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Measurement of the fracture energy using three-point 
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Available measures of the fracture energy G v obtained with the procedure proposed by 
RILEM TC-50 provide values that appear to change with sample size, calling into question 
the possibility of considering GF as a material parameter, In previous papers several sources 
QJ'energy dissipation were analysed and it was concluded that, although important, they were 
not enough to account for the measured size effect. Here, the dissipated energy at the very end 
of the test is analysed. It is shown that this energy cannot be neglected for small specimens if 
the tests are interrupted at a reasonably low rotation. When this energy is taken into account, 
the final values of G~, appear to be almost size-independent. This result supports GF as a 
material parameter and provides further confidence in the R ILEM proposal. Moreover, it 
fitrnishes a physical explanation for the perturbed ligament model previously developed by 
the authors. 

1. I N T R O D U C T I O N  

The specific fracture energy Gv has proved to be a useful 
parameter for design with concrete and cementitious 
materials [1] and for modelling the fracture behaviour 
of cohesive materials [2,3]. Nevertheless, available 
measures of GF obtained with the work of fracture method 
applied to notched beams [4] provide values that change 
with sample size and, in general, show a trend towards 
an increase with specimen size [5-7].  

As already pointed out in a previous paper [8], this 
apparent size-dependence of Gv calls into question the 
possibility of considering Gv as a material parameter. 
The only way to remove this doubt is to find some 
shortcomings in the determination of G v that would 
explain this size effect as an artefact rather than an 
intrinsic feature of the material. 

A systematic search for possible sources of experimental 
errors was undertaken by the authors. In two previous 
papers [8,9] the role of the testing equipment, the 
experimental set-up and the energy dissipation in the 
specimen bulk were analysed. In all cases, some energy 
dissipation increasing with specimen size was found. For 
beam depths ranging from 5 to 30 aggregate sizes, the 
maximum relative increment for GF due to the testing 
equipment was less than 0.6%. The bulk energy 
dissipation, generated at regions of high tensile stresses, 
contributes at most 2%. The major contribution comes 
from the energy dissipation at the supports due to 
crushing and friction. This energy dissipation can 
account, at most, for a t5% increase. Anyhow, putting 
all these values together gives a size-dependence which 
is not enough to account for the observed size 
dependence, about 50% in our experiments. 

The final key to solve this problem seems to be that 
- in bending-  the test cannot be controlled up to absolute 
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breakage of the specimen. Rather, the test must be 
stopped somewhere before that point and some energy, 
that corresponding to the unrecorded tail of the P -6  
curve, is not accounted for in the measurements. A careful 
analysis of this neglected energy shows that it may 
account for the remaining 32~ needed to obtain a real 
size-independent GF value. This analysis is the subject of 
the first part of this paper. As an interesting consequence 
of this analysis, it is found that the P-6  tail correction is 
consistent with the perturbed ligament model (PLM) 
previously developed by the authors on phenomeno- 
logical grounds [10-12]. The PLM provides, then, a 
practical procedure to extract a "true' Gv value from a 
set of apparently size-dependent Gv measurements. 

In the second part of this paper all the adjustments 
for Gv - those previously analysed [8,9] and that used 
in this paper - are applied to a set of Gv values obtained 
in testing concrete beams of four sizes. The results show 
that when the energy corresponding to the tail of the P -3  
curve is taken into account, an almost size-independent 
Gv value is obtained. 

2. THE P - g  TAIL IN A B E N D I N G  
BEAM TEST 

To estimate the energy dissipated at very low loads - 
when the load tends to zero in the descending branch of 
the P-6 diagram - one needs to model the beam 
behaviour when the cohesive crack closely approaches 
the free surface. 

