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I N T E G R A B L E  G E O D E S I C  F L O W S  O F  N O N H O L O N O M I C  

M E T R I C S  

I.A. TAIMANOV 

ABSTRACT. It is shown how to produce new examples of integrable 
Hamiltonian dynamical systems of differential geometric origin. These 
are normal geodesic flows of homogeneous Carnot-Carath~odory met- 
rics. The relation to previous descriptions of such flows via non~ 
Hamiltonian methods and to problems of analytic mechanics is dis- 
cussed. 

1. INTRODUCTION 

In the present article we show how to produce new examples of integrable 
dynamical systems of differential geometric origin. 

This is based on a construction of a canonical Hamiltonian s tructure for 
the geodesic flows of Carnot-Carathdodory metrics [7], [17] via the Pon- 
tryagin maximum principle. This Hamiltonian structure is achieved by in- 
troducing Lagrange multiplier bundles which are the phase spaces of these 
Hami| tonian flows. These bundles are diffeomorphic to cotangent bundles 
but  have another meaning. A transfer to this phase space is given by a 
generalized Legendre transform. 

We analyze the geodesic flow of the left-invariant Carnot-Carathdodory 
metric on the three-dimensional Heisenberg group as a super-integrable 
Hamiltonian system (Theorem 1). Moreover, its super-integrability explains 
the foliation of its phase space into one- and two-dimensional invariant sub- 
manifolds, as was pointed out in [17]. 

The geodesic flows of left-invariant Carnot-Carathdodory metrics on Lie 
groups are reduced to equations on Lie algebras in the same manner as 
the geodesic flows of left-invariant P~emannian metrics are reduced to the 
Euler equations on Lie algebras ([1], Theorem 2). These flows comprise 
many integrable systems. MoreoVer, this reduction to equations on Lie 
algebras gives a Hamiltonian explanation for the description of such flows 
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on three-dimensional Lie groups given in [17] with the use of Euler-Lagrange 
equations (the desire to explain this in terms of integrability was the starting 
point of the present work). 

In comparison with Riemannian geodesic flows, there is another class of 
invariant flows corresponding to left-invariant metrics and right-invariant 
distributions. In Sec. 6 we examine the simplest example of such flow on 
7-/3 and, in particular, show that this flow is integrable (Theorem 3). 

In Sec. 7 we consider a Hamiltonian structure for the equations of motion 
of a heavy rigid body with a fixed point. 

For completeness of explanation in Sec. 8 we discuss another approach to 
the definition "straight lines" in nonholonomic geometry which does not lead 
to Ha.rniltonian systems, but some "straight line" flows have an important 
mechanical meaning (for instance, the Chaplygin top [6]). 

We also discuss some problems concerning dynamics and, in particular, 
integrability of these systems (see Sec. 9, Concluding Remarks). 

2. THE GEODESIC FLOWS OF CARNOT-CAI~ATHI~ODORY METI:LICS 

A. C a r n o t - C a r a t h ~ o d o r y  metr ics .  Let M n be a smooth manifold of 
dimension n. 

A family ~- of k-dimensional subspaces of the tangent spaces to fv/n is 
called a k-dimensional smooth distribution if ~'z is a smooth section of the 
Grassmann bundle on M n. 

In what follows we suppose that distributions are smooth. 
Let Vy be the linear space spanned by vector fields tangent to ~-. Denote 

by A~ the algebra generated by fields from Vy via commutation. A distri- 
bution is called nonholonomic if A7 does not coincide with Vy as a linear 
space. Otherwise a distribution is called holonomic and, by the Frobenius 
theorem, locally looks like a family of spaces tangent to the leaves of a 
foliation. It is easily seen that near a generic point the distribution cor- 
responding to Ay is holonomic. The distribution ~" is called completely 
nonholonomic if the algebra Ay coincides with the whole algebra of vec- 
tor fields on M n. In [13] such distributions are said to satisfy the bracket 
generat/ng hypothesis. 

