); 

~o, ~a = average thickness or free, or hindered 
adsorbed layer ( ~  = w a / % ,  ~a = wa/v~) ;  

w = average total  thickness of  all layers intersect- 
ing a unit  length (eq. t5);  

= total volume strain -~ (z n + r -~ *33)/3; 
~i j  = total strain tensor;  

z d = volume component  of  the change of thickness 
~d of hindered layers, de d = d~d; 

r~o, z c =  free shrinkage (eq. 32b) and creeps train 
defined before eq. (22a); 

• = hygrothermie coefficient, defined by  eq. (41); 
t~ = chemical potent ial  (eq. A7); 

o, ~ = total volume stress, and volume stress in 
the fluid (defined in w 5.2); 

za, %a = actual volume stress in hindered layers 
and its theoretical value needed for thermodynamic  
equilibrium at a given Pa (eqs. i2,  17, 20); 

~, ~ (or ?? )=  rate of creep constants for volume 
and deviatoric deformation, eq. (28), (25), (40), (38) 
(or eq. 29); 

~a, ffa = rate constants for microscopic volume and 
deviatorie diffusion, eq. (i7), (i9), (37); 

x, t ' =  time as integrat ion variable, or time at 
load application (also ~ = shear stress); 

�9 i = retardation time for the i- th unit  in figure 5b 
= ~i-1; 

A denotes increments during t ime step At; 

Subscript i in fdi ,  07i, Kcl ,  Kd~, K. f l ,  Gadi denotes 
values of fa etc. for the i- th uni t  m the chain in 
figure 5b; 

k p  = kilopond = force kilogram, ~ = angs t r fm  
= i 0  -7 ram, /t = ( u ) ' =  ~ u / S t ,  ~ proport ional i ty  
sign, m " approximately  equal ", --~ "" tending to ", 
+- " assign " 

INTRODUCTION 

At the present time, the stress-strain law of creep and shrinkage of concrete is known sufficiently 
well only for invariable humidi ty  and temperature  conditions during the process, al though some 
estimates have been established for predicting the effect of various levels of  temperature  and humidi ty ,  
and the closely related effect of size, shape and stress distribution [i-20]. Under these invariable 
conditions a purely phenomenological theory  can be developed even without  a proper  understanding 
of  the physical nature of the phenomenon,  by  simply using the principle of superposition in time, 
or the viscoelastic theological models of aging bodies [2i-7, 27, 8]. However,  certain types of  modern 
structures, especially the concrete structures for nuclear reactors, require a much deeper knowledge 
of creep, shrinkage and thermal expansion, including the conditions of  variable humid i ty  and tempe- 
rature. I n  this case it seems necessary to base our model on the knowledge of  the internal  microstruc- 
ture of  cement paste and unders tanding of  the creep mechanism. 

The effect of humidi ty  upon creep and shrinkage, along with the fact  tha t  completely dried spe- 
cimens do not exhibit any significant creep [28-3i] at low stress levels, suggests t ha t  the main source 
of this phenomenon is the evaporable water. This hypothesis is justified by  the present  knowledge 
about  the s tructure of cement paste [32-34]. The role of  evaporable water  was already recognized 
by  Lynam [35] and Freyssinet  [92]. Later  m a n y  investigators rejected this idea, since a satisfactory 
explanation had not been found for various aspects, such as creep in torsion and bending, separability 
of  creep and shrinkage, the difference between the losses of  water during shrinkage and creep of equal 
magnitude,  irreversible creep and shrinkage, the increase of  creep of  predried samples with humi- 
di ty [29-31, i2] contradict ing the idea of drying creep [16], etc. The load-bearing ability of  hinder- 
ed adsorbed water layers and their role in creep and shrinkage was first mathemat ica l ly  analyzed 
by Hrennikof [37], a l though verbal remarks on it may  be found in earlier l i terature [34, p. 589 with 
references to Carlson and Lynam,  or 95]. In  terms of thermodynamics  this effect was first investig- 
ated and formulated by Powers [32, 36, 38] who based his theory on an especially thorough knowledge 
of  cement paste structure. 
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In  this  s t u d y  we shall  s t a r t  from the basic ideas of Powers [32, 36, 38] (and Hrennikof  [37]), 
endeavour ing  to es tabl ish a complete  model  for the macroscopic cons t i tu t ive  equation.  We shall 
t r ea t  the  cement  pas te  and concrete as a mul t i -phase  medium,  the  theory  of  which has been developed 
unt i l  now only in soil mechanics  [39]. Besides the condit ions of s ta t ic  equi l ib r ium between phases  
we shall  have to in t roduce  the condi t ions for t he rmodynamic  equi l ib r ium of var ious  phases of wate r  
and inYestigate the  microscopic local diffusion of water .  Al though the de layed  deformat ion  response 
will be descr ibed only in te rms of adsorbed  water ,  our cons t i tu t ive  equa t ion  will also admi t  the effect 
of  chemical ly  bound evaporable  wate r  and capi l la ry  water ,  the  effect of dissolut ion of  m a t t e r  
under  load and recrys ta l l iza t ion ,  as well as viscosi ty  (sliding) in the  cement  gel (see Append ix  C8-I0). 
In  add i t ion  to this,  we mus t  s tudy  br ief ly  the  macroscopic diffusion in concrete,  and the humid i ty  
d is t r ibut ion.  At  the  end we shall  present  the  results  of compute r  analyses  of var ious  tes ts  of creep, 
shrinkage and the rmal  expans ion  according to our const i tu t ive  equat ion  (*). 

Throughout  all this  s tudy  we shall  consider s imul taneous ly  cement  pas te  and concrete.  Thei r  
behavior  is qua l i t a t ive ly  different bu t  quan t i t a t i ve ly  same (see Append ix  Ct).  

Before s ta r t ing  the analys is  le t  us in t roduce  some basic facts  abou t  the  s t ruc ture  of Po r t l and  
cement  pas te  [32-34]. I t  m a y  be descr ibed as a mul t i -phase  porous ma te r i a l  whose solid pa r t  consists 
of h y d r a t e d  cement  and u n h y d r a t e d  cement  grains,  made  up mos t ly  of crys ta l l ine  components .  The 
densest  possible  form (poros i ty  0.28) of  comple te ly  hyd ra t ed  cement  pas te  is called cement  gel which 
is p r edominan t ly  amorphous  bu t  consists main ly  of quasi -crys ta l l ine  (and some crystal l ine)  s t rongly 
1/ydrophylic par t ic les  of colloidal  dimensions and l aminar  form (probab ly  in shape of rolled tubes [40]). 
The poros i ty  of the  pas te  is usual ly  be tween 0.40 and 0.55. The average thickness  of laminae is about  
30 2~, the  average wid th  of pores is abou t  i5  A (the min imum may  be 2 A). The in terna l  surface 
area is abou t  500 tn 2 per  cm 3 of mater ia l .  

1. E Q U I L I B R I U M  OF EVAPORABLE W A T E R  IN CEMENT PASTE 

1.1. Adsorbed water  and its condit ions  of  t h e r m o d y n a m i c  equi l ibr ium 

Near  a solid surface the  van  der Waals  forces affect the  movemen t  of the  ad jacen t  molecules of 
water  vapor  and re ta in  t hem at the  solid surface for a cer tain " l ingering t ime " ( ranging from 10-i2 sec 
to perhaps  2 sec [36, 4i]) .  These molecules form thin  adsorbed w a t e r l a y e r s .  The specific mass w a 
of wate r  adsorbed per  uni t  solid surface, and thus the  average thickness ~a of the  adsorbed layer,  
increase wi th  h u m i d i t y  [32, 42, 43] and for h -+ i i t  is reasonable to assume a m a x i m u m  thickness o f  
about  5 molecules, i.e. abou t  13 A. A t  25 ~ a monomolecular  layer ,  ~a = 2.63 ,~. [32], is achieved 
for h = 0. i2 (two molecule thickness at  h = 0.5t ,  hal f  molecule average thickness at  h = 0.03). 
The rmodynamic  equi l ibr ium requires t h a t  [36] (under cer tain s impli fying assumpt ions ,  see Append ix  A). 

R T  /r~ h u h e r e  h =  PV Z / / t )  
P~ = Mv~ Ps~t. 

wherepv = vapor  pressure,  Psat = s a t u r a t e d  vapor  pressure depending on t e m p e r a t u r e  T , p ,  = pressure 
in the  adsorbed  water ,  less the  a tmospher ic  pressure,  i a tm (~a is always negat ive ,  i.e. tension),  R = 
universal  gas constant ,  M = molecular  weight  of water ,  v~ = specific volume of adsorbed water  
which is app rox ima te ly  equal  to t ha t  of capi l la ry  water ,  v c (~a -~ wa %). 

%. i 

P~," �9 . - 7 ~ - - -  . - P d  ' :  : ; ; . i . i . > .  . . ' :  - �9 . 

FIG. 1. - -  Idealized hindered 
adsorbed water layer. (The 
change of its thickness 
along the layer is exagge- 
rated. Actually it has to 
be imagined much longer.) 

Eq. (1) is val id  only as long as v, m a y  be app rox ima te ly  considered invar iab le  wi th  h. I t  is inval id  
for h < 0. i2.  At  25 ~ R T / M v  a = i360 a tm  (a value which equals Pa at  h = 0.366). 

I n  a nar row gap (Fig. i )  which is th inner  t han  about  26 ~,, above  a cer ta in  h u m i d i t y  the full 
thickness of the  two adsorbed  layers  a t  the  opposi te  solid surfaces cannot  be accomodated .  In  this  

(*) Further development of the present theory is given in the author's report n ~ SESM 69-11, " Thermodynamic 
theory of concrete deformation at variable temperature and humidity ", Department of Civil Engineering, University of 
California, Berkeley, August 1969 (added in proof). 
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case we speak of h i n d e r e d  a d s o r p t i o n ,  in d is t inc t ion  to the  previous case of free or unh indered  adsorp-  
t ion [36]. In  s ta te  of t he rmodynamic  equi l ibr ium the following mus t  hold (see A p p e n d i x  A) 

Pd =Pa {2) 

where Pa = pressure in the  h indered l aye r  (less 1 atm).  Since the pressure  in the  adsorbed  layer  is 
a funct ion of i ts  thickness which is different in the  h indered and ad jacen t  free layers ,  eq. (2) requires 
t ha t  an addi t ional  pressure Pd, called dis joining pressure,  be appl ied on the solid surfaces in order  
to make the to ta l  pressure Pd equal  to Pa and keep the gap thickness cons tant .  Thus eq. (2) expresses 
the  load-bear ing  ab i l i ty  of the  h indered adsorbed  wate r  [37, 36], a fact  which is crucial  in Hrennikof ' s  
and Powers '  theory  of creep. The gap to be entered by  hindered layers mus t  have at  leas t  one molecular  
thickness (2.63 A). I t  becomes full of adsorbed  water  when the ad jacen t  free layers  in equi l ibr ium 
are about  a ha l f  molecule thick,  i.e. h ~. 0.03 (at T = 25 ~ Below this h u m i d i t y  we cannot  speak 
of  h indered  adsorpt ion.  

The condi t ion of t he rmodynamic ,  equi l ibr ium of capi l la ry  water  (Kelvin)  and  the  differential  
condi t ion  of  equi l ibr ium at the  interface wi th  vapor  (Young and Laplace)  p rovide  

where Pc = pressure in the  capi l la ry  wa te r  (less one atm),  q,  r 2 = pr inc ipa l  cu rva tu re  radi i  of the  
interface,  Y = surface tension [44] (-= 72 d y n e s / c m  at  25 ~ The b o u n d a r y  equi l ib r ium condi t ion 
requires t h a t  this  surface be tangent ia l  to the  adsorbed film at  the solid surface. Capi l la ry  wate r  
cannot  exist  for about  h < 0.45 when Pc would exceed the cohesive forces be tween  wate r  molecules 
( ~  - -  1100 arm). 

1.2. Desorption-sorption i sotherms.  A g i n g  and equivalent  curing period 

The to ta l  mass of wate r  per  uni t  volume of porous mater ia l ,  w, is composed of the  adsorbed  wate r  
w,, capi l la ry  wate r  w~, non-evaporab le  wate r  w ,  (which is chemically combined)  and a negligible mass 
of vapor .  The dependence of w on h u m i d i t y  h at  a given t empera tu re  T is a funct ion of the  in te rna l  
geomet ry  of pores which is so complex t h a t  empir ical  relat ionships mus t  be used. These are called 
desorpt ion  or sorpt ion i so therms [34, 89]. F r o m  the macroscopic v iewpoin t  t hey  represen t  a mate-  
r ial  p roper ty .  An example  of their  form is given on figure 2. The i so therm for sorp t ion  is not  
ident ica l  to the  i sotherm for the preceding desorpt ion.  This i r revers ib i l i ty  is caused main ly  b y  the 
fact  t ha t  in a pore of given geometry  the  surface menisci of capi l lary water  m a y  take  on var ious  
equi l ibr ium forms (" bo t t le  neck " effect and " open-pore " effect [45]). One such poss ib i l i ty  is 
i l lus t ra ted  on figure 3a, b, another  one on figure 3c showing tha t  at h = I and Pa = 0 the  pores need 
not  be full of l iquid wate r  bu t  a surface wi th  opposi te  curvatures ,  r 1 = - -  rz, can exis t  in equi l ibr ium 
[46]. I r revers ib i l i ty  below h = 0.45 ma, y be expla ined by  closure of the th innes t  gaps on dry ing  (for- 
ma t ion  of a chemical  bond),  p revent ing  r een t ry  of adsorbed films [47] or by  a s imilar  effect for the 
evaporable  in te r layer  hyd ra t e  which is chemical ly  bound (Appendix  C8). 

j -W 9 per 9 of cement 
/ 

Ds ORP T/ON/// 
0.3 .. 

~ , 4  /I / i  / / 

vs / i 
/ 

0.2 . i  / / 

. i  I / 

2 8 . 1  j / / 

/ 

/ i .  / 

O. / ! / 
I I I ) I 

0.0 0.2 O. Ir 0.6 NUMIOITY / 0  

FIG. 2 . -  Example of desorption-sorption isotherms of 
cement paste, established by Powers [34]. 