For  cohesive materials and beams where weight is 
compensated, the last phase of a stable three-point 
bend test can be modelled following the rigid-body 
kinematics used by Petersson [I3].  In this approach one 
assumes that the beam is divided into two rectangular 
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Fig. 1 (a) Rigid-body kinematics for the final stages of the bending test. (b) Softening function and abscissa of the centroid. 

pieces which are connected only through the fracture 
zone, as sketched in Fig. 1. Also, it is assumed that the 
sides of the crack and the fracture zone are plane and 
that the compression zone is concentrated on a point at 
the top of the beam. Clearly this is an approximation 
because there always exists a compression zone at the 
top of the beam, which has however been proved to be 
asymptotically exact in the case of rectangular softening 
(Dugdale model with stress cut-off) [14]. 

The crack opening w at a certain distance x from A, 
as shown in Fig. la, will be given by 

w = 2x sin(0/2) ~ Ox (1) 

Assuming a known softening function, the central 
bending moment  may be written as 

;o io" M = cr(w)Bx dx  = B ~(Ox)x dx  

 fo" - 02 a(w)w dw (2)  

where M is the bending moment,  a(w) is the softening 
function (as sketched in Fig. lb), B is the beam thickness 
and x c the point at which the softening is complete, hence 
w(x~) = w e. This result may be written as 

.BG~  
M - (3) 

f , 0  2 

because the integral in Equation 2 is the first-order 
moment  of~(w) and can be expressed as the area enclosed 
between the positive axes and the softening curve, G F, 
times the abscissa, ~, of the centroid of that area. This 
distance can always be written as ctGF/f, where f is the 
tensile strength (as shown in Fig. 1) and ~ a suitable 
parameter  depending on the shape of the softening 
functions; for a rectangular softening c~ = 1/2, for linear 
softening e = 2/3 and for exponential softening ~ = 1. 

Equation 3 may be rewritten as 

M _ A O - :  A - eG2 (4) 
B f, 

which indicates that in a plot of M / B  versus 0 -2  the 
trend for large 0 values is that of a straight line of 
size-independent slope A. The asymptotic P - 6  curve is 
obtained from the equations above by setting 

PS 45 
M - 0 - (5) 

4 S 

so that 

1 
P =  B S A 4 6 2  (6) 

In a weight-compensated testing set-up, the zero load is 
not known with great precision because the exact  weight 
distribution is not known. If  the beam were completely 
broken at test stop, this final reading would be, by 
construction, the 'zero load '  [10]. However, the beam 
approaches this level asymptotically, as shown in Fig. 2, 
and the load at test stop, Pf, is slightly larger than zero 
(this has been somewhat exaggerated in Fig. 2). 
Unfortunately the true zero is not known, as already 
pointed out, and the test stop point B must be taken as 
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Fig. 2 Neglected energy when the test is interrupted at point 
B (point B is taken to correspond to zero load). 
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Table 1 Concrete properties 

Proportional mixing, by weight Concrete strength (MPa) 

Cement Coarse Fine Water Compressive Tensile Modulus 

1 1.35 3.02 0.55 33.1 2.8 26 600 

Cement content 400 kg m-  3; strength results at 28 days. 

the 'practical zero'. The area that one can determine with 
bounded error is the area enclosed by the curve over the 
segment AB, which is taken as the best approximation 
of the total work of fracture W. The uncounted work of 
fracture is then the dashed area in Fig. 2, which we denote 
as A WT, . .  (A more rigorous treatment of this approxima- 
tion based on the use of the complementary work instead 
of the ordinary work may be found elsewhere [10].) 