In the sequel we assume that distributions are completely nonholonomic. 
This assumption is not very strong because otherwise we may restrict geode- 
sic flows to the leaves of the foliation and consider the restricted distribu- 
tions as completely nonholonomic. In fact, we use this to define a Carnot- 
Carath~odory metric as a correct intrinsic metric. 

Thus, we assume now that M ~ is endowed with a completely nonholono- 
mic distribution ~'. We also assume that M n is a complete Riemannian 
manifold with a metric ~O. 
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A piecewise smooth curve in M n is called admissible if it is tangent to 
.~. A Carnot-Carathdodory metric dcc(x ,  y) is defined as follows. Denote 
by ~2x,y the set of admissible curves with ends at the points x and y in M n. 
Then 

d c c ( x , y ) =  inf length(q) (1) 

with the lengths of curves taken with respect to the metric ~iJ. 
By the Chow-Rashevskii theorem, any pair of points in a complete Rie- 

mannian manifold endowed with a completely nonholonomic distribution is 
connected by an admissible curve, hence equality (1) correctly defines an 
inner metric on M n. 

Carnot-Carath~odory metrics are the simplest examples of nonholonomic 
metrics which are defined by (1) for different choices of ~2x,~ corresponding 
to non-integrable constraints. For Carnot-Carath~odory metrics these con- 
straints are linear in velocities. 

B.  T h e  geodes ic  f low of  a C a r n o t - C a r a t h ~ o d o r y  me t r i c .  By deft- 
nition, the lengths of admissible curves depend only on the restrictions of 
the metric ~ij on ~x. Denote these restricted forms by Qx. This family of 
bilinear forms on ~ enables us to define the canonical mapping 

g(x) :  T * M  n ---* Y:x C T M  ~ (2) 

taking for 9(x)~ E 5cx a vector determined uniquely by the condition 

Qx(Y,g(x)~) = (Y,~) for every Y e 9r~. (3) 

The symmetric tensor 9 ij is called a Carnot-Carathdodory metric tensor. 
It generalizes a Riemannian metric tensor into which it degenerates when 
~ = T~ M ,~. 

A curve ~ in T * M  n is called a cotangent lift of a curve 7 in M n if 

= (4 )  
dt ' 

where ~(t) = (7(t), ~(t)), ~(t) e T~(~)M '~. 
By (3), in terms of cotangent lifts the length of an admissible curve 7(t) 

in M n is expressed by 

L(7 ) = f X/(8(7(t))~(t), ~(t)) dr, (5) 

and the energy of 7 equals 

= f (gc. Ctll Ctl, Ctl et. (6) 
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An admissible curve is called a geodesic of  the Camot-Carathdodory  
metric gO if locally it is an energy-minimizing curve. 

The geodesics of the Carnot-Carath6odory metric gO are described by 
the Euler-Lagrange equations for a Lagrange function 

n-k  
1 .  .p. 

L(x,:~) = ~gpqx x q + ~'-~#,,(2,w(~')), (7) 

where wO),...  ,w (n-k) is a basis for 9v~. Here 5r~ is the annihilator of ~-~, 
i.e., the subset of T * M  n formed by covectors ~ such that ((, v) = 0 for every 
v Y%. 

These equations are written as follows: 

d OL OL 
dt O2 i Ox i 

- O w ( " )  "~ "1 ~ c P  
l ox  a - 

(8) 

Ow(") i 
2 0 x  i c, 

OL 
ou-= = = o. (9) 

In fact, although the Riemann metric tensor ~iJ enters these equations, 
the geodesic flow is determined by the restriction of this tensor on the 
distribution, the Carnot-Carath4odory metric tensor gO, only. 

3. THE PONTRYAGIN MAXIMUM PRINCIPLE AND A HAMILTONIAN 
STRUCTURE FOR THE GEODESIC FLOWS OF A 

CARNOT-CARATHEODORY METRIC. A GENERALIZED LEGENDRE 
TRANSFORM 

A. The  Pon t ryag in  m a x i m u m  principle and  the  geodesics of  Car -  
n o t - C a r a t h ~ o d o r y  metr ics .  In [13] Strichartz showed that the geodesic 
flow of a Caxnot-Carath~odory metric-was described by equations derived 
from the Poutryagin maximum principle. 