FIG. 3. - -  Examples of different equilibrium shapes of 
eapiUary menisci (a, b for same humidity, h < 1; c 
for h = 1 [46]). 
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For  the desorp t ion  or sorpt ion isotherms we can write 

dh = h(h) vcdw or' dh = l<'(h) vcd~ ~vhet'e kvc =C~h/~,)~ (3) 

where the coefficient k applies for the first desorption and k' for the subsequent sorption. Approx- 
imately k and k' can be considered constant between about 0.I and 0.8. k will be called sorption 
resistance and k' desorption resistance (whereas the inverse 1/k may be called sorptivity). Eq. (3) 
is valid only for a fixed age of cement paste, v c was introduced for convenience as a dimensional 
constant. 

The age, however ,  is not  an objec t ive  measure of the m a t u r i t y  or degree o f  hydration of cement  
paste .  Ra the r  i t  is the  mass of h y d r a t e d  cement ,  or the amount  of wate r  combined  in the  solid, w. .  
The increase dw~ during the t ime in te rva l  dt, charac ter iz ing  the ra te  of chemical  react ion,  is a funct ion 
of the  s ta te  var iables  h (and T) and w~. Thus dw, = ~(h)dw~ where dw~ = f ( w , ) d t  = change 
of w~ at  h -~ t (and reference t empera tu re  To) during the t ime in te rva l  dt; ~ = funct ion of h (and T) 
which will be called relative hydration rate. Wri t ing  dw~ = f(wo) [ ~  (h)dt], we are led to the  following 
defini t ion (see Fig. 4) : 

c7 

- ' - - - - - j  _ 

�9 ~,, . 

i - -  ~ 

) _ _ b  

FIG 4. --- Schemes for interpretation of the effect of 
aging, 
a) definition of the equivalent curing period at 

variable T and h, 
b) change of specific mass  of porous material. 

r e  

t e will be called equivalent curing period, te represents  the per iod of curing at  h = I and reference 
t empera tu re  To at  which the same amoun t  w,, would become combined as for a given t ime-var iab le  h 
(and T) in t ime t. Approx ima te ly ,  we can p robab ly  consider ~T (not dw,)  as independen t  of w, ,  or t~. 
For  h = 1 and T = To, ~T = i .  Below a certain humidi ty ,  equal  to abou t  0.8 (as de termined by  
self-desiccation of sealed samples wi th  unsufficient water -cement  ra t ios  [46]), ~ = 0, and even up 
to h = 0.95 p robab ly  [48] ~T ~ 1. 

All  mater ia l  pa ramete rs ,  e.g. k (or Kb, K~, Gr G~,fd, fa, d, ~ ,  ~, c, x . . . .  defined later) ,  are functions 
of t e. 

Effect of hyd ra t i on  on sorpt ion isotherms is seen in figure 2. Since in a t ime in terva l  dt the 
pa r t  dw~ of the evaporable  water  w, ~- w c is lost ,  becoming combined in the solid, i.e. dw,  = - -  dwe, 
the  h u m i d i t y  is decreased by  a cer ta in  value dh~. However,  dh, is much less t han  - -  k dw,  since the 
poros i ty  becomes also decreased (because cement  doubles its volume at  h y d r a t i o n  [49]). Moreover,  
the  value of k for h -+ I is r a the r  uncer ta in  and possibly  very  small  (Fig. 2). Therefore,  i t  is not  sui table  
to use the  funct ion w.(te) for calculat ions of humid i ty  [50]. We shall  r a the r  in t roduce  direct ly  the  
funct ion h,(t,) represent ing the so-called self-desiccation of sealed samples [51, 46], a direct ly  measurable  
quant i ty .  Thus at  var iable  age we have 

d h  = dw + dh Ct e) 

For  normal  wate r -cement  ra t ios  (greater  than  0.5) there  is in cement  pas te  [51] h~(~) >~ 0.95 (for 
sui table  expression for h s see eq. 60). 
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2. BASIC ASSUMPTIONS FOR T H E  STRESS AND STRAIN ANALYSIS 

The facts about the cement paste structure (see Introduction) just ify the following assumption. 

Assumption 1. 

The porosity is great and internal surface area is large. This implies tha t  a large par t  of the 
evaporable water is in the state of hindered adsorption [32-34]. Consequently, the number  of hindered 
adsorbed layers intersecting a unit  length is great and their total thickness is not small with respect 
to unity.  

Assumption 2. 
Furthermore,  we require tha t  the deformations, their rates and water flow rates are small, so tha t  

the stress-strain law be linear. I t  has been proved experimentally [2-4, 8, t9, 20, 50, 12, 52] tha t  
this l inearity is approximately  acceptable for concrete for stresses less than  about  0.4 of its strength,  
except for unloading and repeated stresses. 

Assumption 3. 

The material  is macroscopically isotropic. 

The smallness of water flow rate allows us to assume that  the the rmodynamic  equilibrium at 
the interface of various phases of water, expressed by  eqs. (1) and (2a), is mainta ined at any time 
(especially in each pore of capillary size). Eq. (2) is an equilibrium condition which is to be achieved 
asymptot ical ly  at the end of the creep process. Because adsorption has a dynamic  character  [41], 
water  molecules can migrate or flow along the adsorbed layers. This flow may  occur even without  
leaving the adsorbed layer [54] so tha t  diffusion along the hindered layers is also possible. Thus, 
with respect to eq. (2), the difference Pd --Pa causes a local diffusion between the hindered and un- 
hindered adsorbed layers. 

Our assumptions imply tha t  the average relative change of thickness (with respect to the thickness) 
of hindered adsorbed layers, accompanying deformation, is always small. The total  volume of water 
which may  be " squeezed out " of (or '" imbibed into ") all the hindered layers in a unit  volume of 
material  cannot  be greater than the relative volume change of material, and therefore mus t  be negligible 
in comparison with the volume of pores even if the load-bearing water is subtracted.  This small 
volume added to (or removed from) the non-bearing evaporable water in pores increases (or decreases) 
the humidity.  However,  this increase must  be negligible since according to the slope of the sorption 
isotherm (Fig. 2) a small change of  water content  produces a small change of humidi ty .  This fact 
has an impor tan t  mathemat ical  consequence-- the  macroscopic water  flow problem is uncoupled 
with the stress and strain problem and m a y  be solved independently (unlike in the vibrat ion of the 
sa turated sand [39]). 

NOTE. This result is also supported directly by the fact tha t  the load does not 
produce an appreciable change of water content  and humidi ty  during creep [32]. This 
does not contradict  the fact tha t  the loss of water needed to produce shrinkage equal 
to creep is great (250 times greater [32]). The difference of creep between sealed and 
unsealed samples [36] cannot  be explained by  a rise in humidi ty  caused by  load in a sealed 
sample. ( I t  is rather explained by the term with h in eq. (25), (37)). 

For  the mathemat ica l  t rea tment  we have to idealize the microstructure.  We imagine the material  
to be composed of two constituents,  the fluid and the solid framework. The lat ter  includes hydra ted  
cement crystals and unhydra ted  cement grains. The thin hindered adsorbed layers form also a par t  
of the solid framework since their immediate response depends only on the deformation of  the solid, 
while their delayed response depends on the diffusion along the hindered adsorbed layers into larger 
pores. The fluid component ,  the state of  which is independent  of deformation, includes water vapor,  
capillary water and free adsorbed layers, tha t  is, all water  contained in voids of capillary size. 

NOTE. A sharp distinction, however, cannot be made. For  instance,  with the 
decrease of humidi ty  some hindered layers become unhindered. Moreover, e.g. at volume 
compression, the change of pressure Pd in various layers is statistically different, and this 
difference also causes a local flow between various hindered layers. 

I n  an exact  approach we should have to assume the statistical concept  of the geometry  of micro- 
structure.  I ts  complexity,  however, compels us to work, more or less intuit ively,  only with certain 
" average " quantities.  Especially, we have to realize the difference between the macroscale and 
microscale and distinguish properly between the macroscopic diffusion, representing the average 
movement  of  water molecules, and the microscopic local diffusion which is characterized by zero 
average movement  (in a region sufficiently large with respect to particle size bu t  sufficiently small 
with respect to body  dimensions). The local diffusion (resulting from the rmodynamic  disequilibrium 
between adjacent free and hindered adsorbed layers) appears in the macroscale as a material  proper ty  
and must  thus be expressed in the macroscopic consti tut ive equation. 
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3. MACROSCOPIC DIFFUSION OF WATER AND ANALYSIS OF HUMIDITY 

In  a uni -d imensional  flow the change dw of the  mass w of wa te r  in a uni t  volume e lement  during 
the t ime in te rva l  dt is 

v< d w  = -- a.__~..~ d t  t'~) 

where u is the  average d isp lacement  of wate r  molecules, /t = 8u/~t.  v c = t cm3/g). 

Considering t h a t  the  mean free pa th  of water  vapor  molecules at  25 ~ and I a rm is abou t  800 A 
while the  average pore size in cement  pas te  is about  15 ~ (and t ha t  the  capil lar ies  are discont inuous [53]), 
we m a y  conclude t h a t  the flow of adsorbed water  molecules along the  layers ,  called surface diffusion [54], 
is much more s ignif icant  t han  the flow of vapor  (evapora t ion-condensa t ion  theory  [55]) or capi l la ry  
water ,  despi te  much higher (perhaps  105 times) " viscosi ty  ". Therefore,  the  average speed of flow 
of water  molecules is governed essent ia l ly  by  the gradient  o f p a  r a the r  t han  Pv, and  we can write 

apa 
c< = - 6r c(i ,)  O x  

where bTC represents  permeabi l i ty .  For  s impl ic i ty  we assume t h a t  bT depends  only on T, and C 
only on h. According to (1) we can write as well 

<~ = - 6 .  ~(~) ak ~r c(,~):PYCfk),iP'k'iv~h) k6) 

Subs t i tu t ion  into (6) yields 

ah 
~w _ a zl-br c(h) ~-~-~-'hx / (7c) zc S t  . a x  

Using the sorpt ion i so therm (4) we can el iminate  w and we get f inally the  following nonlinear  pa r t i a l  
differential  equat ion  for h, 

~ h a k._r = k ( k  ) ~__~_ /C~ c (h  j ~ h /~ 

NOTE. For  two-dimensional  flow we should have to add  at  the  r ight  hand side 
another  t e rm of the  same form, with y ins tead of x. 

By analysis  of some concrete dry ing  tests [56, 57, 12] we can find t h a t  brch ~ 0. i  cm2/day at  
h ~. 0.7, T = 25 ~ [56] and 2 cm 2 iday  at  93 ~ [57] (for those pa r t i cu la r  concretes  used). 

At  the surface of the body  the amount  of water  coming from inside mus t  be equal  to the  amoun t  
of water  evapora t ed  (from adsorbed state)  into the  environment .  Let  x denote  the  ou tward  normal  
of the  surface. Then,  assuming t ha t  the  ra te  of evapora t ion  is p ropor t iona l  to the  difference in pa r t i a l  
free energies (Appendix  A) (at  the  same tempera ture) ,  we can wri te  

= - a / i n  k~.~- In k J  

where hex = h u m i d i t y  of the  ex te rna l  envi ronment ,  B = coefficient of wa te r  t ransmiss ion  at  the  
surface depending on h u m i d i t y  h and t empe ra tu r e  T. By subs t i tu t ion  of  express ion (7b) we get  the  
bounda ry  condi t ion 

a/? [n h = o (9) 

Often the ra te  of evapora t ion  is much faster  t han  the rate  of h u m i d i t y  change inside the  specimen. 
Then we can let  B ~ ~ and get  

I f  the  surface is perfec t ly  sealed, we have B ----0 or 

a h / @ x -  0 

Eqs. (8) and (9) formula te  the  b o u n d a r y  value problem of water  diffusion, from which the h u m i d i t y  
h as a funct ion of x, y ,  z, t m a y  be solved. This p roblem is nonlinear .  
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The diffusion coefficient c(h) must  decrease strongly with the thickness of the adsorpt ion  layer, 
as the a t t ract ion forces decrease sharply with the distance from the surface [41]. This  holds true 
even if the average thickness of the layer is less t han  one molecule [54]. We can t hus  introduce 

c/x,) :f + : 

and because approximately 8a ~ h we can write C(h) = h"+l or 

c ,6" :/a) 

I f  we were to assume tha t  this effect is similar to a l inearly viscous fluid flowing in  a gap between 
two planes of thickness 28~, /* vould be dis t r ibuted parabolically ower the thickness a nd  /t would be 
proport ional  to 8a 2 SO tha t  we would have n -= t .  Because of the rapid decrease of t h e s u r f a c e  at t ract-  
ive forces with the distance it is more realistic to assume n > 1. On the other ha nd ,  in a hindered 
adsorbed layer the thickness is independent  of h, so tha t  C = const, or n = - -  1. This  la t ter  case 
seems, however, to be of minor importance as the macroscopic diffusion tends to pass mostly through 
the regions of minor resistance, i.e. the thicker unhindered layers, provided tha t  some of them are 
continuous.  Another  reason for higher c in a hindered layer is tha t  the molecules c a n n o t  temporar i ly  
leave the layer during migration.  For the vapor diffusion alone, C ~ const, or c ~ t / h .  Thus,  
unlike for diffusion in adsorbed layers, c does not decrease with h bu t  it  increases. Hence vapor 
diffusion may become dominan t  for h ~ 0. An expression allowing for a combined  effect is 
C(h) ~- C 1 4- C28~+z or c(h) = cz/h 4- c2h" where Cz, C z, cz, c 2 are constants  (and c~/0.5 ~ c 2 • 0.5"). 

NOTE. The var iabi l i ty  of c(h), eq. (10), explains why the core of massive concrete 
bodies exposed to drying retains a high humidi ty  for a much longer period than  linear 
diffusion would predict. The reason is tha t  the conduct iv i ty  of the surface region drops 
as it  dries up. 

