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A general bilinear fit for the softening curve of concrete 
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The softenin9 function is the main input needed to model the fracture of concrete when using a 
cohesive crack approach. The simplest softenin9 function that describes concrete behaviour 
reasonably well is a bilinear one. It is defined by four parameters: the tensile strength ft, the 
specific fracture energy G r, and two parameters characterizing the shape of this function. 
Here it is shown how these parameters can be derived from experimental measurements on 
notched beam tests. In particular, the parameters characterizin9 the shape of the function 
come Ji'om knowledfe of the tail of the load-displacement curve and fi'om the recorded 
maximum loads when similar beams of different sizes are tested. 

1. I N T R O D U C T I O N  

Modelling concrete fracture by using cohesive cracks has 
been a successful procedure since its proposal  by 
Hillerborg et al. [1]. This success is partly due to its 
physical meaning and to its simplicity. A basic ingredient 
of the model is the softening curve, a material property. 
This function relates the stresses acting across the crack 
faces - the cohesive stresses - to the corresponding crack 
openings. 

The area under the softening function is known as the 
specific fi'acture enerfy, Gv, and it is also a material 
property. G~ measures the energy needed to completely 
break a unit area, and RILEM Committee TC-50 has 
published a proposal, based on three-point bend tests 
in notched beams, to measure this property [2]. 

Available measurements of the specific fracture energy 
GF obtained with the RILEM procedure provide values 
that appear to increase with increasing sample size [3], 
calling into question the consideration of Gv as a material 
parameter, and the softening function as well. This size 
effect on G~ was analysed by the authors [4-6], and it 
was concluded that if all the sources of spurious energy 
dissipation were taken into account, and when the energy 
at the very end of the test was not neglected, the corrected 
values of G v are nearly independent of size. These findings 
provide additional support for Gv and for the softening 
function as material properties and, as a consequence, for 
the use of cohesive cracks to model cracking. 

The input required for cohesive crack computations is 
the softening function. Ideally, the simplest method of 
obtaining this curve should be to perform direct tensile 
tests but unfortunately this procedure has many draw- 
backs 1-7, 8] because it is very difficult to propagate cracks 
in a stable and symmetric way. This is why most of the 
procedures to infer the softening function rely on indirect 
methods based on a parametric fit of the experimental 
results from bending beams or compact specimens [9, 10]. 

This paper presents a novel procedure for inferring the 
essential properties of the softening function from tests 
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performed on notched beams. Any softening function 
depending on up to four parameters may be envisaged, 
but this paper focuses on a bilinear relationship, with 
four degrees of freedom. Four  essential geometrical 
parameters are shown to be easily estimated from 
classical tests (ASTM tests for elastic modulus and 
splitting tensile strength, and the RILEM work-of- 
fracture recommendation for fracture energy). 

The procedure for finding those parameters is applied 
to experimental results previously obtained by the 
authors, and the resulting softening curve, which happens 
to present a long tail, is compared with other bilinear 
approximations found in the literature. The essential 
result is that any of these approximations gives a good 
prediction of stable tests on notched beams in the 
pre-peak and near post-peak region, but that only the 
long-tailed bilinear softening fits also the post- and far 
post-peak region. 

2. E X P E R I M E N T A L  RESULTS FOR C O N C R E T E  

For clarity, the softening function for a particular 
concrete will be derived from experimental measurements 
already performed by the authors, but the procedure is 
general. Apart from measurements of the tensile strength 
and the specific fracture energy, one needs a recording 
of the tail of the load-displacement curve in a notched 
beam test and a knowledge of the maximum load size 
effect for a range of usual sizes. 

Tests were performed on concrete notched beams, 
following essentially the RILEM recommendations for 
the measurement of Gv [2]. Details of materials and 
experimental procedures have already been published 
[11] and therefore only the relevant aspects are sum- 
marized here. 

The concrete was a standard RILEM concrete as 
described by Dutron [12]. The cement was of ASTM 
type Ill, and the aggregates were classified as siliceous 
and natural rounded, of maximum size 10 mm. Table 1 
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Table 1 Concrete properties 

Proportional mixing, by weight" Concrete strength (MPa) b 

Cement Coarse Fine Water Compressive Tensile Modulus 

1.00 1.35 3.02 0.55 33.1 2.8 26 600 

"Cement content 400 kg m- 3. 
b Strength results at 28 days. 
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Fig. 1 Specimen geometry. 

summarizes the characteristics of the concrete mix and 
some concrete properties according to ASTM standards. 