We expiain his idea in brief. First, roughly quote the Pontryagin maxi- 
mum principle in a weak form sufficient for our study referring to [5], The- 
orem 5.1, for an absolutely rigorous statement. 
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T h e  P o n t r y a g i n  m a x i m u m  pr inc ip le .  Consider the minimum prob- 
lem for the functional 

t2 

I[x(t), u(t)] = / :~ u) dt (lO) 
t l  

in the class of admissible functions (x(t), u(t)) such that 

~k _~ fk(x  ' u) (11) 

and some constraints x E A, u �9 U. 
Introduce the functions 

ITt(x, u, ~) = )~of~ u) + Al l  I (x, u) + . . .  + )~nfn(x, u) (12) 

and 

M(x,  ~) = i n f / t ( x ,  u, ~), 
uEU 

where ~ = (~o, ~1, . . . ,  ~ ) .  

(13) 

Let (x(t), u(t) ) be a solution to this minimum problem. Then there exists 
an absolutely continuous vector function ~( t ) such that 

(i) ~o = const, Ao >__ O, and 

d~ 0~(~(t), u(t), s 
d-'T = O x  i , (14) 

(ii) H(x(t), u(t), ~(t)) = M(x(t),  ~)(t) for every t �9 [tl, t2]; 
(iii) M(x(t), ~(t)) = const. 

Now, it suffices only to note that  in the case of geodesic flows of Carnot-  
Caxathdodory metrics we have the minimum problem on the set of the 
cotangent lifts of admissible curves on M n, where we consider the variables 
~i as the control functions ui. In this case 

I i" fo(x, u) = ~g 3uiuj, (15) 

and 

f(z ,  u) = g ~ ,  (16) 

~o iJu~u j (17) 
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Thus, we have 

'__.Li , i j x .x .  for Ao ~ 0 �9 2Ao :/ "'~"3 

M(x,A) = 0 for A0 = 0 and g i J A j -  0 (18) 

- o o  otherwise. 

B.  A H a m i l t o n i a n  s t r u c t u r e  for geodes ic  flows of  C a r n o t - C a r a -  
t h d o d o r y  me t r i c s .  Consider the bundle AM n --* M'* diffeomorphic to 
the cotangent bundle T*M'* via the diffeomorphism (x,p) +-* (x, A) but 
having another sense. We call it the Lagrange multiplier bundle on M'*. 
As well as the cotangent bundle, this bundle is endowed with the na tura l  
symplectic structure generated by the form 

~2 = E dA, A dx'. (19) 
i=1 

Consider the Hamiltonian flow with a Hamiltonian function 

1 i '  
H(x, A) = - ~ g  :A~Aj (20) 

on the symplectic manifold. 

Def in i t ion .  A geodesic of a Caraot-Carath~odory metric is called nor- 
mM if A0 ~ 0. 

Otherwise, if g~JAj = 0, then M(x, A) = 0, and the Pontryagin maximum 
principle gives nothing. 

T h e o r e m  HS.  (On  a H a m i l t o n i a n  s t r u c t u r e  for n o r m a l  g e o d e s i c  
flow.) The projections of trajectories of the Hamiltonian flow on AM'* 
with the Hamiltonian function (20) are exactly the naturally-parametrized 
normal geodesics of the Carnot-Carathdodory metric giJ. Moreover, [&]2 = 
-2H(x, A). 

Proof of Theorem HS. From (18) and from the homogeneity of ~r(x, u, A), 
we infer that  after change of the parameter on an extremal to a multiple 
one, if necessary, we obtain an extremal ~ with A0 = 1. 