For h -+ t there seems to be a continuous t rans i t ion  to the case of flow in sa tu ra t ed  cement paste 
under  hydrostat ic  pressure p (in excess of I atm). Because in eq. (10) we assume c -~ I for h = 1, 
eq. (7a) must  be replaced (at 25 ~ by  

= _ :,r @ _ @ (::) 
R T ~.x /360 8x 

where bT/1360 represents permeabi l i ty  [58, 59]. 

NOTE. The significance of eq. ( i t )  may be demonstrated with the case of a re taining 
wall of thickness l, one face of which is immersed in water of hydrosta t ic  overpressure Px 
and the other face exposed to atmosphere of humidi ty  h 2. Because in  a steady state 
the values of/Z following from eqs. ( i l )  or (7b) must  be cons tant  over the thickness of wall, 
the condit ion c(h)~h/~x = (~p /~x) / i360  must  be fulfilled. Consequently,  the distance of 
the point  at  which p = 0 and h -~ 1 (p~ = 0) from the immersed face is found  to be equal 
to 

:,,:::, § :s6o ::- h:" :)/:n § :)./-: 

Thus for Px = l0  atm, h z = 0.5, n = 2, this distance is found to be only  0.0227 1. This 
enormous influence of the gradient  of the adsorbed water pressure has often been disre- 
garded. 

However,  if concrete has a system of microcracks (mostly bond  cracks) the water 
will tend to pass through these passages of minor resistance when they  are full of water  
(h = t).  Thus the effective value of bw will increase discont inuously at h = t ,  and much 
deeper penet ra t ion  of water into the wall would be obtained.  Especially,  after a cycle 
of drying, microcracks may be created, increasing enormously the permeabi l i ty  (about  
70 times [59]), although the deformation properties, depending main ly  on the strongest 
parts of the structure,  might  be changed only slightly. 

4. MICROSCOPIC LOCAL DIFFUSION AND CONTRACTION OF TH E H I N D E R E D  
ADSORBED LAYERS 

Let us examine now the typical  configuration as shown in figure 1. Let the average pressure 
in the hindered layer be designated by/3, ,  and the volume stress in load-bearing water  be defined 
as the resul tant  of p,, per uni t  area of the porous material ,  i.e. 
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wheref,~ is the effective area fac tor  for the  load-bear ing  water,  fa decreases wi th  a decreasing amount  
of water  adsorbed,  w,, and for h --~ 0 tends to zero; always fd < I .  Most s imply  we can assume [32] : 

Wi th  regard  to the  i r revers ib i l i ty  of desorpt ion i s o t h e r m s , f  d is smal ler  for sorp t ion  t han  for desorpt ion.  
The pressure pa  is l inked with the  specific volume as follows 

where ~u = volume compress ib i l i ty  of the adsorbed water  = v~-~(~val@a)~. I t s  value might  be 
ra ther  different from ~ for the  l iquid water  which is ~ 1  = 25,000 kp Icm z while for cement  gel [60] 
B~-I = 240,000 k p / c m  2. 

A change of the  pressure Pa in the hindered adsorbed  layer ,  caused b y  compress ion of the mater ia l  
or by  a change of h u m i d i t y  in larger  pores, violates the  condi t ion (2) of  t h e r m o d y n a m i c  equi l ibr ium 
with the  non-bear ing water .  Hence a flow of wate r  out  of (or into) the  h indered  layer  results.  Let  us 
define w d as the  average to t a l  mass per  uni t  area of all load-bffaring layers  in te rsec t ing  a uni t  length.  
Their  average to ta l  thickness ~d is then  expressed as w ~--V"Wd" F r o m  this is follows t h a t  

d~ = ~ d~ + ~, d~ 

<,,, d ~ =  ~o,~ n v a lYa dffd (r 

where v~ ~ v d and ~d may  be considered as constants  according to assumpt ions  1 and 2. The to t a l  
amount  of wate r  which has to diffuse along the h indered adsorbed layer  out  to the  ad jacen t  capi l la ry  
pore is fdw d. In t roduc ing  the idea of average effective distance d = d(h) be tween load-bear ing  wate r  
and the ad jacen t  non-bear ing water  and keeping in mind the equi l ibr ium condi t ion  (2), we can write 
for this diffusion (to ' the  first order) 

/~-Pa <4: f:<~) 
~ a'~s: - ar i lk) 

where aT is a diffusion cons tan t  at  a given t empera tu re  T. Subs t i tu t ing  for dw d and/~d from eqs. (15) 
and (12) we get, af ter  rea r rangements ,  

~ = /<'d ~t + ~'d (r - ~<:J - 6-7- /:: :,,7: 

where the  following no ta t ion  has been in t roduced  
! 

/<'<: = ~ :~/::<, :,), ,<:. = ~ ~ :d~/dk 3 ::8: 

r d  = ~ a r f f f : d )  c:n 

We also defined z~,, = --fdP~" %d represents  the theoret ical  value  of the stress z d in load-bear ing  
water  which is needed for t he rmodynamic  equi l ibr ium at a given h u m i d i t y  h. 

W i t h  Z~a = - - f u P v ,  however,  for an unloaded specimen, immersed  in wa te r  since the t ime of 
casting, no volume change would be obtained.  Actua l ly ,  there  will be swelling, though re la t ive ly  
small  [2, 15], for o ther  reasons,  specifically not  considered. Phenomenologica l ly  and most s imply,  
eq. (17), may  be ad jus ted  to account  for this if  we pu t  

P T  
% = -:~::~:,~:-:,o:.+o:.7= :.:~ i~:,,~- :2o: 

and define a decrease of h u m i d i t y  h o as such a funct ion of te, for which the  vo lume change is jus t  zero. 
For  concretes for dams p robab ly  ho(te) --h~(te) since the  autogenous shr inkage (see Append ix  C14) 
is p rac t ica l ly  zero [t5,  61]. 

NOTE. I t  is t rue t ha t  wate r  is imbibed  [2] into a specimen s tored  under  water ,  due 
to osmotic pressure,  self-desiccation and hydraul ic  over-pressure,  b u t  our expressions 
f o r p a  and Zad at  h = i are still  same. To be exact,  Psat in eq. ( l )  should be made dependent  
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on the concent ra t ion  of the aqueous solut ion which varies wi th  the  progress  of hyd ra t ion  
(as well as w), and causes osmotic pressure wi th  respect  to the  re la t ive ly  pu re  wate r  outside 
the  specimen. Major  cause of swelling, however,  is p r o b a b l y  the  g rowth  in volume of 
cement  gel (see Append ix  C9). 

Wi th  the  simple assumpt ion  fd ~ h, (~ad tends  to inf in i ty  for h ~ 0. Ac tua l ly ,  th is  observa t ion  
makes no sense since eq. ( t )  is not  val id  for h ~ 0, v, being var iable  for h -+ 0. A s u i t a b l e  expression 
for %d will be given la te r  in eq. (60). 

5. CONSTITUTIVE EQUATION AT VARIABLE HUMIDITY 

5.1. Concrete as a porous material of variable mass of the solid component 

The increase of the elast ic  modulus  of cement  pas te  and concrete wi th  age canno t  be caused 
by  a change of the  modulus  K c of the  h y d r a t e d  cement  itself, bu t  r a the r  b y  the increase  of i ts mass 
per uni t  vo lume of porous mate r ia l  which is due to cont inued hyd ra t i on  [49], i.e., convers ion of an- 
hydrous  cement  to h y d r a t e d  cement .  In  general ,  for an elastic mate r ia l  two poss ibi l i t ies  exist  for 
taking this into account ,  depending on whether  the  removed or added  m a t t e r  is in a stressed s ta te  
or an unstressed state .  The first case occurs if  a body  under  stress is being dissolved,  wi th  the  elastic 
energy of the  removed  m a t t e r  being t r ans fo rmed  into heat .  Then (Fig. 4) d~ = FKcd.- -4- Kc.-dF or 

where z, .- are the  average stress and s t ra in  in the porous mater ia l ,  F the  effective area  of  solid per  uni t  
a rea ,  K the effective modulus  of the  porous mater ia l .  I f  the m a t t e r  is being a d d e d  by  a chemical  
process, this  is always done i n  an unstressed state. Thus 

= G dc( ) -- 

Clearly eq. (21), i n t roduced  in 1965 [22, 23], is not  equiva lent  to the first re la t ionship ,  which had  been 
used incorrec t ly  in the~past in rheological  models for concrete.  In  order to account  for va r ious  h u m i d i t y  
condit ions,  t mus t  be replaced  by  t e, as an independen t  var iable  for K. 

Hav ing  fo rmula ted  the  behavior  of bo th  the  elastic and fluid components  of our  porous  mater ia l ,  
we are r eady  to s tudy  the  composite.  

5.2. Volumetr ic  creep and shrinkage 

Fo r  deformat ions  and deformat ion  rates  sufficiently small  the response of any  m a t e r i a l  to stresses 
and strains m a y  be considered linear.  F rom the general  theory  of cont inuous  m e d i a  [62, 63] i t  is 
known tha t  the  devia tor ic  and  volumetr ic  behav iour  are separable if, and only if, the  s t ress-s t ra in  
law is l inear  and the ma te r i a l  isotropic.  F i r s t  we shall  invest igate  the  vo lumet r ic  behaviour .  (For  
higher  stresses this separab i l i ty  is not  t rue  [98]). 

Let  us denote  by  z the  average to ta l  volume stress per  uni t  area of  the  porous  mater ia l ,  
a = (611 -+- 0., 2 -+- 633 ) /3 .  ~ m a y  be decomposed into the  stress in the fluid, %, r ep resen t ing  the resu l tan t  
of the pressure p ,  in the  capi l la ry  water  and unhindered  adsorbed layers  per  uni t  a r ea  of the  porous  
mater ia l ,  and the stress in the  solid f ramework which equals 6 - - %  according to the  static equi l ibr ium 
condition in the  two-phase  mater ia l ,  z - - %  is the  resul tan t  of the  stresses in the  h y d r a t e d  cement ,  
the  hindered adsorbed layers  be tween them and the unhyd ra t e d  cement  grains.  

I t  is expedien t  to express  z ,  = - - f ,  Pa w h e r e f ,  = area factor  for the  fluid. Then  we can wri te  
s imply 

According to our assumpt ions ,  6 a is independen t  of deformat ion  (unlike in a medium wi th  pores s a tu ra t ed  
b y  liquid, a t  high flow rates  [39]). The provenance  and significance of the  terms aa and  Z,d is different. 
% is needed for the  s ta t ic  equi l ibr ium while 6,d arises from the t he rmodyna mic  equ i l ib r ium condit ion.  

NOTE. The stress in the  fluid alone, 6a, does not  sa t i s fy  the  dif ferent ia l  equi l ibr ium 
condit ions.  These mus t  be imposed upon  the to ta l  stress z (pins s~;). The  cons t i tu t ive  
equa t ion  for the  fluid is represented  b y  eq. (5). 

The average to ta l  volume s t ra in  will be des ignated  by  .-, .- = ("11 -~ .-22 -4- r I t  is composed 
of (a) shrinkage .-~, defined as the  deformat ion  for 6 = 0 and dT = 0, (b) the rmal  d i l a t a t i on  .-T, defined 
by  the condi t ion 6 = 0 af ter  sub t r ac t ion  of shrinkage,  and (c) creep zc which represen t s  the  rest  and  
is caused by  the stress 6. .-c includes the  ins tan taneous  deformat ion,  which is the  l imi t  for the  delay 
of response tending  to zero. 
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In  eq. (17) for the  h indered layers ,  the stress za and the thickness 8d are not  known, as they  resul t  
from the in te rac t ion  with the  elastic par t s  of the solid framework,  model led b y  springs obeying eq. (21). 
The s implest  model  possible for this in te rac t ion  wi th in  the solid f ramework  is the  three-e lement  model  
in figure 5a. I t  consists of a spring and a uni t  formed by  a spring coupled in para l le l  wi th  the  "" s o r p t i o n  
e l emen t  " [36], descr ibed b y  eq. (17). La t e r  we shall  refer to this  uni t  as a Powers '  uni t  since i t  was 
first conceived and ve rba l ly  discussed b y  Powers [36]. We imagine  t h a t  the  extension of the  model  
corresponds to r I t s  load is z - - % .  

The stress % carr ied  b y  the  spring K~ in figure 5a equals z - -  Za - -  Zdi~i where Zdisj is the resu l tan t  
of the  dis joining stresses pal,j t h a t  are developed by  the hindered layer  on its solid surface. By defini- 
t ion (see also eq. A5), pd~i = P d - - [ P ~ ] s d .  Hence 

= - -  - 

where zd, i~J = -  ~f~[p,]8~ df~ = funct ion of h and T (and t~). Consequent ly ,  % = z - - z ' - - %  
, _ _  ~ d i s j  where G a  ~ G o  - - a  " 

i 

i 

::~/.'.'.':.~'::: 

 22T 

Fig. 5. - -  Rheological models for interaction of the elastic 
particles of cement paste or concrete and the hindered 
layers, a, b, c, e models with sorption elements, d model 
equivalent to a, with two pistons interconnected by a thin 
tube of high viscous resistance (for r = O the pistons 
may  be replaced by a dashpot),  e model with a "  ratchet  " 
for irreversible deformation. 

Eq. (20) for the  two springs in figure 5a may  now be wr i t t en  in the  following form (using the 
no ta t ion  ~ = az /g t ,  etc.): 

(24) 

where dr a = d8  a. K b, K c are the elastic constants  of the  springs; t hey  are increasing functions of te, 
K b = Kb(te) ,  Kc = K~(te) .  
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By subs t i tu t ion  of 

where 

eq. (17) for d% = d~a and fur ther  algebraic r e a r r a n g m e n t  we obtain:  

e<: _ <: 4 :  

K :  'd72-' 

= x , ' . < / ( t +  

'} ('a:) 
F2a) 

In  addi t ion,  the no ta t ion  ~ = ~disj K / K b  has been also in t roduced.  