The test specimens were notched beams, as sketched 
in Fig. 1. All specimens were cast in steel moulds and 
compacted with a vibrating table. After demoulding, the 
samples were stored under lime-saturated water until 
testing time. 

Testing was performed in a 1 MN servohydraulic 
testing machine (Instron 1275) run in CMOD control 
mode. Loads were measured with a 25 kN load cell with 
a resolution of 1.25 N and 0.5~o accuracy. CMOD was 
measured by a clip-on gauge (MTS 632.03C-51) with 
_+ 2 p.m accuracy. 

Deflection was measured as the relative displacement 
of the central loading head and the line defined by the 
points of the upper surface of the specimen located on 
the verticals of the lower supports. The displacement was 
measured by an extensometer located in a transverse 
hole in the loading head. The accuracy of the extensometer 
was better than 5 p.m. 

In all tests, weight compensation was used. This was 
automatically accomplished by using specimens twice as 
long as the loading span for the two smallest sizes. 
Prestressed springs on both sides of the notch provided 
the load compensation for the larger specimens. 

For  every test, load, displacement and CMOD were 
recorded. Tests were run on CMOD control. The average 
values of maximum loads for every size are shown in 
Table 2. 

Table 2 Maximum load values 

Size Beam depth (mm) Pmax (kN) 

I 50 2.89 _+ 0.05 
II 100 5.21 + 0.06 
III 200 9.37 _+ 0.06 
IV 300 11.25 _+ 3.08 

3. I N F E R E N C E  OF TH E S O F T E N I N G  
F U N C T I O N  

The softening function will be approximated by a bilinear 
function. This simple diagram captures the essential facts: 
large-scale debonding, or fracture, of aggregates in the 
steepest part, and frictional pull-out of aggregates in the 
shallow tail of the diagram. This function is completely 
characterized when the following four parameters are 
known, as shown in Fig. 2: the tensile strength ft, the 
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Fig. 2 Bilinear softening function. 
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specific fracture energy Gv, the abscissa of the centroid 
of the softening area #, and the initial slope, measured 
as the horizontal intercept w 1 of the steeper segment. 
Nevertheless, the proposed method of inferring the 
softening function can also be used for functions other 
than bilinear ones, provided they are characterized by 
four independent parameters. 

3.1 Tensile strength f t  

As already mentioned, direct tensile tests are difficult to 
perform, and their results are not always free of spurious 
influences. When no reliable direct tension tests were 
available, the authors used the result of a Brazilian 
splitting test (ASTM C-495) as an estimate of the tensile 
strength (assumed a material property if one accepts the 
cohesive crack model). One must be aware that this is a 
simplification of the experimental procedure, and that 
the error in the estimation depends on the size of the 
cylindrical specimens used and, most importantly, on the 
brittleness of the concrete. This subject will be further 
addressed in the discussion of the fitting method, in 
section 4. For the concrete of our example the cylinder 
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Table 3 Specific fracture energy determination 

Source Size I Size II Size III Size IV 

GFMea s 57 + 2 75 _+ 13 82 + 2 94 _+ 5 
- AGFhyst" 0 --0.2 --0.2 --0.5 
--  AaFbul  k --0.5 (0.2)" -- 1.0 (0.3) -- 1.5 (0.4) -- 1.7 (0.5) 
--AGFsupport s - 7 . 3  (2.5) -6.6 (2.0) -8.6 (2.3) -9.2 (1.6) 
+AGFta i  I 22.0 (8.0) 18.0 (8.0) 7.0 (2.0) 6.0 (4.0) 
G v 71 [13] b 85 [23] 79 [7] 89 [11] 

" Standard deviation. 
u Estimated variation interval. 

splitting tests delivered f~ ~_ f~ = 2.8 MPa,  where f~ 
stands for the (cylinder) splitting strength. 

3.2 Specific fracture energy G v 

The area enclosed under the softening function is the 
specific fracture energy GF. This parameter  was measured 
according to the RILEM procedure [23 with some 
improvements [4-6].  Basically, GF was obtained by 
dividing the measured work of fracture Wby the ligament 
area: 

W 
GvM~,s -- (I) 

Bb 

where b is the initial ligament length; b = D - a accord- 
ing to Fig. 1. 