To estimate A Wx,ij we neglect the small triangular area 
OAA', and letting ~Sf be the deflection at the point of test 
stop, B, the shaded area may be written, with the help 
of the approximate P -6  relation (Equation 6), 

f ~ BSA 
A ~ T a i l  = Pf(~f "J - P d ( ~ ) =  ~ f  + - -  

f 

BSA BSA 

46f 26f 
(7) 

and the total measured fracture work W will be 

W = GF Bb - A WIai l  = Gr Bb - - -  
BSA 

26r 
(8) 

where b is the initial beam ligament (b = D -  a). This 
can be rewritten as 

W =  GFB( b 2SG~f) = GFB(b - b~ (9) 

where 

SA 
b o - (10) 

2GF6f 

According to the RILEM procedure [2] the measured 
fracture energy would be evaluated as 

G~Mo,s -- bb  - 

while the true fracture energy is, from Equation 9, 

W 
G F -- (12) 

B(b -- bo) 

When the rotation angle at which the test is stopped is 
the same for all the specimen sizes (which is the case for 
our tests and may be very usual) the fraction S/6f is 
constant and so is b o. In such case Equation 12 coincides 
with that derived by the authors on phenomenological 
grounds in what was called the perturbed ligament model 

(PLM) [10-12]. The above equation may be read, then, 
as saying that a premature interruption of the tests at 
some fixed rotation angle produces the same effect as 
having a portion of ligament of length b o not contributing 
to the overall dissipation, b o coincides, then, with what 
was called the perturbed length. The above results 
provide an alternative physical support  for the PLM 
equation. 

3. EXPERIMENTAL P R O C E D U R E  

Concrete notched beams were tested following, essentially, 
the RILEM recommendation for the measurement of Gv 
[2]. Details of materials and experimental procedures 
have already been published [12] and therefore only the 
relevant aspects will be briefly summarized here. 

The concrete was a standard RILEM concrete, as 
described by Dutron [15]. Natural  rounded aggregates, 
classified as siliceous, were used. Table 1 summarizes the 
characteristics of the concrete mix and some concrete 
properties measured according to ASTM standards. The 
aggregate maximum size was 10 mm. 

Test specimens were notched beams, as sketched in 
Fig. 3; their dimensions are listed in Table 2. All specimens 
were cast in steel moulds and compacted with a vibrating 
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Fig. 3 Specimen dimensions. 
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Table 2 Test specimen dimensions (see Fig. 3) 

Specimen D(mm) S (mm) a (mm) L (mm) B (ram) 

FT1 50 125 17 300 100 
FT2 100 250 33 550 100 
FT3 200 500 67 550 100 
FT4 300 750 100 800 I00 
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table. After demoulding, samples were stored under 
lime-saturated water until testing time. 

Testing was performed in a 1 M N  servohydraulic 
testing machine (Instron 1275), run in C M O D  control 
mode. Loads were measured with a 25/50 kN load cell 
with a resolution of 1.25/2.5 N and 0.5% accuracy. 
C M O D  was measured by a clip-on gauge MTS 
632.03C-5 I, with 0.2 gm resolution and _+ 2 p.m accuracy. 

Deflection was measured as the relative displacement 
of the central loading head and the line defined by the 
points on the upper surface of the specimen located on 
the verticals of the lower supports. The displacement was 
measured by an extensometer located in a transverse hole 
in the loading head. The accuracy of the extensometer 
was better than 5 p.m. 

In all tests weight compensation was used. This was 
automatically accomplished by using specimens twice as 
long as the loading span for the two smallest sizes. 
Prestressed springs on both sides of the notch provided 
the load compensation for the larger specimens. 

4, RESULTS 

4.1 Experimental values 

Tests were performed on geometrically similar notched 
beams of the same thickness but of different sizes, as 
shown in Fig. 3. Experimental values are summarized in 
Table 3. All the results are mean of two specimens. Values 
in square brackets indicate half-range. 

The energy of fracture Gv for each size was obtained 
according to the RILEM procedure [2] by dividing the 
measured work of fracture W by the ligament area: 

W 
GFMea~ -- (13) 

Bb 

where the ligament b as already stated, is b = D -  a, 
according to Fig. 3. 

These GFMea ~ results show a definite effect of the 
specimen size on the values of the fracture energy. When 
all possible sources of energy dissipation discussed in 
previous papers [8,9] and the effect of interrupting the 
test at some fixed rotation angle considered here are taken 
into account, an almost size-independent GF emerges, as 
will be shown later on. 

