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Numerical modelling of concrete cracking based on a 
stochastic approach 
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Concrete is a highly heterogeneous material, because of its composite structure, but also 
because of  the physical phenomena that take place during hardening (initial stresses, drying 
shrinkage, heat exchanges). This heterogeneity can explain some aspects of  the complex 
mechanical behaviour of concrete, particularly the transition from uniform to localized 
cracking and the important size effect. A numerical procedure taking the statistical aspects 
of this heterogeneity into account has been developed and implemented. It permits us to 
reproduce and explain the principal experimental results for the behaviour of concrete 
under tension. 

1. I N T R O D U C T I O N  

The influence of the volume of a test specimen on its 
mechanical behaviour, the so-called size effect, is a 
well-known phenomenon. It is observed on a macro- 
scopic level, but can be explained through an analysis 
of local physical and mechanical phenomena. 

Concrete, a mix of cement and aggregates, is by 
nature a heterogeneous material. Its heterogeneity is 
also attributable to the physical and chemical pheno- 
mena that take place during manufacturing and harden- 
ing, to microcracking resulting from drying and 
shrinkage and to porosity due to the presence of water. 
As regards cracking, this heterogeneity leads to what 
can be considered as random local mechanical 
behaviour. 

In the work reported herein, this phenomenon is 
taken into account in a finite-element model of con- 
crete behaviour by introducing statistical distributions 
of local material characteristics. In a first approach, 
these are limited to concrete tensile strength. 

2. PHYSICAL BASES OF THE MODEL 

Because of the random spatial distribution of the 
heterogeneities and as shown by acoustic emission 
tests, cracking failure of concrete takes place 
discontinuously. 

Local fracture energies are then also random. It 
follows that the overall energy dissipated during the 
cracking of a given concrete volume results from these 
local fracture energies and their spatial distribution. 

3. N U M E R I C A L  M O D E L L I N G :  
ASSUMPTIONS 

Based on the physical reality of concrete cracking, we 
chose to use a very simple finite-element model. The 
principal assumptions of this model are as follows: 

1. Overall damage in concrete results from accumu- 
lated surface energy dissipations leading to failure 
planes (discontinuities). These planes appear once a 
limiting critical local fracture energy is reached. 

2. Concrete under uniaxial tension is modelled as an 
elastic-brittle material. With this assumption, the ran- 
dom space distribution of local fracture energies can be 
modelled by a random space distribution of critical 
tensile strain values (Fig. 1). 

3. Failure planes are modelled by special contact 
finite elements of infinitely small thickness. 

In a volume modelled using triangular elements (Fig. 
2), cracks (or microcracks according to the scale being 
dealt with) can thus propagate in three directions. This 
allows realistic modelling of the cracked state as can be 
seen in Fig. 3. 

Critical limit tensile strain values drawn from the 
statistical distribution function will be randomly distri- 
buted in space on the contact elements. The contact 
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Fig. 1 Concrete modelled as an elastic-brittle material. 
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Fig. 3 Comparison between cracking propagation (a) in 
reality and (b) in modelling. 

elements will "open" when the strain normal to their 
centroid reaches their assigned limit strain values. 

4. C H A R A C T E R I S T I C S  O F  T H E  C O N T A C T  
E L E M E N T  

This element was developed at the L.C.P.C. in 1985 
[1]. It is a 6-node quadrilateral element for plane or 
axisymmetric contact elements and a 16-node hexa- 
hedral or a 12-node pentahedron for 3-D contact 
problems. 

Quadratic and linear shape functions are used to 
interpolate displacements along the tangent and normal 
directions to the crack surface, respectively. The ele- 
ment has an infinitely small thickness in this direction. 
Newton-C6tes numerical integration is used to obtain 
the stiffness matrix of the element. 

The numerical solution of the non-linear contact 
problem is done by an automatic load incremental 
iterative procedure.  

The stress increments {Ao} in a given contact ele- 
ment corresponding to strain increments {Aa} are com- 
puted with the relationship 

{Ao} = [E] {AE} (1) 

where [E] is the material stiffness matrix of a fictitious 
contact material. Stresses are computed on the inte- 
gration points and at the centroid of the element for 
each load increment. 

This element can treat contact as well as coulomb 
friction type problems. In this study of concrete crac- 
king, only the contact feature of the element is used. 

The state of the contact element is given by the 
following rules, with M, an integration point, on, the 
stress vector normal to the surface at point M, and RT, 
the tensile strength of the element. 

If on < RT 

if on > R T 

the element remains closed ensuring 
continuity displacements 
the element separates and 
displacement continuity is no longer 
ensured thus simulating a failure plane 

(2) 

The state of the element is given by the above- 
mentioned rules applied at the centroid of the element. 

From Equation 1 it is obvious that testing with a 
tensile-strength limit value is equivalent to testing with 
limit tensile strain values as was stated before. 

5. S T A T I S T I C A L  A P P R O A C H :  
E X P E R I M E N T A L  D E T E R M I N A T I O N  OF  
T H E  T E N S I L E  S T R E N G T H  D I S T R I B U T I O N  
F U N C T I O N  

As was stated, strength or strain limit values can be 
used in our numerical modelling. Because of experi- 
mental procedures, limiting stress values will be used in 
what follows. 

Having determined the bases of the numerical pro- 
cedure, it is now necessary to determine the statistical 
distribution function of local tensile strength. 