In  the  rest  of this paper ,  we shall  assume for s impl ic i ty  tha t :  

Eqs.  (25) and (26) represent  the  volumetric constitutive equation or s t ress -s t ra in  law. 

NoT~. We wri te  pa r t i a l  der ivat ives  ~ = ~/~t ... because z, za, r ... etc. are also 
funct ions of the  spa t ia l  coordinates  x, y ,  z. Since the deformat ions  are smal l  the  so-called 
objec t ive  ma te r i a l  der ivat ives  [62] are not  needed. 

Let  us now discuss the  coefficients (27) and (28). K represents  the  ins t an taneous  vo lume modulus.  
K a accounts  for t h a t  p a r t  of K which depends on the mois ture  content .  Since K is known to decrease 
only s l ight ly  wi th  dry ing  [28, t2],  K a mus t  be ra the r  high with respect  to K c (see eq. 60). Approx-  
ima te ly ,  we m a y  let  K a -+ o% and then  K ~ K b. Therefore the in s t an taneous  elast ic  response is 
essent ia l ly  reflected by  K b. K a corresponds to the  volume compress ib i l i ty  of the  adsorbed  wate r  
in h indered layers .  The direct  ac t ion of  van  der Waals  forces be tween the solid surfaces across the  
h indered  layer  is represented  by  K b and Kc, along with ti le elastic de fo rmat ion  of h y d r a t e d  cement  
par t ic les  and u n h y d r a t e d  grains. In  the  case of no aging, K a represents  the  effective modulus  for 
the  " final " de format ion  as t ~ oo. 

The form of dependence  of 9 upon  h m a y  be guessed with  the help of some geometr ic  hypotheses  
about  the  form of the  th in  gaps be tween  part ic les .  This is done in A p p e n d i x  B. The  results  suggest  
t h a t  p robab ly  9 ~ h or hi(1 + h). This expression agrees with the fact  t h a t  the  creep of dr ied spe- 
cimens is negligible [28, 31], and t h a t  creep is the  greater ,  the higher  is h i f  h is k e p t  t ime-cons tan t  
dur ing creep [30], [31], [1], [2], [29]. 

The te rm depending  on h, in eq. (25), is posi t ive if h < 0 as in the  case of d ry ing  envi ronment .  
I t  thus p robab ly  accounts  for the  increased creep at  drying,  i.e. " drying creep " [16]. In  our deriv- 
a t ion the origin of this  t e rm was obscured.  I t  arose because in eq. ( i5) we had  to subs t i tu te ,  wi th  
respect  to (12), dffa = ( - -  dcra ~- fiadfa)/fa, and not  d~a ---- - -  do a/fa. The second t e r m  fiadfa accounts  
for the  fact  t h a t  fi,, is increased i f fa  is decreased and o a kept  constant .  Decreas ing  h, we not  on ly  
diminish pa in the  difference Pa - - P a ,  bu t  we also decrease fa and thus  increase fia even i f  za remains  
unchanged.  Therefore,  d ry ing  condit ions cause the  dr iving force of microscopic  diffusion, Pa - -  P~ 
to be amplif ied in compar ison  with  s tabi l ized  h u m i d i t y  condit ions.  We have thus  an exp lana t ion  of 
the  seemingly confusing effect of humid i ty ,  i.e. smaller  creep for lower h at  /~ = 0 on one hand,  and 
increase of creep at  h ~ 0 on the o ther  hand.  

For  the  wet t ing  process,  h < 0, the  water  in the ex tended  pa r t  of the  h indered  l aye r  (correspond- 
ing to dfa) is not  under  pressure pd-bu t  r a the r  p~.) 

Therefore the  above-men t ioned  t e rm padfa is replaced by  p.~dfa and the effect descr ibed above 
does not  occur. Fo r  this  reason k h is p robab ly  much higher  for h > 0 t han  for h" < 0. (A more rele- 
van t  analysis  of k h could be made  as in Append ix  B, considering var iab le  Xa and compressible  fluid). 

I t  can be verif ied t ha t  eqs. (25), (26) might  also be formal ly  in t e rp re t ed  by  the  model  in figure 5d, 
conta in ing two pis tons  connected by  an orifice of var iable  size ins tead  of  a sorp t ion  e lement .  Fu r the r -  
more i t  should be ment ioned  t ha t  another  poss ib i l i ty  for a three-e lement  model  exists ,  as seen on figure 
5c. I t  is not  comple te ly  equiva len t  to figure 5a [22]. 

Fo r  a prescr ibed z(t) [or e(t)] eqs. (25) and (26) represent  a sys tem of  two o rd ina ry  l inear  differential  
equat ions  in e(t) [or in z(t)], wi th  var iab le  coefficients. They  can be reduced to one second order  
equat ion,  e l iminat ing  ~a. For  this  purpose  eq. (25) is mul t ip l ied  b y  Kc/Tp where 
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Then it is differentiated and eq. (26) substi tuted for b~. This yields 

Kc ~ _ : v  ['Vc ~" 7; /(c " Kc '/:c " " " ~ " 
+<-:1:: :<- )- .~ TZ ,,< :soj 

where "~ = a~la t~ , ( ) .  = ~l~t etc. Because eq. (25) was differentiated it must  be used as the initial 
condition for this equation. 

In  old concrete or in the case of sufficiently low humidi ty  the hydra t ion  process stops, so tha t  
Kb, K~ and K ,  become approximately  constant.  Then eq. (26)yields  za/K< = (~--%)/K~ 
By substi tut ion into (25), instead of  eq. (30) we get 

= + 

K ,%,- ,% 

For a prescribed z(t) [or r the solution r {or r of the system (25), (26) or eq. (30) can be 
expressed explicitly by quadratures,  using the method of variat ion of constants.  For the sake of 
simplicity we shall demonstrate  this only for the special case of eq. (3t). I t  may  be verified by back 
substitution in (43) tha t  its integral is (for K d ~ 0) 

. § 

~:t: ---z'm/< .,j~o s:,~) i (~:) d~- + ~m 

~kere ('~ (O)= OJ- 

Z :  + ~ li<'<:j~" 

ls2J 

:s2aJ 

)/,~ere 

(:J /<. :z'J ,'~ ::,z') <:z" :.,2 ~: 

,,~ (r r.: : z :r o + L ,.~ ~= _:/--:--<-/.. ~ 

:-r - %/% (%- %hX  

L represents the volume stress memory function and L~ may be called the humidity memory function. 

Eq. (32) is a formulation of the stress-strain law which is equivalent to eqs. (25), (26) or eq. (30) 
since these equations may  be deduced from it. I t  has the advantage tha t  its form is the same for 
any more complex linear model (eqs. 32e, f ) .  I t  resembles the creep law of classical viscoelasticity, 
but  in concrete the memory function L(t, z) as well as L~(t, z) is not  a material  proper ty  but  depends 
on the solution of humidi ty  (and temperature).  r ~ (t) represents the deformation for z = 0, i.e., 
the shrinkage of an infinitesimal element unrestrained by the surrounding material. That  is why z~ 
is called free shrinkage [1t, 17]. I t  has  two components,  one immediately following the humidi ty  
change and one delayed. The driving force of shrinkage comprises both the tension in free adsorbed 
layers and capillary water (%) and the decrease of the pressure in the hindered layers (r Practically, 
in bodies thicker than about  15 cm, the condition z = 0 can hardly ever be met  because water diffusion 
is so slow [56, 57] tha t  a uniform distribution of humidi ty  cannot be achieved. Thus the calculation 
of the actual shrinkage always represents a stress problem with creep. 

For a more accurate representat ion of the material we may consider the model in figure 5b, with 
a series of Powers '  units of  different parameters Kci, Kai , Kf i  , ~i' ~adi' fai' i = t ,  2, ... In  such a case, 
a larger system of first order differential equations would be obtained instead of  (25), (26). For two 
Powers '  units (two sorption elements) it has the form: 

:a:d) 
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The response r to  a prescr ibed n(t) can be easily ob ta ined  by the add i t ion  of" responses  of  ind iv idua l  
Powers '  units whose forms are the  same as t h a t  given by  eqs. (32a, b). Eq.  (32) remains  val id ,  b u t  
ins tead  of (32a, b) we have (for nai(0 ) ---- %(0) ---- 0): 

"e,: ,:,.-<.: + r-:,__, :<<7 #2/) 

The inverse values ~[x have the d imens ion  of  t ime and may  be called r e t a r d a t i o n  t imes zi, as 
in v iscoelas t ic i ty  [64, 65]. I f  the  values Kc~l are p lo t t ed  as a funct ion of ~i, we m a y  speak about  
" r e t a rda t ion  spec t rum ".  The reason why  not  only one r e t a rda t ion  t ime (as for mode l  in Fig. 5a) 
bu t  a whole spec t rum mus t  be considered,  is t h a t  cement  pas te  has a r andom micros t ruc ture ,  and 
the shapes and locat ions  of the  h indered  adsorbed  layers  are not  the  same, b u t  are r a n d o m  var iables  
wi th  a cer tain s ta t i s t ica l  d is t r ibut ion .  W i t h  respect  to this s ta t i s t ica l  charac ter ,  the  d i s t r ibu t ion  
of K ~  z as a funct ion of ~i is cont inuous  and the number  of Powers '  units  in the  chain  in figure 5b, 
as well as the number  of equat ions  in (32d), is infinite.  

Therefore the  simple model  in figure 5a, wi th  j u s t  one r e t a rda t ion  t ime,  can be considered for 
only  a ra ther  l imi ted  range of the  de lay  of  response of the  material .  Say,  we de t e rmined  the numerical  
values of pa rame te r s  in (25), (26) by  f i t t ing the  creep da t a  in the range f rom I to t 0  months  af te r  
load  appl icat ion.  Then we cannot  expect  to get  a reasonable  answer for the  response de lay  of  t hour,  
or I week, or 5 years ,  unless :we de te rmine  new pa rame te r s  for this pa r t i cu la r  range  of delay.  The 
wider  the  range of response de lay  to be represented ,  the  longer the chain in the  mode l  in figure 5b 
mus t  be considered. 

5.3. Deviatoric  creep 

We mus t  realize beforehand the  fact  t h a t  adsorbed  water  layers are charac te r i zed  b y  or ien ta t ion  
in space. Thus,  even a dis torsion at  cons tan t  volume will change the volume of mos t  ind iv idua l  
layers ,  i.e. con t rac t  layers  of some direct ions and expand  layers  of o ther  direct ion,  a l though  the to ta l  
volume of adsorbed wa te r  mus t  r ema in  unchanged.  Therefore,  the old a rgumen t  t h a t  wate r  cannot  
expla in  deviator ic  creep since its volume is unchanged  is not  true. 

I t  is obvious t h a t  in an unsa tu r a t ed  porous med ium the shear stresses in the  fluid (i.e. in free adsorbed 
layers  and capi l la ry  water)  are so smal l  t ha t  the to ta l  devia tor ic  stresses are equal  to  the  stresses in 
the  soIid. ( In  a s a t u r a t e d  medium,  our a s sumpt ion  of  small  flow rate  is necessary for t h a t  conclusion.) 

By sui table or ien ta t ion  of axes, any  stress dev ia to r  sis in Cartesian cordinates  can  be expressed 
in terms of normal  stresses only,  wi th  zero shears.  Consider the dev ia to r  

, %=% %=%=%=%=0 
which represents  the  shear stress z ---- z(t) in the  planes  forming the angle n /4  wi th  t he  x z -  and x 2 -  
axes. For  easier concept ion let  us consider  only  those hindered adsorbed  layers  which  are paral le l  
to one of the  coordinate  planes.  The stresses resul t ing from the h indered  layers  of  these directions 
again  have the form 

%= %=%-%-%=0 

where va = va(t). Le t  us denote  b y  r r z~aa' the  normal  s t rains  due to con t rac t ions  of  each of  
these systems of layers ,  and b y  exld, e2~d, e33d, the i r  deviator ic  components .  Accord ing  to (17) we can 
wri te  

2%- .::,,,IG<,, + yc: } 
2 o + :/<; ) _ /:/:<: 

where Gd, G f ,  ~a, f,~ a re  mate r i a l  cons tants  analogous to Ka, K f,  ~d, fd,  depending  on  humid i ty .  In  
l inear  isotropic bodies,  the s t ra in  dev ia to r  is s imilar  to the  stress dev ia to r  

% - % :  % -  %..  %:  %= o 

where Ya represents  the  angle of shear.  Sub t rac t ing  eqs. (34) and not ing t ha t  ~d2 2 - -  r  = ed2 2 - -  edl 1 
we obta in  
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'~d h" 

The condition of isotropy (and Onsager reciprocity relationships (63)) requires t ha t  the same relation- 
ship be valid between all corresponding deviatoric components eau and sai s Then, subtracting their 
sum from each of eqs. (34), we obtain 

2~'u = ~d + :~,%. ~: %y :,.y=/.e,s) :3z,~ 

To make clear the significance of edi j [or $dij] , we must  emphazise tha t  edl 2 [$d12] does not represent 
the shear strain [shear stress] in the hindered adsorbed layers perpendicular to x 1 and x2, but  the contract-  
ion or extension [pressure] in the layers which form the angle r:/4 with x 1 and x2 (Fig. 6a). What  
happens to a layer forming an arbi t rary  angle with the axes of principle strains can be determined 
by a coordinate t ransformat ion of ed~ s and sdl j (rotation) such tha t  this layer  becomes perpendicular 
to some principal strain or parallel to some maximum shear  plane. 

We can proceed further in an analogous manner as for volumetric  deformation.  Assuming the 
three-element model for deviatoric creep, which can be instructively represented as in figure 6, we 
may write, in analogy with eqs. (25), (26), 

t chere  

":dig = ~'ij 2 b , j  (t:j:=f.2.3) (39) 
Gc ~ 

c~ = IT'+ T)-; e-&-~:~-,%)Y;' 
s2"f / 

~, ~ g , ~ 7 1 ~  e f  6/::, '~c/G,,) . 

a~ = I/ + G~/ce ) ~ f fe(:~ Se efd/d,~J -/ 

(~o) 

FIG. 6. - -  Models helping to visualize the mechanism of shear creep (corres- 
ponding to fig. 5a). a with coupled sorption elements, b model equi- 
valent to a, with two interconnected pistons (which are equivalent to a 
dashpot). 