Table 3 Concrete fracture energy GF (RILEM) 

Sample D(mm) Pc (kN) fN (MPa) GFMea s (N m - l )  

FT1 50 2.89[0.05] 4.31 57 [2] 
FT2 I00 5.2110.06] 4.15 75113] 
FT3 200 9.37[0.06] 3.92 82 [2] 
FT4 300 1 t.2510.58] 3.08 94 [5] 

Pu is the maximum load andfN = 1.5PuS/B(D - a) z (see Fig. 3). 
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Fig. 4 Log-log plot of the experimental M-O curve showing 
the M cc 0-2 dependence at large rotations for all sizes. 
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Fig. 5 M-O 2 plot of the experimental M-O curve showing the 
M oc 0-2 dependence at large rotations for all the sizes. 

4.2 Validation of the asymptotic equation for the P-6 
curve tail 

To check the accuracy of the model discussed in section 2 
- or more specifically, Equations (4) - the P-6 curve is 
transformed into an M-O curve using Equations 5. This 
M-O curve is plotted in a log- log plot in Fig. 4. As can 
be seen, for large 0 all the plots merge into a straight line 
of slope - 2 ,  as expected, because Equation 4 may be 
written as 

l o g M  = log A - 2 log  0 (14) 

The value of A can be computed by extrapolation in 
Fig. 4 or, simply by adjusting a straight line to the M 
versus 0 - 2 plots for large values of 0, as shown in Fig. 5. 



Materials  and Structures  331 

Table 4 Corrections for G v in N m- 

Source Size 1 Size 2 Size 3 Size 4 

GVMea S 57 [2] 75 [13] 82 [2] 94 [5] 

-AGF (hysteresis) -0.0 -0.2 -0.2 -0.5 
-AGr (bulk) -0.5 (0.2) - 1.0 (0.3) - 1.5 (0.4) - 1.7 (0.5) 
-AGF (lateral supports) -3.4 (1.0) -1.8 (0.5) -1.8 (0.7) -2.0 (0.2) 
- A G  v (central support) -3.9 (1.5) -4.8 (1.5) -6,8 (1.6) -7.2 (1:4) 

GF 1 49.1 67.2 71.7 82.6 
AGFTai I 22 (8) 18 (8) 7 (2) 6 (4) 

Gv (corrected) 71 {13} 85 {23} 79 {7} 89 {11} 

Values in square brackets indicate half-range. Values in parentheses indicate standard deviations. 
Values in braces { } are estimated variation intervals. 

All these results support the suitability of the model for 
our purposes. From the knowledge of A, GF and f ,  it is 
possible to estimate the value of c~ from Equations 4. For 
this concrete, where G v = 81 N m  -1 and f = 2.8 MPa, 
one obtains ~ = 2.1. 

This value of ct is rather larger than those that can be 
directly derived from the usual analytical expressions for 
the softening curve, such as the bilinear curve proposed 
by Petersson [13], the pure exponential curve or the 
modified exponential of Reinhardt et al. [16] which 
deliver values ofc~ ranging from 1 to 1.3. The fundamental 
reason for this discrepancy seems to be that the analytical 
proposals fit very well the experimental results for small 
and medium crack openings while the fit for large 
openings is rather poor, the experimental results displaying 
a much longer tail than the analytical fits. This causes 
little or no effect on the predicted results for small 
deflections of the beams (for usual laboratory sizes), 
because then only the initial portion of the softening 
curve comes into play. The divergence arises, however, 
when analysing a large deflection range as we do here. 

That the discrepancy between analytical fits and 
experimental results may be large in the softening far end 
is obvious from the fits displayed in the above references 
[13,16] but it is clearer in the results of Rokugo et al. 