These GFMea s results show a clear size effect, increasing 
with specimen size. When sources of spurious energy 
dissipation - hysteresis of the testing equipment, volume 
dissipation and energy dissipation at the supports - and 
the effect of interrupting the test at some fixed rotation 
angle are taken into account, an almost size-independent 
Gv emerges. This corrected value, for our concrete, was 
GF = 81 N m-~.  Table 3 summarizes the experimental 
results and the corrections that take into account the 
above-mentioned sources of energy. 

3.3 Abscissa of the centroid of the softening curve, 

In a previous paper [6] it was shown that the abscissa 
~ of the centroid of the area under the softening curve 
can be evaluated from a knowledge of the load-displace- 
ment (P-6) tail recorded during experimentation. Very 
briefly, the reasoning is as follows: for cohesive materials 
and beams where the self-weight is compensated, the last 
phase of a stable three-point bend test can be modelled 
by rigid-body kinematics. If a(w) is the softening function, 
the bending moment  per unit thickness at the central 
section, M, may be approximated by 

fro I f o c  1 M = aEw(z)]z dz ~- -0~ ~(w)w dw = ~ #Gv (2) 

where z and 0 are shown in Fig. 3 and z c is the point 
where the softening is complete, i.e. w ( z c ) =  we; the 
second integral follows by setting Oz ~- w, the rigid-body 

Fig. 3 Rigid-body kinematics at the end of the test. 

kinematics approximation; the last expression just states 
that the second integral in Equation 2 is the first-order 
moment  ofa(w) and can be expressed as the area enclosed 
between the positive axes and the softening curve, Gv, 
times the abscissa, #, of the centroid of that area. 

The centroid of the area may be always written in the 
form 

~G v 
- (3) 

f, 

c~ is a dimensionless parameter  depending on the shape 
of the softening function. For  rectangular softening 
c~ = 1/2, for linear softening c~ = 2/3, for exponential 
softening e = 1, also e = 0.987 for the bilinear softening 
proposed by Petersson [13] and between 1 and 1.3 for 
the functions proposed by Reinhardt et al. [7]. As a 
general trend, c~ values increase with the importance of 
the P-6  tail. 

From the recorded tails of the P-6  curves, the M - O  
curves were evaluated and an c~ value of 2.1 was obtained 
as detailed elsewhere [6]. The abscissa #, for our concrete, 
was # ~ 61 gm. 

3.4 Initial tangent intercept w~ 

In a previous paper [14] the authors compared the 
maximum load predictions in notched-beam tests for 
different softening functions, considering particularly the 
linear softening and quasi-exponential softening. It  was 
found that both models could be led to give essentially 
the same values of the maximum load for sizes in the 
practical experimental range (beam depths between 0.1 
and 0.4 m). Differences were below + 3%, a value well 



102 Guinea ,  Planas and  Elices 

inside the experimental scatter band for maximum load 
determination in concrete testing. 

This result is so because, as already shown by Petersson 
[,13], except for very large specimen sizes the peak load 
is reached well before any point in the cohesive zone 
undergoes complete softening, which means that as far 
as the peak load is concerned and as long as not too 
large a specimen is used, only the initial portion of the 
softening curve is important. In particular, for bilinear 
softening and a small enough specimen, the peak load 
must exactly coincide with that for linear softening with 
the same horizontal intercept wl, represented by the 
dashed line in Fig. 2. This fact may be exploited to devise a 
simple procedure to find w~ from the experimentally 
measured peak loads, as shown below. 

Consider the variation with size of the maximum load 
of a family of geometrically similar specimens, i.e. the size 
effect. As shown by the authors [-14], given the geometry 
and a softening function depending on two parameters, 
such as the linear or the Petersson softening functions, 
the size-effect curve is unique if represented in non- 
dimensional form. In the case of linear softening, this 
curve may be written as 

ffNmaxft -- I//\E~-vI j (4) 

where E is the elastic modulus, D the beam depth, w t 
the critical opening, and aN,na x the peak nominal stress 
defined, for three-point bending, as 

where Pmax is the maximum load and the dimensions S, 
B and D are as shown in Fig. 1. 