I t  is worth noting tha t  a formally equivalent  model may  be formed of  pistons connected by 
tubes of variable size, as shown in figure 6b (or of. dashpots). There is no reason for the rate coefficient 

to be equal to 9. 

We need not  to introduce here the further  procedure in which equations analogous to (30)-(32) 
may  be obtained (and the deviatorie stress memory  function defined), the only difference being tha t  
the terms oa, caa o r  ~aa i would be missing. 
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6. V A R I A B L E  T E M P E R A T U R E  

6.1. Desorption-sorption isotherms 

To make eq. (4) for the desorpt ion  i so therm val id  at  different t empera tu res ,  we mus t  wri te  the 
evaporable  wate r  content  w e ins tead  of the  to ta l  water  content  w since the  nonevaporab le  wate r  
conten t  w ,  decreases wi th  t empera tu re .  Fo r  var iable  t empera tu re  the  full express ion is 

dh = k{k) vcd~ e § ( - ~ T ) v e , t e d T  + dk.(~e) 

which can be rear ranged  as follows 

dh = k(h) v c all,,; + ae(k)dT§ d k r  (4/) 

• will be called the  hygrothermic coelficient. I t  represents  the change of h u m i d i t y  for 1 ~ at  a fixed 
to t a l  water  content ,  a quan t i t y  which is d i rec t ly  measurable .  Expe r imen ta l  evidence shows t h a t  
i t  is a lways posi t ive,  which agrees w i t h ' t h e  fact  t ha t  equi l ibr ium water  conten t  w decreases wi th  T 
at  cons tant  h [66]. F rom the results  of  measurements  on a cer tain mor ta r  [67] i t  has been de te rmined  
t h a t  • ,~ 0.0056/~ a t  T = 36 ~ and h = 0.54. Eq.  (42) describes the  fami ly  of  desorp t ion  isotherms 
a t  different t empera tures .  

The form of  the  funct ion • = • for abou t  h < 0.4 m a y  be es t imated  according to the  B.E.T.  
equat ion  [43] for free adsorp t ion  in muh imolecu la r  layers  (if we neglect the dev ia t ions  due to h indered 
adsorp t ion  and capi l la ry  water) .  This equa t ion  is 

w h e r e  C 1 = CleAQa 'c t (RT)- -1 ,  r ~ ~1, W m ~ m a s s  o f  t h e  a d s o r b e d  layer  o n e  m o l e c u l e  thick,  a n d  
AQ~ c = differential  l a ten t  hea t  of adsorp t ion  [42]. Different iat ing eq. (43) with respect  to T at  cons tan t  
we, we obtain ,  af ter  r ea r rangement  

k ( l - k :  X(k) ) (++) 
~e = %/+c:k 2 f a T l :  e 

where • = AQac/(RT2) �9 We see t ha t  expression (44) is indeed always posi t ive.  I t  even satisfies 
the  obvious l imi t  condi t ion for h -+ 0 , that  is, • -+ 0. For  h = I and dT > 0, • = 0. (An expression 
be t t e r  sat isfying the fact  [68-70, 2] t ha t  the rmal  swelling a t ta ins  ma x imum for h = 0.7 is in eq. (60).) 
• m a y  be i r revers ible  for s imilar  reasons as k. 

NOTE. The effect of  capi l la ry  water  alone. At  cons tan t  w c we m a y  assume 
r,, r z = const,  in eq. (2a). W i t h  respect  to eq. (1) we ob ta in  In h ~ - - y i  T o r  
dh ~ - - d ( T I T )  lh. Because dTIdT < 0  ([44], p. 46), dh > O. 

6.2. Diffusion of water in concrete 

The ra te  of diffusion in the  adsorbed  layers  grows with  t empera tu re ,  t h a t  is the  coefficients br 
and aT increase. They  have to obey the  Arrhenius  equat ion for the rmal ly  a c t i v a t e d  processes [71, 72] 

- -aTrp r;, -Q//Rr; (+5) 
, ~T -T- ~ 

where T = absolute  t empera tu re ,  a, b, R are cons tants  and Q, Q' are ac t iva t ion  energies [7t ,  72] (enth- 
alpies). Fo r  h = 1, expression (45) for bT has been verified exper imenta l ly  [58]; f rom these results  
we can calculate  Q ' / R  = 3600 ~ (For  h y d r a t e d  C3S, Q ' / t t  ~- 3650 ~ Q / R  = 9720 ~ [73].) 

However ,  recent  measurements ,  showing "that Q' depends on the  average pore  size [94], r a the r  
suggest  t h a t  Q ' / R  = 5700 ~ at  h -~ l ,  23.5 ~ and poros i ty  0.28. 

Fu r the rmore ,  the  subs t i tu t ion  for w from eq. (41) into eq. (7c) results  in the  following equat ion,  
ins tead  of eq. (8), 

~k ~k/ = kCh) ~_~ (bTC(h) ~h ) (,I.G) a t  ~t  - 

where ak' 
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6.3. Deformations 

I f  the  solut ion h = h(x,  t) of the  diffusion equat ion  (45) at  a var iable  t e m p e r a t u r e  T is known,  
the  stress in the  fluid, z~, and the equi l ibr ium stress,  %d, in the load-bear ing  wa te r  m a y  be de te rmined  
f rom eqs. ( t ) ,  (20), (22). The deformat ion  caused b y  this change o f %  and Z~d wi th  T is a l ready included 
in eqs. (25), (26). This de format ion  will be called hygrothermic dilatation. I t s  immedia t e  component  
is in t roduced  by  %; i ts  componen t  which is de layed  with respect  to a change in T (inside specimen) is 
due to %d. Upon  re tu rn  to the  same h u m i d i t y  this  d i la ta t ion  is p a r t l y  i r revers ible ,  p robab ly  for the  
same reasons as is shrinkage.  (See Append ix  C7). 

There is also another  fac tor  influencing %a. At  var iable  T, the  diffusion ra te  in eq. (16) does not  
depend on p a - - p ~ ,  bu t  r a the r  upon  the difference G d - -  Ga in pa r t i a l  Gibb ' s  free energies,  as is explained 
in Append ix  A (eq. A2). Le t  us assume tha t  the  mater ia l  has been  in i t ia l ly  in equi l ibr ium at  T = T  0, 
h ---- 1, z = 0. According to (A1) (for T close to To) : where S~ - -  Sd = (Qd - -  Qa)/To is the  differ- 
ence in pa r t i a l  entropies;  Qd - -  Q~ is the  difference in la ten t  hea t  of  adsorp t ion  be tween  the h indered 
and unhindered  adsorbed  l aye r s , ' due  to a difference in their  average thickness  ~d and 8~ (Qa > Q~). 
By the same procedure  as used for the  der iva t ion  of eq. (17), we could find t h a t  the  following t e rm mus t  
be added  to the  expression (20) for %a : 

(I- T/To )(qd - qa) va /]" d (4#c) 

The d i l a ta t ion  due to this  t e rm will be called thermal swell ing (or thermal shrinkage).  I t  causes a 
delayed pa r t i a l  recovery of  deformat ion  after  a change in T and has no immed ia t e  component .  

The th i rd  effect to be included is the  change of specific volumes of  microscopic  cons t i tuents  a t  
cons tan t  pressure,  i.e. pure  thermal dilatation. Thus to the r igh t -hand  sides of-eq~. (23), (24), ( t7)  
the  following te rms must  be added  

% f , .. % r , , .1- z) 

where ~d is the  the rmal  expans ion  coefficient for the  thickness ~d of  the  adsorbed  wate r  layers at  a cons- 
t a n t  mass per  uni t  surface and cons tan t  P, .  %, % are the coefficients for the  two springs in figure 5a. 
I t  m a y  be shown, in the same way  as eqs. (25), (26) were deduced,  t h a t  

L_%1-= 

= § %i- 

where ao = ~b + %, ~x ---- % -4- (% - -  %)/(1 -4- K~/Kd). The las t  t e rm in eq. (48) needs explanat ion .  
I n  eq. (25) for cons tan t  T,/~ appea red  because we p u t f d  = [t(dfd/dh ). In  case of  var iable  T, however,  
h varies  even if  w is kep t  cons tan t  which means t h a t  f ,  is cons tan t  too. W i t h  respect  to (42), we mus t  
thus  replace h b y  "he. - -  • ~F. h e. represents  the  equivalent humid i t y  (at  reference t empe ra tu r e  To) 
which gives the  sam~e wate r  con~ent w (at the same t~). 

NOTE. At  var iable  T the pa rame te r s  9, if, ~ ,  Kh, Ky~, c, C, fd,  fdi must  be considered 
as funct ions of w, r a the r  t han  h. At  var iable  t e and  T, t hey  should be considered as func- 
t ions of h~q (while ~ and Pa remain  funct ions of h). 

NOTE. Approx ima t ing ,  we can p u t  ~c = ~d ~ . . . .  ~b = (1 - -  ~d)%em and a d = - ~ , ,  
where %era ---- % is the  coefficient of  l inear  expansion of dr ied cement  pas te  (which is 
p r o b a b l y  less t han  11 • 10 -~ per  ~ and aw is t ha t  for the  adsorbed  wa te r  (for l iquid wate r  
be tween 10 ~ and 30 ~ about  66 • 10 -6 per ~ Since ~w > ae~z, ~i mus t  increase wi th  
the  area factor ,  i.e., wi th  humid i ty .  Perhaps  ai ~ ~o -~ ( ~ i - -  ~o) h" 

In  eq. (31) the  following te rm has to be added  to the r igh t -hand  side (assuming T = T o for t = 0): 

(~/P) ~f ~" § Kc ~ C T- T o ) (50) 

In  eq. (32) we would have  to add at  the  r ight  hand  side the  t e rm  

z r(t) Lr r) (51) 
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LT may  be called the temperature memory function; ~ = ~ -  ( i t -  •  h. 

Another  effect, and the only one which affects creep directly, is the variat ion of the rate constants 
and + with T [18, 74, 12, 91, 92, 103]. In  eqs. (t9) and (40), this effect is given by  aT according to 
eq. (45). At  constant  w the changes o f f d  , d, f~, d' will probably be negligible, so t h a t  ~ ~ aT ~ ~. 
According to some tests [18, 74], it may  be est imated tha t  Q / R  ~ 2800 OK. 

NOTE. The decrease of elastic moduli with temperature [75, 12] is probably only 
apparent  and is caused by accelerated creep (as in polymers [64]). 

6.4. Aging 

Acceleration of hydrat ion,  caused by increase of temperature [76-78], is in t roduced by  the coeffi- 
cient ~r in eq. (4) for the equivalent curing period. Since the rate of hydra t ion  as a chemical reaction 
is governed by the Arrhenius equation [71, 72, 79], we have 

,m r = i~ (/~ ) : 9 /:'p r) :~:~) 

where $ is a funct ion of h only. I f  only one process is involved, the act ivat ion energy q is constant;  
when more processes are effective, the apparent  q might  be variable with T. Nevertheless,  constancy 
of q was found by experiments [78] (between 4 ~ and 1t0 ~ it might be calculated f rom these exper- 
iments tha t  ~ /R = 2500 OK. 

7~ I R R E V E R S I B L E  CREEP AND SHRINKAGE 

To some extent  the irreversibility of creep and shrinkage is caused by the increase of K C and G c 
with t e as the concrete is aging. This irreversibility is included in the linear creep law (25), (26), etc. 
I t  disappears, however, after the hydrat ion stops whereas a large par t  of creep is still known to be 
irreversible. Assuming tha t  the limiting value of  creep for t --~ co under constant  load is bounded,  
we must  conclude tha t  there must  also exist some other source of irreversibility which must  be non- 
linear, i.e. violating the principle of superposition in time. 

Comparing the structure of cement gel with tha t  of metals, there seems to be little reason for 
any plasticity. This observation is reinforced by  the fact tha t  irreversibIe creep appears even for 
very  small stresses at which the creep depends linearly on stress. Even the curvature  and irreversibility 
at low stress of  the stress-strain diagram for short- t ime tests may be a t t r ibuted to a short- t ime linear 
creep [i2, t00] (the same as in polymers [64]), ra ther  than to plasticity. 

For  the above reasons, it has been suggested [80, 23, 22] to allow for the irreversibility by  a theologic- 
al model shown in figure 5e. This model contains a new rheological e l ement - - the  ratchet (with a 
pawl) - - ins tead  of  the Saint Venant  element for plasticity. During an increase in deformation,  the 
additional spring is out of action. Upon reversal of  deformation (recovery), the ra tche t  snaps down, 
rigidly connecting t h e  additional spring. The ra tchet  may  represent the format ion  of  new chemical 
bonds between the solid surfaces (the possibility of  which was proved by  compact ing isolated hydra ted  
cement particles into a solid body  [81]), the par t ly  irreversible dissolution of solid mat te r  under load 
(Appendix Ci0), or the irreversible decomposition of  the interlayer hydra te  [81] under  load (Appendix 
c8). 

The mathemat ica l  formulat ion is simpler than  in the case of  plasticity. Eqs. (25), (26) remain 
valid as long as the condition for the increase of creep deformation is not violated. For  volumetric 
creep this condition is 

For  deviatoric creep this condition must  comply with the requirements of  isotropy,  i.e. it may  involve 
only the second (or third) invar iant  of  sij--Sd~j.  Then the condition is 

t y  

When some of  the inequalities (53) become violated, which is caused by  unloading (or non-proport ional  
loading) or by  change of  humidi ty  (or temperature) ,  eqs. (25), (26) etc. will still have the same 
form, but  greater values of  K '  c, G' c, and eventual ly also different ~', ~', have to be subst i tuted.  I t  is 
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an advantage tha t  this system of equations is still linear, al though the time responses to various loadings 
may  not  be superposed if the intervals of validi ty or invalidity of the conditions (53a), (53b) do not  
coincide. I t  is unclear whether the condition (53a), could be used if z changes sign. 