Many direct tension tests were carried out in order to 
analyse the influence of the test specimen volume on 
the distribution function of tensile strength. The test 
specimens were cylinders of different d iameters  (d = 
89, 110 and 160 mm) with a constant length/diameter 
ratio of 2. 100 tests were conducted for each diameter, 
under applied stress rate ~ to obtain an elastic-brittle 
behaviour of the material. The concrete composition 
used is given in Table 1. 

Table 1Concrete composition given for l m 3 

Constituents Cement OPC Sand Gravel Water 
400 (0/5) (5/12) 

Weight (kg) 1110 700 400 190 

The histograms obtained are shown in Fig. 4 as well 
as the mean tensile strength and the standard deviation 
for each test specimen size. From this figure the 
following can be made: 

(i) Mean and standard deviation values are a 
function of the test specimen volume. The greater the 
volume, the smaller these values are. This confirms the 
well-known size effect in heterogeneous materials. 

(ii) Both the normal and the Weibull distribution fit 
the statistical distribution obtained experimentally. 

Choosing the normal distribution in a first approach, 
the functions relating mean tensile strength and 
standard deviation to concrete volume are easily 
obtained from the experimental results using an 
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experimentally. 

obtained 

interpolation method. The following relationships are 
obtained: 

Mean average tensile strength (MPa) RTavg 
= 21.95 V -~ (3) 

Standard deviation (MPa) 
= 11.46 V -~ (4) 

where V is the volume of the test specimen in mm 3. The 
tensile strength distribution function can thus be 
modified according to the volume of each element 
used. 

6. N U M E R I C A L  R E S U L T S  

The object of the numerical tests analysis was to repro- 
duce two important phenomena encountered in the 
direct tension test, namely, the size effect and the 
tocalisation of deformations (resulting from the locali- 
sation of microcracking) corresponding to a sharp stress 
decrease. 

We chose to model a concrete cube under direct 
tension. Different cube sizes were modelled to vary the 
volume stressed. In order  to save computer time, each 
cube was modelled with 2-D elements assuming plane 
stress conditions. The loading, consisting of applied 
displacements, and other boundary conditions is shown 
in Fig. 5. 

A uniform mesh was used with 6-node triangular 
elements, contact elements were used in one direction 
only in order to model failure planes perpendicular to 
the loading direction (Fig. 5). 

400 6-node elements and 380 contact elements (20 for 
each failure plane) were used in each mesh. The 
number of contact elements was considered sufficient 
to represent the normal distribution used. 

The volume of the concrete cube of side D was varied 
by using different sizes of 6-node elements of side d. 
The following dimensions (d, D) were used: (2.5 ram, 5 
cm); (5, 10); (10, 20); (20, 40); (30, 60). In a previous 
study [2] the size of the elements d was held constant 
while varying their number. The size effect was clearly 
evidenced. In this study d is varied with a view to using 
this numerical model in a structure analysis. 

Parameters RTavg and o of the normal distribution 
are computed from Equations 3 and 4. The volume 
considered is that of a square prism of side d and unit 
thickness (it is a plane stress calculation). 

The finite element code CESAR developed at 
L.C.P.C.  was used for the numerical analysis. 

Global o-e  behaviour curves for each concrete 
volume modelled are shown in Fig. 6. Here  o is the 
average stress on the boundary where displacement is 
applied and e is an average strain computed as ~ = v/D 
(v is the displacement imposed). 

Figure 7 shows the o-E curve as obtained for a cube 
with D = 50 mm and the different states of cracking 
corresponding to different points on the curve. 

7. D I S C U S S I O N  OF R E S U L T S  O F  
N U M E R I C A L  A N A L Y S I S  

Based on Figs 6 and 7, the following comments can be 
made: 

1. The finite-element model can reproduce the size 
effect. The peak stress decreases with larger volumes. 
Of course, this is expected given the statistical 
approach adopted. It is, however,  important to know 
that the finite-element model can reproduce the physi- 
cal reality and that its use on more complex structures 
can be considered. 
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Fig. 6 o--~ curves for different values of D. 

2. Figure 7 shows that the post-mark softening 
branch of the o-~ curve corresponds to localized strains 
due to concentrated cracking. 

Computed  peak stresses higher than those normally 
obtained in experiments can be because: 

(i) Boundary conditions in the finite-element normal 
do not wholly represent those existing in reality. The 
strain energy stored in the testing machine and its 
restitution as kinetic energy at the outset of microcrac- 
king is not properly accounted for. This kinetic energy 
accelerates the crack concentration and has thus an 
effect on the value of the peak stress obtained. 

(ii) The incremental load procedure used in the solu- 
tion introduces an artificial stability in the cracking 
process of concrete. The effects of kinetic energy on 
crack propagation are not thus taken into account. 

(iii) Modelling failure planes in one direction only 
also impedes a realistic interaction between cracks pro- 
pagating in parallel directions. This introduces a certain 
stability in the propagat ion of cracks especially on the 
softening post-peak branch. 

8. C O N C L U S I O N S  

A model based on a statistical approach to the physical 
behaviour of concrete has been presented. Its use with 
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Fig. 7 o-~ curve for a cube with D = 50 mm and different 
states of the cracking process: (a) the peak-  uniform damage; 
(b) the post peak - localization of the microcracks; (c) 
localized cracking propagation. 

finite elements to model the behaviour of concrete 
under direct tension allowed us to reproduce the princi- 
pal phenomena  encountered in this type of test: the size 
effect and the relationship between post-peak behav- 
iour and strain concentration. 

This model must be improved by taking into account 
time effects. This could be done, for example,  by consi- 
dering the viscous elastic behaviour of concrete as is 
necessary when describing the non-stable cracking pro- 
cess of concrete. 
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