By (13), we derive 
o[t(x, 

-~ O, 

which is equivalent to 

It follows from (21) that 

g' uj = (21) 

giJuiuj = g~JA~Aj. (22) 
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Recall that,  by (4), we have 

gilu~ = ~,~, (23) 

and together with (3) this implies 

From (22) and from statement (iii) of the Pontryagin maximum principle 
it follows that  the extremal ~ is naturally-parametrized. 

According to (4) and (21), we have that  

= OH(r, A) (25) 
OA~ ' 

and we can regard (14) as 

A~= cOH(x,A) (26) 

It is easily seen that  equations (25)-(26) form a system of Hamilton 
equations on AM n for the Hamiltonian function (20). 

Thus we prove that  the normal geodesics are the projections of trajecto- 
ries of this Hamiltonian flow. 

For the converse, we refer to [8] where a comprehensive examination of 
analytical properties of the energy functional for a Carnot-Carath~odory 
metric is given. 

This completes the proof of the theorem. [] 
The variables A1,. . . ,  An have no physical meaning in comparison with 

the momenta u l , . . . ,  un. The correspondence between them and velocities 
is given by (25) and is one-to-one in the case where the form g~J is non- 
degenerate, i.e., for Riemarmian metrics only. In this case the existence 
of a Hamiltonian formalism for the geodesic flows of Riemannian metrics 
follows from both the Legendre transform and the Pontryagin maximum 
principle. Thus the transfer to the new variables (x, A) is to be regarded as 
a generalized Legendre transform. 

Theorem HS is contained implicitly in [13]. However, this fact did not at- 
tract the attention of specialists on integrable systems, because the problem 
of regularity of geodesics and tha t  of exponential maps were studied in [8], 
[16]. From the analytical point of view this also coincides with the introduc- 
tion of a Hamiltonian in the %rakonomic mechanics" [2] where the momenta 
are introduced by the implicit theorem procedure and the Hamiltonian sys- 
tem is also regarded as a system on a cotangent bundle. However, the dif- 
ference between T* M '~ and AM'* is essential for applications to mechanics 
and physics because, at least, the variables A1, . . . ,  An are not observable. 

Although it has been assumed for a long time that  all geodesics are nor- 
real, recently Montgomery has shown that  abnormal geodesics exist [10]. 
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The geodesics found by him do not admit end-point 9V-tangent perturba- 
tions' and, thus, are solutions to any variational problem on the space of 
admissible curves. 

But if the space 1}~ + [))y, ~7] coincides with the whole algebra of vector 
fields on M n, then every geodesic is normal [13]. 

In the sequel, speaking about geodesic flows, we shall suppose that they 
are normal. 

4. INTEGRABILITY OF THE GEODESIC FLOW OF THE LEFT-INVARIANT 
CARNOT-CARATHI~ODORY METRIC ON THE THREE-DIMENSIONAL 

HEISENBERG GROUP 

We mean by a left-invariant Carnot--Carath~odory metric a left-invariant 
metric restricted to a left-invariant distribution. It is known that such 
metric on the three-dimensional Heisenberg group is unique up to isomor- 
phism [17]. 

This flow is described in [4], [8], [17], [19], in some of them with certain 
generalizations. However, it is nowhere regarded as a completely integrable 
Hamiltonian system. 

The three-dimensional Heisenberg group 7-I 3 is the group of matrices (l Z) 
o i y (27)  
0 0 1 

with respect to multiplication, where x , y ,  z E IR. Its Lie algebra s is 
spanned by the following elements: 

e l  = 

(010) (000)(001) 
0 0 0 , e2=  0 0 1 , e3= 0 0 0 . (28) 
0 0 0 0 0 0 0 0 0 

We denote by s the linear subspace spanned by et and e2. 
The group 7-I 3 acts on itself by the left and right translations: 

L 9 : 7-l 3 ---* 7-{ 3 : L g (h )  = gh,  

Rg : 7"t 3 -.* 7"l 3 : R g ( h )  = hg. 