The third cause of irreversibility, occurring with variable humidi ty  only, is the irreversibility of 
the area factors fa, f~ (and inherent irreversibility of z~, %a in case of shrinkage). This is due to the 
irreversibility of desorption isotherms. 

An apparent  irreversibility in tests of creep recovery is also obtained if the internal humid i ty  of 
the samples has changed. 

NOTE. The cyclic creep [I, 2, 82, t4], i.e. creep under  stresses repeated many  times, 
is not  adequate ly  interpreted by the ratchet  and should rather  be regarded as an acceler- 
ated creep, also caused by some type of nonlinearity, e,g. accumulat ion of second-order 
deformation in sorption element. For first reloading and few further  cycles more complex 
models with ratchet  may be set u p .  

8. ANALYSIS OF STRESS AND STRAIN PROBLEMS 

8.1. General method of numerical analysis 

In  most  practical problems the only feasible method of solution is the numerical one. The step- 
by-step integrat ion in time can be formulated as a succession of initial strain problems [83]. Here 
we outline its principle. For each time interva~ At, eqs. (48), (49) and (38), (39) may  be replaced by  
the difference equations 

~- /16" + E ~ (5r 
K 

+ ei_ / (:s; 

where (:6J. 

(sT) 

= e + 7 J ( sJ 

(J-g) 

Assume tha t  the solution of humidi ty  is determined and that  z, z, zd, s U, e U, sdu at the s tar t  t(,) of 
interval At(,) are known. Then we can compute r and e~ at each point  of the body. Thus 
eqs. (54), (56) have the form of an elastic stress-strain law with" IJrescribed fictitious initial si:rains r 
el~ j , The solution of Ar Az(,), Aeij(n), Aslj(n ) satisfying the differential equilibrium conditions ( )" 
for Azr and As~.,,,, the geometric equations and the boundary  conditions, is a known problem of 
elasticity. AfterJ~ts solution we can calculate Aza(,), As,,.(,), f rom eqs. (56) and (59) and determine 

' J  . . . .  
z(.+l) = z(.) -f- Az(,,) etc. The algorithm of solution is elucidated m more detail m Appendix D. 
In  geometrically complex bodies the finite element technique must  be used. 

8.2. Creep and shrinkage tests and computer results for a hypothetical material 

With the theory outlined even the analysis of prisms and cylinders under  simple loading is not 
easy. This is largely due to the unfortt tnate fact  tha t  the aggregate size does not allow samples 
sufficiently thin (less than  i mm) as to avoid variable h throughout  the unsealed samples. Never- 
theless, if test results are to be interpreted correctly, we cannot avoid dealing with the complexity of 
our analysis. 

A s tandard  computer  programm (Appendix D) was set up, based on our theory.  I t  was 
assumed tha t  the specimens are so long tha t  plane cross sections remain plane and free of  lateral 
restraint. When  square prisms are considered, the ends and two opposite sides are assumed to be 
sealed in order to obtain unidimensional diffusion, as in an infinite slab. 
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Tenta t ive ly ,  a hypo the t i ca l  mater ia l  has been found for which is achieved a t  leas t  qua l i t a t ive  
agreement  wi th  wha t  is known t o d a y  from tests  of concrete.  This hypo the t i ca l  ma te r i a l  is defined 
b y  the  following expressions 

~ " -aa + t ,  ~zo§ " 

r162 A ' ~ , ,  ah.- , , ,  

G 6 = o.23~, G~-o.##2~, Sd=o.5r 

<ZTh" l(c ~r h*-h-~(T=25) forTr z 
P "Izo(o.oo2+k~g i< 

�9 A" ~c u T = - 3 . 7  § 635/ ( /60  - T ) ,  

= \ 1360 ~ O . O # k d k  . f o r  d k  > 0 ,  

(9, 93 ~ e + 16" O. 8 5 g  § 1,5 

ko = << + ,'s " "., = ~ +  ,,5 " 

ar - O . 0 2 h ( f O 2 - h )  b T =ar T ,  B - .oo ,  
Z 2 S  - ,~ 

O<o = s ~ Io -~, ~<~ = ~ o  + ~ ~ m - ~ h  , 

c = O . l + h .  k = L S ,  K ' = F k  

Kb, Kc, Gb, %, ... are given in k p / c m  2, t, t e in days,  T in ~ ~, + in day  -1. The results  of  the  compute r  
analyses  are shown in figures 8-26. 

NOTE. These results  were ob ta ined  prior  to the proper  assessment  of the  influence of 
the  t e rm containing h in eq. (25), and tha t  is why we pu t  in (60) K h -+ ~ ,  G h -+ ~ .  Wi th  
this  assumpt ion  the opposi te  behav ior  between the drying and s t eady  h u m i d i t y  condit ions 
could not  be reflected,  and the creep increase at  drying in figure 9 was ob ta ined  only 
because ~ in eq. (60) was assumed to be decreasing with h at  high h, according to eq. B3 
or B4. 

I t  is necessary to emphasize tha t ,  in general ,  the agreement  with a pa r t i cu la r  expe r imen t  is not  
quan t i t a t ive .  But  the  large number  of pa rame te r s  permi ts  a wide poss ibi l i ty  of  ad ju s tmen t .  I t  can 
be expected t h a t  i f  sufficient da t a  are avai lable  from precisely control led tests  on one t y p e  of  concrete,  
the pa ramete r s  in eq. (60) could be selected so as to achieve a quan t i t a t i ve  agreement  wi th  these tes t  
results.  

NOTE. In  this connect ion i t  is worthwhile  to point  out  how useful i t  would be if  
a general  agreement  could be achieved about  one specific type  of concrete  which is to be 
used in the  exper imenta l  s tudies of rheological  proper t ies  in all l abora tor ies .  P lo t t ing  
the  results  of different inves t iga tors  against  our computed  curves would b r ing  in a t r emend-  
ous sca t te r ing  which is not  a mate r ia l  p r o p e r t y  bu t  is due to different t ypes  of concrete 
used, different tes t  procedures  and envi ronmenta l  condit ions,  the  control  of  which had  
been inadequa te  in older exper iments .  

9. CONCLUSION 

The resul ts  of  the  numerical  analysis  of var ious  tes ts  of shrinkage,  creep and t he rma l  expans ion  
show tha t  our t heo ry  is able to reflect correct ly  the  known features  of  shrinkage,  creep and the rmal  
expans ion  of  concrete  under  sus ta ined load. 
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indicates diameter of cylinder; slab S means the prism 
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sample was predried (until equilibrium) after 30 days of 
moist curing. On figure 22, T was raised immediately at 
the age of 35 days. 
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APPENDIX A 

Thermodynamic equilibrium of adsorbed water 

Let us choose as independent  variables the intensive quanti t ies,  i.e. pressure p and tempera ture  T. 
Then the thermodynamic  potent ia l  is the Gibbs '  free energy G. For a single substance  at  a fixed 
mass content ,  G is expressed as follows [44, 71, 84] 

G = U + p V - - T S  

where V : volume, S : entropy,  U : total  energy. This assertion may be verified if  the expression 
for G is differentiated and the relationships dU : ~ Q - - p d V ,  8Q : TdS, expressing the first and 
second laws of thermodynamics ,  subst i tuted.  This, indeed, yields a total  differential in  p and T, i.e. 

dG = Vdp - -  SdT (Ai) 

From the condit ion ~Q > T d s  for an irreversible process it  follows tha t  dG ~ 0, i.e. G is minimized 
at equilibrium. Hence dG ---- 0 for a small deviat ion from equilibrium. 

NOTE. I t  is seen tha t  for dT ~-- 0, G coincides with the defini t ion of complementary  
s t rain energy. The s t rain energy for dT = 0 is represented by the Helmotz  free energy 
F ~- U - -  TS. For ~Q ~- dS = 0 the place of G (or F) is taken by the en tha lpy  H = U + 
pV (or by U). 

Consider now a single subs t ance - -wa te r  in two phases as adsorbed" water  and vapor  which are 
in equilibrium. Since G is independent  of extensive properties such as V, we m a y  write G ---- 
w~G~ + w=G~ where G~ and G~ denote part ial  free energies (per uni t  of q u a n t i t y  of each phase which 
may be taken as a un i t  mass) and w=, wo represent the masses of the adsorbed water  and vapor, res- 
pectively. Let us consider a very small deviat ion from equilibrium, at which the small amoun t  
dw d = - -  dwo is transferred from the vapor  to the adsorbed state. Since dG = G~dw,, + G~dw a = O, 
we have the following equil ibr ium condit ion : 

G~ = G~ (A2) 

This equat ion may be used to determine the pressure pa in the adsorbed film, which is in equil ibrium 
with the ambient  vapor. For this purpose we assume for water vapor the ideal gas equat ion  

p~vv = R T / M  (A3) 

where v~ ~ specific volume of vapor. For an equil ibr ium change at a cons tan t  t empera ture  T it 
follows from eq. (At) (with dG~ = v~dp~) and eq. (A2) tha t  

dG~ ~- v~dp~ RT d(lnp~) (A4) = ~ -  

Making the assumption v~ g const. (which is certainly inadmissible for h < 0 . t2 ) ,  the in tegrat ion of 
eq. (A4) with the init ial  condit ion p~ : 0 at p~ : ps~t yields eq. (1). 

NOTE. A completely analogous procedure yields for Pc an expression of form (1) in 
which vc replaces v~. This expression is exact because vc, unlike v~, m a y  be taken as 
exactly constant .  The equal i typa = pcis exact only at the contact  with the adsorbed water. 

Now let us consider a hindered adsorbed layer  and imagine an equi l ibr ium process at constant  T 
in which the ambien t  humid i ty  h is gradual ly increased while the gap thickness is kept  constant.  
The differential equat ion (A4) is still valid for p,, (in place ofpa  ) bu t  for the ini t ia l  condi t ion  we may 
consider the state in which the gap available becomes jus t  full of water, i.e. w a = w a. In  this state 
obviously Pd = Pa" Noting tha t  the changes of par t ia l  Gibbs'free energies are equal,  we have the 
differential equat ion v,f lpa = Vddpd where v~and  v d are same functions ofp~ and Pd, t h a t  is v~ = f ( p a ) ,  
Vd =f(Pd)"  By integrat ion,  eq. (2) is found to be valid even for w~ >~ w d. Because Pa = P ~  and 
Pd = 0 at w~ = Wd, and not ing tha t  dPd = dp , ,  the disjoining pressure is 

RT fwa  ~(l,~h) dw" (wo > Wd) (A5) 
Pd = Pd - -  [Pa]w d - -  My ,  Wd DW', 

where w, is the value for the adjacent  unhindered  layer in equilibrium. 

Instead of considering the change of vapor  pressure Pv at a cons tant  water  con ten t  w ,  = Wd, 
we could have imagined a gradual  decrease of w, at constant  pv and T. For this purpose eq. (Al) first 
has to be generalized. In  the case of variable mass content  we can write 

G a = W a ~ a p a  "T (A6) 

where t~a is called chemical potential .  The total  differential of eq. (A6) is 

dG~ : w~d~a + ~,dw~ 
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Because ~ is independent  of w~, it represents the part ial  Gibbs'  free energy per un i t  mass, i.e. 

~ ---- (~Ga/~w~) p~,T (A7) 

Then wadtz ,  must  be equal to the expression (A1), 

w ~ d ~  = V ~ d p ~  - -  S~dT 

Consequently, we get 
dGa = V , d p ~  - -  S~dT -f- ~ d w ~  

According to eq. (A4) where Gt, = ~ G ~ / S w ~ ,  we have per un i t  of mass: 

RT a( lnp~)  

~ -  M ~w~ 

(A8) 

(A9) 

(A10) 

Now eq. (A9) has to be rewrit ten.for  the mass (per un i t  solid surface) of the hindered adsorbed layer, 
replacing p~ by Pd etc. Then we consider the gradual decrease of the water amoun t  w~ and integrate  
over Pd with the conditions dG~ = 0, dT = 0. As a result eq. (A5) is obtained.  

NOTE. Eqs. (1), (2), (A5) give only a simplified, though easily unders tandable  
picture. The constancy of% (for h >> 0) is merely an assumption.  The actual  dependence 
of v~ upon h is not  known. Nevertheless, it would have been possible to arrive at the 
same const i tut ive equat ion with any form of the monotonic  funct ion p~ = p~(h), or even 
without  in t roducing pa and Pd at all, using directly the part ial  free energies G~ and G~ 
in eqs. (25), (26), (20). ( G ~ -  G~ is the pr imary driving force of diffusion in eq. t6,  rather  
t han  Pd - - P ~ . )  Such an approach would also el iminate another  deficiency : the stress 
tensor in adsorbed layers has been taci t ly  assumed as isotropic which is certainly contrary 
to fact; Pd should also be understood as the average pressure for a great number  of layers 
(Pal = zd / f d )  because the method of thermodynamic  potentials  predicts only the average 
behavior  of sufficiently large ensembles of molecules. The applicat ion of statistical 
q u a n t u m  mechanics would be more fundamenta l ,  especially for calculations of ? = ~(h) 
in Appendix  B. 

NOTr. The existence of load-bearing water and disjoining pressure has been denied 
by some researchers. This would hold true if water completely filling th in  pores behaved 
like a solid body with a pe rmanen t  lattice. Then the equi l ibr ium condition d G - ~  0 
could not be reduced to G~ = G~ (or equivalent  eq. 2). This relationship results by 
considering (as for (A2)) a small deviat ion from equi l ibr ium at which the amount  d w  d = 
- - d w ~  is transferred from w d to w~. Thus the above denial means denying the abili ty 
of molecules to diffuse along the hindered layers. No doubt  this abi l i ty  exists since water 
in hindered layers can evaporate (and also because molecules can migrate along the ad- 
sorbed layers even without  leaving them [41]). Moreover, it is inconceivable tha t  the differ- 

1 1 1 cr ence G d - -  G a due to a change in Ga, as in the case of drying,  would not be equivalent  
to tha t  due to a chaoge in G~, as in the case of a change in Pal" Therefore, the above 
objection is unfounded.  