The essential point is that the function ~ in Equation 
4 is unique and may be found once and for all by using 
a suitable computational method using arbitrary values 
of f ,  E and w t. We have computed this curve for the 
geometry in Fig. 1 using the influence method, which is 
described in detail elsewhere [,15-1. The resulting curve, 
called the 'master curve', has been plotted in a semilog-log 
plot in which the abscissa xu (M stands for master) and 
ordinate y are given by 

xM = lOgkEwl / Y = " 

The resulting master curve is plotted in Fig. 4 as a full line. 
The problem now is to find a particular value of w t 

such that the experimental values of the peak load, for 
the given experimental sizes, fit the theoretical prediction 
just presented. This is easily accomplished if one 
represents the experimental points in the same plot as 
the master curve, using the same ordinate, but an abscissa 
x given by 

\ E G v )  

where all the parameters appearing in the expression have 
been measured. 
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Fig. 4 Peak-load size effect for linear softening. 

0.5 

Comparing Equations 6 and 7 it turns out that the 
abscissae of the experimental points are related to the 
abscissae of the master curve (for identical ordinates) by 

( 2G~ "] (8) 
x = xM - Ax Ax = log \ w ~ J  

which means that the experimental results should lie on 
a curve which is obtained by shifting the master curve by 
a magnitude Ax towards the left as shown in Fig. 4 by 
the dashed line. As derived from this figure, the greater 
Ax the more appropriate is the use of bilinear softening 
instead of linear to model the material. 

Graphical evaluation of Ax leads to the immediate 
determination of w 1, since from Equation 8 we have 

2GF 10_a~ , (9) 
f, 

which for the particular case of our tests delivers a value 
w 1 = 1.28 GF/f  = 37 gm. 

3.5 General bilinear fit (GBF) for the softening function 

The bilinear softening function for the concrete utilized 
in our tests can be derived from the four parameters 
obtained in the preceding paragraph. These results are: 

ft = 2.8 MPa from Brazilian tests (ASTM C-495) 
G v = 8 t N m-1 from the load-displacement curve 

(RILEM procedure plus corrections) 
= 61 gm from the tail of load-displacement 

curves 
w 1 = 37 gm from the maximum load size effect 

From these results and some simple geometrical relation- 
ships shown in the Appendix the characteristic points of 
the bilinear curve can be easily obtained. The critical 
crack opening turns out to be w c = 12.7 Gv/ft = 367 gm, 
and the coordinates of the kink point w k = 34.7 gm and 
t& = 0.176 MPa. 
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4. DISCUSSION AND C O N C L U S I O N S  

4.1  R e s u l t s  o f  t h e  f i t  

Fig. 5 compares the general bilinear fit for the softening 
curve (GBF) with those of Petersson [13] and Rokugo 
et al. [16] which depend only on two parameters  
(ft and GF). It is obvious that our fit displays a much 
longer tail than the other two. Notice, however, that the 
initial segments of the softening curves are very close to 
each other. This is why, as explained before, the three 
softenings fit the experimental results very well as far as 
the peak load is concerned and as long as the specimens 
are not too large. 

This is clearly shown in Fig. 6 where the peak loads 
for different specimen sizes are plotted (in a convenient 
dimensionless plot) as given by the experiments and as 
predicted by the three bilinear softenings shown in Fig. 
5. The characteristic length lch, used to make the size 
non-dimensional, is a material property and was defined 
by Hillerborg [3] as 

EGr 
/oh - -  (10) 

f t  2 

For the concrete used (E = 26.6 GPa,  ft = 2.8 MPa  and 
GF = 81 N m-1),  the characteristic length is 0.275 m. As 
expected, the agreement between experimental results 
and all the numerical predictions is excellent. The model 
of Rokugo et al. predicts a somewhat lower strength (by 
about 5%) because the slope of the initial softening 
segment is larger (about 37~o larger than for GBF). 

Pushing the comparison a little further, Fig. 7 shows 
the dimensionless l o a d - C M O D  curves for beams of 
100 mm depth. The experimental curve is the average of 
two tests. Up to the maximum load, the Petersson model 
and ours (GBF) give the same values and agree quite 
well with the experimental result. As seen in the figure, 
the model of Rokugo et al. predicts lower loads than the 
other two bilinear functions, as expected according to 
previous comments. It is in the post-peak region that the 
predictions of the models differ. Our predictions still fit 
the experimental results. The Petersson model predicts 
higher loads, mainly because it was not derived for the 
purpose of fitting the far end of the test. The softening 
function of Rokugo et al., h a v i n g a n  intermediate 
critical crack opening, leads to results between Petersson's 
and ours. 