[17] which display a critical crack opening about three 
times larger than the Petersson fit. From Fig. 5 of the 
work of Rokugo et al. an estimate of the position of the 
centroid of the area enclosed by the experimental 
softening curve may be given. The centroid turns out to 
be around w ~ 0.084 ram, which in dimensionless terms 
corresponds to ~ ~ 1.9, a value much closer to our result 
than to those of the analytical fits. This gives further 
support to our theoretical analysis, although further work 
is necessary to enhance the experimental support. 

Once A is known, the 'perturbed ligament length', b o, 
defined in Equation 10, can be evaluated from the value 
of the rotation angle 46f /S  at which the tail of the 
experimental curve was cut. Using the average value from 
the test records, 46 f /S  = 0.012, an estimated perturbed 
length b o ,~ 12 mm is obtained, in agreement with the 
result delivered by the empirical procedure used previously 

[12]. This consistency provides further support for the 
present analysis and for the PLM equation. 

5. A D J U S T M E N T  FOR G F (RILEM) 

The results of the two previous papers [8,9] indicated 
that several sources of spurious energy dissipation exist 
which are not usually taken into account when computing 
the specific fracture energy Gv. In the present work, it 
has been found that a non-negligible amount of energy 
may be neglected when cutting the tail of the P -6  curve. 
The next step is to analyse whether there is a significant 
improvement when all these corrections for the measured 
G v are taken into account. The best estimate of GF can 
then be written as 

GF = GFMeas -- Z AGF + AGFTail (15) 

where the sum is extended to all extra dissipation sources. 
In Part 1 of this work [8] it was concluded that some 

energy dissipation due to hysteresis of the testing machine 
may occur and that this was specimen size-dependent. 
The energy dissipated for each beam size may be 
evaluated from Fig. 6 (Fig. 2a from [8]) with the 
knowledge of the average maximum load for each beam 
size reported in Table 3. The values of dissipated energy 
appear in Table 4. 
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Fig. 6 Correction due to hysteresis in the measuring system 
(measured in [8]). 
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350 

Fig. 7 Correction due to bulk dissipation (computed in [9]). 

In Part 2 [9] it was shown that, apart  from the surface 
energy, some energy was dissipated in the bulk of the 
material as the crack propagates. This bulk energy is 
dissipated at regions of high tensile stresses and the result, 
as a function of the beam depth, is shown in Fig. 7 (Fig. 8a 
from [9]). This dissipated energy is also reported in 
Table 4. 

Supports are the major source of energy dissipation. 
Dissipation in the rolling supports, due to friction and 
to crushing, was discussed and measured in Part  1 [8]. 
For  our tests, only friction must be accounted for, because 
the displacement measurement already excluded the 
crushing component. Dissipation at the central support,  
due to crushing, was considered and measured in Part  2 
[9]. The result of both sources of spurious energy waste 
is represented in Fig. 8. Again, from the knowledge of 
the maximum loads for the different beam sizes, the values 
of dissipated energy at the supports were computed. To 
emphasize the different contributions from the lateral and 
central supports, both results appear  in Table 4. 

When all these sources of energy dissipation - not 
essential for fracturing - are taken into account and 

deducted from the measured energy, an intermediate 
estimate of Gv, Gvl, is obtained. Such results also 
appear in Table 4 and, unfortunately, still exhibit a 
non-negligible size effect (about 60% for the sizes 
considered). 

As is shown in this paper, there is some amount  of 
energy consumed in breaking the beam that has not 
been accounted for when testing is prematurely stopped. 
This energy is, from Equation 7, 

BSA 
A WTail -- (16) 

26f 

and depends only on the rotation angle 43f/S at which 
the tail of the P-6 curve is cut, apart  obviously from 
fixed material parameters. When all tests are stopped at 
the same rotation angle, this energy will be size- 
independent, and when divided by the specimen ligament 
the specific fracture energy correction will decrease with 
specimen size. 