APPENDIX B 

Flow in hindered adsorbed layers of various shapes 

Let us now assume for simplicity tha t  the hindered adsorbed water flows like an incompressible 
fluid and tha t  h and f d  are constant .  

B1. - -  The layer between two solid spheres almost in contact.  The var ia t ion  of the layer thick- 
ness is 8d ~ x2 where x = distance from the contact  point  and the sign ~ denotes proportionali ty.  
Let the solid spheres approach one another  at the speed (Fig. t) 8 o = d S d / d t .  Then VSd ~ x where v 
is the radial velocity of the flow of the adsorbed molecules. The pressure gradient  in the layer is 
~ p d / a X  ~ ( V ~ d ) / ~ + l  ~ X -2" -z  where n is the constant  in eq. (10). By in tegra t ion  from x = 0 to 
x ~-- x,, where x, is the coordinate of the boundary  between the hindered and unhindered  layer, we get 
P d - - P a  ~ x ;  2"" Subs t i tu t ing  f d d w  d ~ x]  into eq. (16), we obta in  d = x ;  2"-2. NOW fd ~ x~, 
xa ~ V~,  8, ~ h; so finally, according to eq. (29), we have 

9 ~ h" - i  (BI) 

B2. - -  The layer between two flat plane wedges almost in contact .  The thickness of layer 
is ~d ~ x where x ~-- distance from the contact  line. Now for the unidirect ional  flow of speed v we 
have v8  d ~ x ,  ~ p d / ~ X  ~ x--" .  By in tegra t ion  P d - - P ,  ~ x~ "+1 and since f d d W d  ~ x a, f d  ~ xa,  
~a ~ X~, ~ .  ~ h w e  o b t a i n  d ~ x ; "  and 

q~ ~ h "-2 (B2)  
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B 3 . -  The l a y e r  be tween  two spheres wi thou t  contac t  with a negligible va r i a t i on  of thickness.  
The thickness is 8 d ---- 80 + 82 x2 where 82x 2 ~ 80, x denot ing the d is tance  f rom the  po in t  of min imum 
thickness;  the  radia l  ve loc i ty  is v ~ x, so t h a t  ~ p d / ~ x  ~ x and by  in teg ra t ion  P d - - P ~  ~ x2- Since 

f d d W d  ~ X 2 we get  d = const,  and 
~ f~2 (B3) 

B4. - -  The layer  be tween  two fiat p lane wedges wi thout  contact ,  wi th  negligible thickness va r ia t -  
ion. The ve loc i ty  v of the  unid i rec t iona l  flow is v ~ x, x is t h e  d is tance  f rom the  centre  line and the 
thickness is 8 d = 80 -f- 81x (where 81x ~ 80). Then 8 p d / ~ x  ~ x and by  i n t eg ra t i on  / ~ d - - P ~  ~ x2" 
Since f d d W d  ~ X~ we get  d ~ x a ~ f d  and 

~ f z  3 (B4) 

Recal l ing t h a t  a p p r o x i m a t e l y  f d  ~ h ,  we see t ha t  the  cases B3, B4 yie ld  a decrease  of 9 wi th  h, 
which is the  opposi te  of the  cases BI ,  B2. We believe t ha t  var iable  thickness  of  the  gaps is the  s tat is-  
t ica l ly  dominan t  case, r a the r  t han  cons tan t  thickness,  especial ly in the v ic in i ty  of  the  th innes t  gaps,  
i.e. for h -+ 0. Nevertheless ,  for h -+ 1 the  cases B3, B4 may  have a grea ter  role, weakening  the increase 
of 9 with h. 

APPENDIX C 

A d d i t i o n a l  comments  on concrete deformat ion 

C1. Cement paste and concrete 

The aggregate  in concrete represents  a component  whose creep and hyg rome t r i c  deformat ions  
are re la t ive ly  negligible. The fact  t ha t  besides the  elastic part icles  of h y d r a t e d  cement  and unhydrous  
cement  we have  an addi t iona l  elastic component ,  the aggregate,  requires  us to add  fur ther  springs 
(or Powers '  units) to our model  which thus  acquires a wider spec t rum of  r e t a r d a t i o n  t imes.  However ,  
in an even more res t r ic ted  range of  response delay,  the three-e lement  model  m a y  sti l l  be used as a first 
app rox ima t ion  for concrete.  

In  wa te r  diffusion an addi t iona l  effect is the  exchange of water  be tween  aggregate  and cement  
paste .  Wel l  s a tu ra t ed  aggregate  supplies wa te r  needed for hydra t ion ,  while u n s a t u r a t e d  aggregate  
will imbibe  wate r  and in tens i fy  self-desiccation.  S t r ic t ly  speaking, this  is ano the r  de layed effect 
in microscopic local flow. A p p r o x i m a t e l y ,  we m a y  account  for i t  s imply  b y  using p roper  values of 
self-desiccat ion h~, depending o n  the ini t ia l  s a tu ra t ion  of the aggregate .  

C2. Separabil i ty of creep and shr inkage 

The reason why this quest ion has been an object  of discussion for a long t ime,  can be explained 
by  misunders tandings  abou t  i ts meaning.  

In  one sense i t  is clear t ha t  creep p rac t i ca l ly  always accompanies  shr inkage and m a y  not  be separ-  
a ted  from the  calculat ion of shrinkage since at  nonuniform humid i ty  d i s t r ibu t ion  the  free shrinkage 
s trains  would be general ly  incompat ib le .  

Phys ica l ly ,  the  creep of  concrete is essent ia l ly  of the  same na ture  as s h r i n k a g e - - o n e  is caused 
by  ex te rna l  load,  the  o ther  by  the loading produced  by  tension in adsorbed  films. Mathemat i ca l ly ,  
the  sepa rab i l i ty  is to be unders tood  as the  pr inciple  of  superposi t ion.  Shr inkage is defined as tl~e 
deformat ion  for zero surface loads whils t  creep (incl. ins tan taneous  deformat ion)  is the  remainder .  
Then,  as long as all the  equat ions  for the  stress and s t ra in  problem, i.e. s t ress -s t ra in  law, as well as 
differential  equi l ibr ium and geometr ic  equat ions  with b o u n d a r y  condit ions,  are l inear ,  the principle 
of superpos i t ion  is val id  and the  responses to var ious  load terms (or absolute  terms)  are addi t ive .  The 
loading t e rm  for shrinkage is % in eq. (25); the  loading terms for " creep appea r  in the  b o u n d a r y  
condit ions or equi l ibr ium equations.  I f  the  solut ion of the complete  above-men t ioned  sys tem of 
equat ions,  in the  case of shrinkage (no load) is denoted by  zs, es and in the  case of  creep (za = 0) by  
z c, ec, i t  would be t r iv ia l  to demons t ra te  t ha t  the  solut ion in the case of bo th  the  z ~ - - t e r m  and the 
loading te rms  is z s + z~ and ~ -+- z ~. W i t h  respect  to some object ions in the  pas t ,  i t  is worthwhi le  
to stress t h a t  for the  shrinkage problem and the creep problem the h u m i d i t y  condi t ions  mus t  be the 
same and the  body  ident ica l  in size and shape.  The shrinkage and creep on specimens of different 
size or shape,  or with different h u m i d i t y  d is t r ibu t ions  in t ime,  may  not  be added.  (Thus, i t  is no 
puzzle t ha t  the  to ta l  deformat ion  under  load in a cer ta in  dry ing  envi ronment  is g rea te r  t han  the sum 
of  the  deformat ion  whi tou t  load in the same env i ronmen t  plus the de format ion  under  load at  h = t ) .  

C3. Poisson ratio and shear creep 

Since there  is no reason why the rat ios  ~/ff, Gb /K b, Gc /K c, G d l K  d for vo lumet r i c  and devia tor ie  
creep should be equal,  the  Poisson ra t io  is not  a mate r ia l  constant ,  bu t  is t ime var iab le ,  depending 
on the t y p e  of loading,  etc. The same has been known about  polymers  for a long t ime  [64,65]. This 
agrees wi th  some recent  observat ions  [85], ind ica t ing  t ha t  in a s t anda rd  creep t e s t  the  Poisson ra t io  
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decreases with t ime.  This fact  suggests t ha t  the Poisson rat io corresponding to Gc /K  c is less than  
t ha t  corresponding to G o /K b (eq. 60). The ini t ia l  rise of the curves on figure 16 per ta ins  to the  assump- 
t ion t h a t  the  ra te  of the  devia tor ic  creep (eq. 60) should be higher  than  t h a t  for volume creep. This 
could be expla ined b y  the  assumpt ion  t ha t  the  average distance of flow be tween  the compressed and 
di la ted  layers  in shear  creep is shor ter  t han  the effective average dis tance be tween hindered layers  
a n d  capi l la ry  pores in volume creep. 

C4. Tensile creep 

For  the  elastic as well as diss ipat ive mechanisms described,  there  cannot  be any  phys ica l  difference 
be tween the stresses of opposi te  sign. The elastic po ten t ia l  and t h e  d iss ipat ive  poten t ia l  [63] 
mus t  va ry  cont inuous ly  wi th  stress in the  v ic in i ty  of an unstressed s ta te .  By vi r tue  of this,  the tensile 
and compressive creep (and elastic s train)  for sufficiently small  stress mus t  be the  same and the only 
jus t i f ied  quest ion is, " above wllat  stress l imi t  does the  tensile creep s t a r t  to be nonl inear  (which 
is due mainly  to microcracking)?  " 

C5. Rate  and final value of creep. Bending creep 

The h u m i d i t y  or t empe ra tu r e  effect on creep is essential ly caused b y  a change of the creep rate  
given by  9 (or r e t a rda t ion  t imes of  sorpt ion elements,  reflecting the  ra te  of  diffusion in the  adsorbed  
layers) .  I t  is incorrect  to seek i t  in a change of the " final value " of  creep. This is mere ly  an appa ren t  
feature.  For  instance,  the  creep r at  h = 1 and T = 25 ~ for a per iod  of 10 years  would be regarded 
as the  final value.  Dry ing  envi ronment ,  or higher h or T has the  same effect as a reduc t ion  (contract -  
ion) of the  t ime scale (or a p ropor t iona l  reduc t ion  of all r e t a rda t ion  t imes  in the  r e t a rda t i on  spectrum).  
As an example ,  i f  h = 0.3 (or T : 50 ~ the  above value %1 would then  be ob ta ined  in I month ,  
say,  ins tead  of 10 years ,  as former ly ;  and the '~ final value " for 10 years ,  say,  would now be equal  
to the  value at  t200 years  in the  former case (if i t  were measurable) .  These analogies are, of  course,  
d i s turbed  by  the increase of elastic cons tants  K c and G c with age, affecting also the  appa ren t  " final 
value " of creep. 

Saying t ha t  Creep is s t ress- induced shrinkage is phys ica l ly  admissible  bu t  t ak ing  i t  l i te ra l ly  has 
led to misunders t and ing  about  the  h u m i d i t y  effect on bending creep. I t s  exp lana t ion  was unclear  
since i t  was erroneously asser ted  t h a t  dry ing  effect should be added  at  the  compression side of beam 
and sub t rac ted  at  the  tensi le  side. This is true,  bu t  explains mere ly  t h a t  shr inkage is not  affected 
by  bending  which is clear from l inear  theory.  The dry ing  te rm for creep, i.e. the  t e rm  conta ining h 
in (25) and (37), changes i ts  sign with  the stress. This effect, as well as the  ra te  effect ment ioned 
above,  is obviously  the  same for compression and tension, and thus  is also the  same for bending and 
torsion. Expla in ing  the effect of dry ing  on bending creep (" P icke t t  e f fec t"  [11]) by  some nonl inear i ty  
a t  high stresses induced  by  shrinkage is at  var iance  with the l inear i ty  of  creep, and also with the  fact  
t ha t  creep increases wi th  h if  h inside the  sample is cons tant  dur ing creep [30, 31]. 

C6. Tempera ture  dependence of the ra te  of  creep 

I f  the  ac t iva t ion  energies for the  t empera tu re  dependence of  aT, bT, ~w could be assumed equal  
i t  would be possible to t rans form our constituti;ze equat ion to a t e m p e r a t u r e  independen t  form, in t rod-  
ucing a new var iable  t' defined by  the re la t ionship t' : dt /bT .  This me thod  is widely ut i l ized for 
creep of polymers  [64, 65, 80], t ' is called reduced t ime and bT the shift  funct ion.  In  a logar i thmic  
t ime scale a change of T would then  be in te rp re ted  by  a d isp lacement  of the  response curve (e.g. creep 
curve) in the  di rect ion of the  axis t [64, 65]. 

�9 Above 90 ~ the  effect of  t empe ra tu r e  on the creep rate  becomes reversed,  [18, 74] and the ra te  
decreases wi th  T. This might  be due to physico-chemical  changes in cement  pas te  above tha t  temper-  
a ture  [57, 77, 78]. When  concrete is allowed to d ry  with increasing T, the  creep ra te  will also change 
with h and when h approaches  zero the  creep ra te  will diminish. 

C7. Hygrothermic dilatation and thermal swelling 

P a r t  of de layed the rma l  d i l a t a t ion  m a y  be expla ined by  the h igher  coefficient of the rmal  expansion 
of water .  Then with  a rise i n  t empera tu re ,  the load-bear ing wate r  becomes immed ia t e ly  compressed 
and then  gradua l ly  " squeezed out  ". According to this effect alone, however,  the  delayed effect 
and immedia t e  d i l a t a t ion  would have  to diminish with  decreasing h. This is not  observed.  In  effect, 
down to about  h = 0.7 an increase ,takes place [68-70, 2]. This increase can be accounted for only 
by  hygro thermic  d i l a t a t ion  which is a consequence of the hygro thermic  coefficient • whose value tends 
to 0 as h ~ 1. 
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I t  is of interest to integrate eq. (31), including the term (50), for a constant  ra te  T, assuming 
the material initially (t = 0) at rest. For a nearly uniform distribution of T (small sample or slow 
heating) and uniform h (sealed sample) the result is (z = 0) : 

r -= % T t  + ( % -  sz) - ~" ( l  - -  e -~t)  
r 

i l fd  t + z ,  

where z' = an additional term, accounting for the variat ion of ~a, ~?, sl, So with T, which tends to zero 
(as t 2) for small temperature  change. The third and fourth terms express the ins tantaneous and delayed 
thermal swelling. Calculating ~a from (20) we see tha t  depends on ~a • (and T, 3)). 