The large value of the critical crack opening w c = 
12.7 Gv/ f  = 367 ~tm obtained in our experiments deserves 
some additional comments. This value is larger than those 
currently appearing in models quoted in the literature. 
However, recent experimental results tend to support  
values of wc in accordance with our findings; see for 
example van Mier [17] in direct tensile tests with concrete 
using aggregates of 16 mm, or the Rokugo et al. results 
[ I6]  using the tube tension test which yielded values 
of wc around 10.8 G v / f  = 460/~m for concrete with 
aggregates of 15 mm maximum size. In a recent paper, 
Liaw et al. [18] proposed a bilinear diagram with we 
between 3.6 and 4.6 Gv/ f ,  claiming that numerical 
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Fig. 5 Bilinear softening functions. 
GF 

q . . 4  ~ 

0.1 

[] experimental 
- -  GBF (w I = 37 gm) 
- - - Petersson (wt = 35 p_m) 
- -  - - -  Rokugo et al. (w t = 29 gm) 

0,1 1 

D/Ich 

Fig. 6 Peak-load size effect; experimental data and model 
predictions. 
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Fig. 7 Load-CMOD curves for D = 100 mm specimen. 

predictions in the post-peak region were better than 
previous bilinear diagrams with a shorter w c. Similar 
findings are quoted by Rokugo et al. [16] who used a 
bilinear diagram with a larger w c (5 Gv/ft)  than the 
Petersson critical opening (w c = 3.6 Gv/ft). 
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4.2 The fitting procedure 

To conclude, some remarks about the proposed procedure 
for obtaining the four parameters are worth consideration. 
The first point to discuss is the approximation of the 
' true'  tensile strength ft by the cylinder splitting strength 
f~. As already mentioned, the error involved in this 
approximation is dependent on the cylinder size and on 
the material fracture properties. The size dependence of 
the cylinder splitting strength has received renewed 
attention in recent years [19-21]. However, there is not 
yet general agreement on how to evaluate the size effect 
based on fracture properties. One of the reasons is that 
in the experimental work described by Hasegawa et  al. 

[19] and Bazant et al. [20] the fracture properties of the 
concrete were not determined and therefore the results 
are hardly applicable to other concretes. On the other 
hand, Mod6er [22] performed a theoretical prediction of 
the size effect of the cube splitting strength using the 
cohesive crack model but, as pointed out by Mod6er 
himself, the results may be taken only as indicative 
because a number of simplifications were used in the 
calculations. Nevertheless, the main trend of the compu- 
tation and of the experiments may coincide in showing 
a decreasing value of f~ with increasing size that 
eventually reaches a plateau. According to the theoretical 
model this plateau is asymptotically approached, and in 
the asymptotic limit f~ = f .  The open problem is how 
fast the limiting value is approached. 

A different theoretical interpretation of the size effect 
was given by Tang et al. [21] based on the two-parameter 
model of Jenq and Shah [233, but their computational 
results were obtained for particular values of the fracture 
parameters. Moreover~ the results do not correlate 
directly with the tensile strength, because this is not a 
basic property of the two-parameter model. If the results 
of Mod~er are taken as a reference one may expect that 
the splitting strength will differ by less than 15~o from 
the true tensile strength for standard cylinders (150 mm 
in diameter) whenever leh is smaller than roughly 300 mm, 
which is the case for many concretes. This is consistent 
with the results presented by Mihashi [24] comparing 
the splitting strength with the value of f~ obtained by the 
indirect fitting procedure described by Wittmann et al. 

[9, 10]. Therefore, although further research on the effect 
of size on the splitting strength and its relationship with 
the true tensile strength is required, the proposed 
approximation may be acceptable for practical purposes, 
especially if erie realizes that the cohesive crack model 
and bilinear softening are themselves approximations 
of the actual behaviour. 