The value of ATTail for each concrete beam size was 
obtained in the following way. Thickness B, loading span 
S and the deflection at which tests were cut, 6f, were 
computed as the average values for the specimens of that 
size. A was obtained as the average slope of the M-O-2 
curves for all the sizes shown in Fig. 5. Finally, the values 
of the correction t e r m s  AGFTai 1 were computed as 

A m T a i l  
A G F T a U  - -  (17) 

bB 

The values of this correction are shown, for each size, in 
Table 4, together with the final corrected values of Gv, 
which appear  to have a much milder size dependence, if 
any at all. To illustrate this, such results are plotted in 
Fig. 9 as a function of specimen size. As can be easily 
realized, they are almost size-independent. The average 
value is 81 N m -  1, and no definite trend may be guessed 
in view of the large scatter band which comes from the 
addition of the scatter of all the measurements and 
corrections. 
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Fig. 8 Correction due to dissipation at the supports 
(measured in [81 and [9]). 
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6. CONCLUSI ONS 

The purpose of this paper, and two previous ones 
[8,9], was to ascertain possible sources of energy 
dissipation in addition to that essential for the fracture 
process which are not taken into account when deter- 
mining GF following the RILEM recommendation 
based on the work of fracture. Several sources were 
detected and the corresponding dissipated energy was 
computed or measured. Unfortunately, after taking 
into account all these energy corrections, the final 
value of the specific fracture energy still exhibits a 
marked dependence on specimen size. 

1. In this paper, attention was focused on the 
dissipated energy, often neglected, in weight compensated 
tests at the very end of the test. In practice, tests are 
stopped at a certain value of the displacement, or bending 
angle, and the remaining dissipated energy neglected. 
Here it was shown that this energy cannot be neglected 
for small specimens if the tests are interrupted at a 
reasonably low rotation. 

2. When this energy is taken into account, the final 
values of G v appear to be almost size-independent for 
the experimental results of the authors. This result 
supports considering Gv as a material parameter for 
design purposes and provides further confidence in 
modelling concrete and rocks as cohesive materials. 

3. The energy enclosed in the P - 6  tail justifies and 
provides a physical explanation for the perturbed 
ligament model, previously developed by the authors 
on phenomenological grounds. The work of fracture 
obtained when this energy is neglected turns out to be 
equal to the work of fracture one would obtain if a por- 
tion of the ligament - the perturbed length - were 
destroyed (or perturbed) prior to the start of the test. 
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RESUME 

Mesure de I'~nergie de rupture par les essais de flexion 
trois points: 3 - Qu'en est-il si on retranche le segment  
P - 6 ?  

Les mesures de lYnergie de rupture G F obtenues selon la 
mOthode pr&onisde par la Commission Technique 50, dont 
on dispose, fournissent des valeurs qui se trouvent changer 
avecla taille de l'bprouvette, ce qui met en question la 
possibilitb de considbrer GF comme un paramOtre du 
matOriau. Dans les articles prkckdents, on a examink 
plusieurs sources de dissipation de l'dnergie, et on a conclu 
que, tout en ayant de l'importance, elles ne suffisent pas gz 
expliquer l'effet du mesurd. 

Une solution semble rdsider dans le fait que, en flexion, 

l'essai ne peut ~tre contr6lb jusqu'h rupture complOte de 
l'@rouvette, ll doit dtre stoppb quelque part avant ce 
point, et la quantitk dYnergie qui correspond au segment 
non enregistrd de la courbe P-6  n'est pas prise en compte 
dans fes mesures. Quand cette ~nergie est prise en compte, 
dans les rbsultats expbrimentaux des auteurs, les valeurs, 
finales de GF semblent presque indbpendantes de lu 
Ce rbsultat permet de considbrer Ge comme un paramOtre 
du matkriau ~t des fins de calcul, et constitue un 
encouragement pour la mod~lisation du bkton en tant que 
matbriau cohkrent. 

LYnergie comprise dans le segment P-6  justifie une 
explication physique du concept ph~nomknologique dit 
'Perturbed Ligament Model' que les auteurs ont 
prbckdemment Olabork. 