The left-invariant distribution generated by s consists of the 2-planes ~-= = 
L g , s  

Since the foUowing commutation relations hold: 

[el, e2] = e3, [el, e3] = [e~, e3] = 0, 

this distribution is completely nonholonomic. 
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We consider the left-invariant metric on 7-/3 which at the unit of the group 
takes the form 

(el, ej) -- 6~j. (29) 

Identify 7-/3 with R 3 by the diffeomorphism which assigns the point in 
R 3 with the coordinates (x, y, z) to the matrix (27). Thus we identify the 
tangent space at every point of ?_13 with the vector space generated by 
matrices (28). In this case the left translations act on T?-/3 as follows: 

Lg.(el)  = el, Lg.(e2) -- e2 + xe3, Lg.(e3) -- e3, (30) 

where g is the element of 7-/3 given by the matrix (27). It follows from (30) 
that  in these coordinates the mapping Lg. : Te?'l s --+ Tg?-I 3 is writ ten as 
follows: " 100) 

Lg, = 0 1 0 , 
0 x 1 

where e is the unit of 7-I 3. Thus we have 

and since 

we derive 

[giJ(x, y, z)] = (La.)**. [g'J(0, 0, 0)}. (Lg.)*, 

I 
I 0 O) 

giJ(O,O,O)= 0 1 0 
0 0 0  

(31) 

(32) 

(33) 

1 0 0 / 
[g iJ(x ,y ,z) ]= 0 1 x . (34) 

O x x  2 

The left-invaxiant Riemannian metric on 7-I 3 in these coordinates takes 
the form 

( 1  0 0 ) 
[[l i j (x ,y ,z)]= 0 ( l + x  2) - x  . (35) 

0 - x  1 

Now, it follows from Theorem HS that the geodesic flow of the left- 
invariant Carnot-Carath~odory metric corresponding to the Riemannian 
metric (35) and the distribution Lg.~.o is Hamiltonian on AT-/3 with the 
following Hamiltonian function: 

1 2 
H(q, ~) = ~(~1 + ~] + x 2 ~  + 2x~2~3), (36) 
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where q = (x, y, z). 
Hamilton equations for (36) have the simple form 

OH OH 

OH OH 
;~ = = xA2 + z2A3, AI . . . . .  xA 2 - A2A3, (37) 

OA3 Ox 

~2 = ___OH = O, ~3 = ___OH = 0, 
~j Oz 

and we immediately infer from (37) that this Harniltoniaa system is com- 
pletely integrable, because it has three first integTals 

Ii=H, 12=A2, 13=A3, (38) 

which are in involution and functionally independent almost even-where. 
In particular, these integrals are functionally independent in the domain 
H # 0 .  

Moreover, by (37), 

A3 = const, ~ = xy (39) 

along trajectories of the flow; we can restrict this flow to the level set {),3 = 
C -- const} and project this restriction of the flow to the plane (x, y). We 
denote this system by :Pc and note that it is defined on the 4-dimensional 
symplectic manifold J%4c diffeomorphic to the cotangent bundle of the 2- 
plane with the coordinates (x, y) but with another Poisson structure. 

Introduce the new variables on A4c, 

?2 : A1, V : A 2 JC XA3- (40) 

Then by (19) and (40) the Poisson structure on A4c induced from AT-/3 is 
written as 

{x, ~} = {y, v} = i,  {~, v} = - c  (= -) ,3),  (4i)  

{x, ~} = {y, ~} = {x, y} = o, 

in the coordinates (x, y, u, v). The flow :Pc is also a Hamiltonian system 
with the following Hamiltonian function: 

U2 + ~}2 
H ( ~ , y , ~ , ~ )  = 2 (42) 

It is easily seen that the flow (41)-(42) describes nothing else but the 
motion of a charged particle on the Euclidean plane (x, y) in the constant 
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magnetic field F = -A3 dx A dy [11]. This system has three first integrals, 
which are functionally independent almost everywhere 

f l  = H ,  i s  = - v,  s = + (43)  

and thus we conclude that  these systems are super-integrable, i.e., have 
more first integrals than dimJ~ic/2.  This is also true for the main flow. 