Second, to measure GF it was necessary to refine the 
standard RILEM recommendation [2] by taking into 
account the improvements reported [4-6] where weight 
compensation was used. To determine the abscissa of the 
centroid of the area of the softening curve, careful 
measurements of the tail of the load-displacement curve 
are needed, for which purpose weight compensation is 
essential. Finally, to find w 1, several specimen sizes have 

to be tested to check that they are inside the interval 
where the linear approximation for the softening function 
suffices. This is automatically confirmed if the experi- 
mental size-effect results lie on a curve obtained by 
horizontally shifting the master curve in Fig. 4. In 
addition, it is possible to check this point by computation 
once the softening function is obtained. Indeed, running 
the calculation using a linear softening function with 
intercept w~, it is enough to check that for the largest 
size the peak load occurs before the opening at the notch 
tip reaches the kink point value. 

To sum up, this novel procedure allows the determina- 
tion of a four-parameter bilinear softening function from 
tests on notched beams. These tests are easy to perform, 
and the proposed softening function (GBF) has proved 
to be a useful tool for modelling cohesive materials since 
not only can it reproduce peak values but also it is in good 
agreement with far post-peak experimental results. This 
is an advantage when large sizes are considered, and may 
be essential when pull-out of aggregates or fibres leads 
to very long-tailed softening diagrams. 

ACKNOWLEDGEMENTS 

The authors acknowledge financial support for this 
research from Direccidn General de Investigaci6n 
Cientifica T6cnica, DGICYT, Spain, under Grant Nos. 
PB90-0276 and MATg0-1153-E. 

APPENDIX 

The explicit expressions for bilinear softening as a 
function of the four parameters ( f ,  Gr, # and wl) are 
the following: 

a = 1 - for 0 < w _< w k 

a = a k for Wk < w _ Wo 

a = 0  for w >  w~ 

where (~k, Wk) are the coordinates of the kink point, given 
by 

w e - 2(GF/ft) 2 ( G v / f )  - w l  
Wk = wl ak = f 

W c - -  W 1 W c  - -  W 1 

and w e the critical opening, obtained from the quadratic 
equation 

6 ~ ( G F / f )  --  2 w , ( G F / f )  
W 2 _ _  W e 

2 ( G F / f )  --  Wl 

6 ~ w l ( G F / f )  - -  4 w l ( G v / f )  2 
+ = 0  

2(GF/f~) -- W~ 
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R E S U M E  

Identification d'une courbe d'amollissement bilin~aire 
g6n~rale pour le b~ton 

La mod~lisation des fissures dans le b~ton par des fissures 
cohOsives s'est avOrde Otre un procOdd trOs utile. Une des 
composantes de base du modOle est la courbe d'amollisse- 
ment. ll est bien connu que la forme de cette fonction a 
une influence dOterminante sur la rOponse structurette, en 
particulier sur la courbe force-ddplacement. 

Cet article prdsente une nouvelle mdthode d'identification 
des propri~tOs essentielles de la courbe d'amollissement gt 
partir d'essais sur des poutres entailldes. Une courbe 
d'amollissement quelconque dkpendant de quatre paramOtres 
peut Otre envisag~e; mais l'article est centrd sur une relation 
bilinOaire ~ quatre degrOs de libertd. On montre que quatre 
paramOtres gOomOtriques essentiels de la courbe peuvent 

Otre facilement estimOs h partir d'essais classiques (les 
essais A S T M  de module Olastique et de traction indirecte - 
brOsitien- et la recommandation de la R IL EM pour ta mesure 
de lYnergie de fracture par la mOthode du travail de fracture). 

On applique la mdthode pour ddterminer ces param~tres 
gl des rOsultats d'essais faits au prdalable par les auteurs, 
et on compare les rdsultats obtenus pour la courbe 
d'amollissement GBF (de l'anglais 'general bilinear 
f i t ' )  avec d'autres approximations bilinOaires que t'on 
trouve dans la littdrature. La diffdrence la plus importante 
est que l'identification GBF montre une extrdmitd beaucoup 
plus longue que le reste des approximations. Le rOsultat 
essentiel est que toutes les approximations donnent une 
bonne prOdiction de la courbe force-ddplacement dans la 
rOgion proche dupic de charge, mais seule l'approximation 
bilinOaire gt longue extrOmitd (GBF) donne aussi une 
excellente prddiction des rOgions post-pic et post-pic lointaine. 