C8. Effect of  cal~illary water and chemically bound water 

Imagine tha t  in figure t the adsorbed layers do not come into contact .  Then the pressure on solid 
surfaces is developed only by capillary water filling the long gap. In  equilibrium this pressure, Pc, 
is expressed by eqs. (2a) and (1). Sudden application of load will destroy this condit ion of thermo- 
dynamic equilibrium, and the difference P c - - P ~  will cause the capillary water to flow slowly out 
towards the surface meniscus. Similarity with the behavior of hindered adsorbed water  is thus clear. 

NOT~. With respect to our assumption of small deformation it is impossible to 
explain creep by  a change of the curvature  radius of surface meniscus, corresponding to 
the change of distance between the contact  points of the meniscus at  the solid surfaces: 

The distinction between various forms of fixed water is defined only by the value of  the binding 
energy and is not clear cut. Some water molecules chemically bound in cement crystals,  such as the 
interlayer hydrate ,  may  have a lower binding energy than  some adsorbed molecules [81, 48]. Therefore 
they form part  of evaporable water, w e. Their equilibrium with other forms of water  is again expressed 
by equality of partial free energies (chemical potentials) G 1. Because G 1 depends on pressure (as in 
eq. AI ,  A9), an application of load, causing pressure increase in the interlayer hydra te ,  will destroy 
this equali ty and the created difference in G 1 will cause a gradual diffusion [71] of the inter layer  hydrate  
out of (or into) the hydra ted  cement and allow a gradual contraction (dilation) of  the space left (entered), 
until pressure is readjusted and new equilibrium reached. 

Obviously, the described mechanisms for both the chemically bound and capillary water are 
phenomenologically similar to our mechanism for adsorbed water, so tha t  formally same  equations 
as (t.7), (25), (26), (32d), (38), (39) would be obtained. We can thus conclude tha t  the resulting macro- 
scopic consti tutive equation is the same as for microscopic diffusion of any form of load-bearing water, 
whether it is adsorbed, or chemically bound,  or capillary. (Of course, from the physical  viewpoint 
the distinction between them is an impor tant  object of  discussion.) Simultaneous effect of  all these 
states of water means tha t  we should add more units in the chain on figure 5b, gett ing a wider relaxation 
spectrum. What  is finally impor tan t  in our model is not  which state of water has the dominant ' role  
but  only tha t  there exist a sufficiently large quant i ty  of  oriented layers (or t iny tubes) of water which 
can withstand static stress and respond by diffusion to the disruptions of its t he rmodynamic  equilibrium. 

C9. Effect of volume changes at hydration 

Cement hydra t ion  is caused by  a difference in partial  free energies G 1 (chemical potentials)  between 
unhydrous  cement, and hydra ted  cement. Since G 1 depends on p (eq. AI) ,  applicat ion of a pressure 
on some par t  of hydra ted  cement may  create equilibrium and stop fur ther  hydra t ion  (and the inherent 
growth in volume) in t ha t  part.  Conversely, if growth in volume is opposed by the existing structure,  
a pressure needed for equilibrium will be developed. This pressure is certainly one cause why some 
(not all) cement pastes swell if immersed in water  f rom the time of  casting. 

CIO. Dissolution under load and reerystallization 

I f  a pressure is applied on a par t  of hydra ted  cement already in equilibrium, the inherent  change 
in G 1 will cause an opposite process than  in C9, i.e. a dehydratat ion,  or disso lu t ion  of the imperfect 
crystalline particles of cement gel in tha t  part.  This will be accompanied by diffusion of mat te r  into 
other pores where pressure is not  active, and recrys taUizat ion [86] of imperfect  crystallites of cement 
gel in them. This recrystallized mat te r  will somewhat  increase the resistance of the solid framework 
at a subsequent change of load, and thus cause nonlinearity with respect to stress, and irreversibility. 
This nonlinearity, however, will be small and normally undetectabte since the volume of  the dissolved 
and recrystallized mat te r  must  be smaller than  the volume change of porous mater ia l  (or smaller 
than  the volume eli • I • I at the strain deviator  of form (35)) which itself is negligibly small 
(assumption 2) with respect to the total  volume of  the solid per unit  volume of  porous material. 
I f  a tension is applied instead of  a pressure, the reverse mechanism occu r s - -ma t t e r  will be dissolv- 
ed in the pores where this tension is not active, then diffuse into the thin gaps under  tension 
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and recrystallize in them. This mechanism willlead again to the same form of consti tutive equation 
as eqs. (25), (26), (37), and will be represented by  still another unit  in the chain on figure 5b, eq. 
(32d). I f  the compressive volume creep after rewetting of a predried sample is found to be greater 
than the expansion obtained at rewetting [31] plus the elastic deformation of a dried sample, then 
a plausible explanation would be provided by this mechanism. I t  is still questionable at present 
whether this mechanism can really be impor tant  but  the enormous internal surface and the small- 
ness of the volume to be dissolved speak for it even if the solubility is very  low. 

NOTE. Nevertheless, even a small amount  of recrystallized mat te r  may  cause 
some nonlinearity with respect to stress if it recrystallizes just  at the boundary  of  hin- 
dered layers where the gaps are so thin tha t  a large area may  be covered by it. Perhaps 
this is the reason why, after a longer period of creep under sustained load, the instant-  
aneous modulus for a subsequent load increment seems to be greater than  for unloading 
[96] or for the unloaded sample [97] (by about l0 %). 

Cl l .  Slide movements and cement gel viscosity in creep 

I t  may  be admit ted tha t  besides contraction of hindered layers, slip movements  between opposite 
solid surfaces could exist [87]. This applies for deviatoric, and in some extent  even for volumetric 
strains, as it is visualized for the two configurations on figure 7. At  a change of thickness of a hindered 
layer, the water molecules are forced to travel ~ distance which is great with respect to its thickness, 
whereas a t  slide movement  the molecules travel a distance which is small with respect to the thickness 
of layer. Realizing this, we are tempted to conclude tha t  the resistance to sliding should be negligible 
if compared with the resistance to the change of thickness of these layers. 

FIG. 7. - -  Examples  of slip movements  between particles. ( In  
the gaps where  slip is indicated there is assumed to be no 
solid connection,  i.e. sufficient thickness  of the gap.) 

This mechanism alone would be able to account  for the fact  tha t  creep is lower for a smaller w 
or h, as the "water  lubrication " effect gradually disappears with w, but  probably  not for the increase 
of creep due to drying (during creep). Nevertheless, at present it could hardly be excluded tha t  this 
mechanism might  be operative simultaneously with microscopic diffusion (see also [52]) which might  
be expressed by  some additional units in the chain model in figure 5b, containing dashpots rather  
than sorption elements. The corresponding equations in the system (32d) would be characterized 
by z~d~=O (or f a l l=O)  and Kh~-+ ~ ,  G h ~  ~ .  

C12. Microcracking 

Format ion of a microcrack is accompanied by reduction of the macroscopic average elastic moduli. 
Therefore, microcracking is necessarily linked with nonlinearity with respect to stress and strain. 
Thus it has no place in a theory which is linear but  it is certainly the main cause of  nonlinear creep 
(and irreversibility at high stresses). In  effect, microcracking has been proved really significant 
only above 0.5 or 0.4 of the ult imate stress. Anyhow, it is dubious whether  microcracking alone 
could account  for the various effects of humidity.  

A special proper ty  of  cement paste is the ability to heal closed cracks, i.e. restore continui ty (by 
recrystallization or formation of  bond) [93], [95]. A sequence of  shear cracking and subsequent 
healing may  be a par t  of the creep mechanism which will not disturb linearity with respect to stress. 
I t  would be formally equivalent to the slidinz mechanism mentioned in C l l  (or identical if the cracks 
are slides between particles). 

C13. Strain gradient effect 

The difference between bending and axial creep has been sometimes a t t r ibuted to the presence 
of strain or stress gradient. In  the example of figure 14, however, this effect arises only because of  
a different correspondence between the stress and humidi ty  distributions. Stress gradient as such 
cannot appear in our form of equations. Strain gradient is linked with the couple stresses [62] and 
these may carry some par t  of the bending moment ,  provided tha t  the beam depth is sufficiently small 
with respect to the aggregate size. 
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C14. Autogenous shrinkage 

The shrinkage of a sealed sample certainly depends on the amount  of self-desiccation, just  as 
drying shrinkage depends on decrease of internal humidity.  An indirect effect of  self-desiccation 
as a humidi ty  change on the rate of hydra t ion  and growth of cement gel is also involved. 

C15. Shrinkage due to solid surface tension 

Solid particles become compressed because of their surface tension, depending on humidi ty  [32, 
38, 88]. This compression results form the static equilibrium condition and follows the humidi ty  
change immediately.  Therefore, this effect is formally identical with our immedia te  component  
of shrinkage introduced by the term % in eqs. (25), (26). 

"C16. Intrinsic influences 

The effect of water-cement  ratio, kind and percentage of aggregate and cement,  etc. [t5, 14], 
are all conditions fixed once forever when the material is cast. They  do not affect the form of our 
equations but  only the values of their coefficients. We need to know them for an efficient design of 
mix and prediction of creep bu t  we should be able to analyze the stresses and strains wi thout  any 
knowledge about  them if we had data  about  a sufficient series of tests on the one specific concrete 
of  our structure. These influences represent an impor tant  separate problem which is beyond the 
scope of this paper. 

C17. Heat conduction and temperature distribution 

Prior to the stress and strain analysis, T must  be determined as a function of t, x,  y ,  z. Similarly 
as for water diffusion, according to our assumptions this temperature problem and the stress and straia 
problem are uncoupled, i.e. deformation does not affect T. However,  the tempera ture  problem is 
coupled with the water diffusion problem because the speed of water flow depends on T, the heat  
conduct ivi ty  depends on w a t e r  content  [14], and the heat of hydrat ion,  heat of  evaporat ion at the 
surface and heat  of adsorption (which could reach 20 cal/g of cement) depend on humidit ies and their 
change. This coupling becomes esPecially impor tan t  when considering fire exposure. 

APPENDIX D 

Scheme of program for stress and strain analysis 

For each time step At the procedure is as follows. 

t Save the initial values in the step of o, sij, ad, saij, te, h, T (0* ~-- o etc.) for all nodes (elements). 

2 Using t e and h, calculate Kb, Kc, Kd, Gb, Go, G d (or K'c, G'r if (53) valid). Then  compute  K, 
G. Repeat  for all nodes. 

3 Using h, Ah, T, AT, calculate Aoa, Oad , al, AT, aT, ~, ff and ,0, eg. (eqs. 56, 57) for all nodes. tJ 

4 Solving the elasticity problem with z ~ e~ as prescribed initial strains, and given changes 
of loads or prescribed displacements, determine Ar Aelj , Ao, As/j  for all nodes. 

5 Using h, Ah, T, AT, calculate again Ao~ (saves storage), aoAT. Then calculate AOd, ASdi / 
from eqs. (58), (59). Repeat  for all nodes. 

6 Calculate ~T, Ate, k, c, bT, Ahd, • Ah 1 (or k', • if Ah > 0) for all nodes. 
7 Calculate Ah and AT for all nodes (finite difference form of eq. 8). 

8 Assign o +- o* + A o / 2  . . . . .  h ~ h* + A h / 2  to all variables (but ~, e/j), for all nodes. 
9 Return  to 2 and proceed again until 8, with several repetitions (i terating thus the mean 

values of o, h, ... in the step At). 

10 Compute initial values for the next  step of o, Si j  , r eli, od, Sdij, re, h, T ,  ass igning o ~ o* 
-~ Ao, ..., za +- o~ + A %  . . . .  te +- t*e + Ate . . . .  �9 ~ ~* + Az  . . . .  Print  these values. Assign 
t + - t  + At and g o  to 1 (next step) if t < final time. 

We see tha t  in comparison with the elasticity problems we have to store for all nodes the additional 
values od, su., t e, h, T, Ah, AT, Ao, Asij. (Storage space for Ao, Asii could be equivalenced with o, Sli; iJ 
instead of storing K, G, these values could be recalculated whenever needed.) I f  we use the model 
on figure 5b, eq. (32d), we must  compute  and store Odl , Od2 , s~ijl , Sd~j2 for all nodes. 

I n  our example o f  p r i s m s ,  because of the uniaxial state of  stress only the values o, s23 need to be 
considered in all nodes th roughout  the thickness of the cross section since the axial normal stress 
is O l l =  30 and Sll ~ 20, s~ ~- ~ o, s33 = Sl~ = s13 = 0, x 1 = x being the longitudinal axis of prism, 
x.z ---- y the axis across the thickness (in the direction of  flow). The step 4 of the above scheme is here 
as simple as follows. 
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4.1. Calculate z ~ ~ Kr ~ s~ ~ 2Ge~ for all nodes. 
4.2. Calculate Young modulus E for all nodes. 

4.3. Compute axial, bending and torsional rigidities Rz, Re, R a of the cross section. 

4.4. Calculate the resultants of the axial normal stresses z~ ---- z ~ + s~ over the cross section, 
i.e. axial force p0, bending moment  M ~ torque T ~ 

4.5. Add to p0, M0, T o the given changes of applied loads. 

4.6. Calculate Az +- E (P~  i q- M~ As23 +- G T~ a~ +- A~/K, Ae23 +- As23/2G 
for all nodes. 

4.7. Assign A~ +- A~ -~ z0, As23 +_ As23 ~_ s% in all nodes. 
In  case of a cylinder we have to consider also the non-zero circumferential normal stress sa3 ~- ~, 

as well as the radial stress se2 q-~.  
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