Hence, we conclude 

T h e o r e m  1. (1) The geodesic flow o.f the le~-invariant Carnot-Carathd- 
odory metric on Tl 3, corresponding to the left-invariant Riemannian metric 
(35) and the left-invariant distribution Lg,f~o, is a Hamiltonian system on 
AT~ 3, integrable in the Liouville sense via the first integrals (38), which are 
in involution and functionally independent almost everywhere. 

Moreover, since this flow possesses the fourth first integral I4 = A3Y + A1 
lCunctionally independent on (38), it is super-integrable, and the subset {A3 ~= 
0} of its phase space is foliated into the 2-dimensional invariant LiouviIle 
tori S i x R. 

(2) Let us restrict this geodesic flow to the level set ~ a  -- C} and project 
this restriction of the flow to the plane (x, y). The flow 7~r constructed by 
this procedure is equivalent to the Hamiltonian system describing the motion 
o/ a charged particle on the Euclidean 2-plane (x, y) in the constant magnetic 
field F ~ -A3dx A dy. This flow is super-integrable, and its phase space A4c 
is foliated into closed trajectories for )~3 ~: O. 

5. LEFT-INVARIANT CAI:tNOT-CARATHI~ODORY METRICS ON LIE GROUPS 
AND THEIR GEODESIC FLOWS 

Let g be a Lie group, let G be its Lie algebra, and let Go be a subspace 
of G generating G. Take a scalar product ,.7" in G and decompose G into a 
direct sum of Go and its orthogonal complement: 

G = Go ~9 G~. 

We take another bilinear form 3"0 on G uniquely defined by the following 
conditions: 

Jo(x,y) --- 0 for every x E G~,y E G, 

Jo(x,y) -~ J ( x , y )  for every x ,y  e Go. 

Now, take the left-invariant distribution Lg.Go on g and the left-invariant 
Riemannian metric generated by ,:7. To this pair there is a uniquely assigned 
left-invariant Carnot-Carath~odory metric. 

We do not consider the details, but only mention that  for the same ar- 
guments as for the geodesic flow of a left-invariant Riemannia~ metric on 
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a Lie group, the geodesic flow of this Carnot-Caxath~odory metric is re- 
duced to equations on its Lie co-algebra, the Euler equations, cfi [1], and 
the following theorem holds. 

T h e o r e m  2. The geodesic flow of a left-invariant Carnot-Carathdodory 
metric is reduced to the following equations on G*: 

1~I -~ adaM, (44) 

where w = Lg-l .~ E G and M = Jow. Here 3"o is regarded as an operator 
3"o : G -* G* acting as J0(x, y) = (J0x, y). 

I f  there exists an invariant nondegenerate bilinear form on G, we can 
identify G and G*, and equations (44) take the form 

.~ /=  [w, M], M = J o w .  (45) 

Since these flows possess commutation representations (45), they give a 
lot of new examples of integrable Hamiltonian systems, and the well-known 
methods of integrating Euler equations on Lie algebras are immediately 
generalized for them. 

Consider the simplest example. Let ~ = SO(3), and let el,e2,e3 be 
generators of this group satisfying the commutation relations 

assume that 3" = diag(1, 1, 1), and let Go be spanned by el and e2. In this 
case Eqs. (45) have two first integrals ( Jx ,  x) and (Jox, x) and, thus, are 
completely integrable. 

We remark that passing from the Lagrange equations (8)-(9) to the 
Hamiltonian equations (44) simplifies the study of left-invariant Carnot- 
Carath~odory geodesic flows and explains the integrable behavior of such 
flows on three-dimensional Lie algebras given in [17]. 

5. THE GEODESIC FLOW OF THE CARNOT-CARATHEODORY METRIC ON 
7-~ 3 CORRESPONDING TO A LEFT-INVAPJANT METRIC AND A 

I:tIGHT-INVARIANT DISTRIBUTION 

Since a Carnot-Carath4dory metric is defined by a pair of objects (a 
metric and a distribution), there are other classes of invariant Carnot- 
Carath4dory metrics corresponding to metrics and distributions invariant 
with respect to different actions of a Lie group ~. 

Examine, for example, the geodesic flow of the Carnot-Carath4odory 
metric on 7-/3 which corresponds to the left-invariant metric (35) and the 
right-invariant distribution Rg.s and show that it is integrable in the Li- 
ouviUe sense. 
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By (3) and (35) we have 

gll  = (1 + x2)V, g12 = g21 = xyV ,  

g22 = (1 4- y2)V, g13 = g31 = y(1 4- x2)V, (46) 

1 g23 ___ g32 = xy2V,  g33 = y2(1 4- x2)V,  V = 
14-x2 4-y 2" 

This system has two obvious first integrals: /1 = H a n d / 2  = A3. As in 
Sec. 4, restrict this flow to the level set {)~3 = C -- const} and successively 
project this restriction on the plane (x, y). Thus we obtain a Hamiltonian 
system 7r on the 4-dimensional symplectic manifold A,/v. Introduce the 
new variables 

u = )~1 4- Y~3, v = ")~2- 

Then the Poisson structure on .h ie  is given by 

{x,  ~}  = {y, v}  = 1, {~, v} = c ( =  ~3), (47) 

{x, ~} = {y, ~}  = {~, y}  = o. 

The Hamiltonian functions are written as 

1 
g ( x ,  y,  u, v) = 2(1 4- x 2 4- y2) ((1 4- x2)u 2 4- 2 x y u v  4- (1 4- y2)v2). (48) 

By the same reasoning as in the proof of Theorem 2, we conclude that  
this flow is equivalent to a Hamiltonian system describing the motion of a 
charged particle on the 2-plane with the Riemannian metric 

(1 4- y2) dx  2 _ 2 x y d x d y  4- (1 4- x 2) dy 2 (49) 

in the constant magnetic field F = Aa dx A dy. 
In the polar coordinates (r ,~),  where x = rcos~o and y -- rsin~o, the 

metric (49) is written as 

dr 2 4- (r 2 4- r 4) d~o 2, (50) 

and we infer tha t  the flow TCc is Hamiltonian, 

df = ( f ,  H}, 
dt 

with the Hamiltonian function 

l ( p  2 P~ ) (51) 
H(r ,  ~ , p r , p v )  "-- ~ r 4- r 2 4- r a , 

and the following Poisson structure on 2r 

{r, pr} = {V,P~} = 1, {p~,p~} = C, (52) 
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{r,p~} = {~o,p~} = { r ,~ )  = 0. 

This flow is defined on the four-dimensional symplectic manifold A4c and 
has two functionally independent first integrals/~1 = H and/~2 = P~,+Cr2/2. 
It is clear that  these functions are also first integrals of the main geodesic 
flow. In the initial coordinates the integral I2 takes the form 

I2 = C x2 + y2 + zv  - yu. 

We conclude 

T h e o r e m  3. (1) The geodesic flow, the Carnot-Carathgodory metric 
corresponding to the left-invariant Riemannian metric (35), and the right- 
invariant distribution Rg.f.o constitute a Hamiltonian system on AT-I a with 
the following Hamiltonian function: 

1 
H(q, h) = 9.(1 + x~ + U s) ((1 + x~)h~ + (1 + y2)h~ + (53) 

+y2(1 + x2)h~ + 2xyhlh2 + 2y(1 + x2)hlh3 + 2xy2h2h3), 

where q = (x, y, z); 
(2) this flow possesses the first integrals 

x 2 _ y 2  
I I = H ,  I2=ha ,  1 3 = h a - - + x h 2 - y h l  

2 

which are involutive and functionally independent almost everywhere. Hence, 
this flow is integrable in the LiouviUe sense; 

(3) restrict this flow to the level set (h3 = const} and project the re- 
striction of the flow to the plane (x, y). The flow ~ c  constructed by this 
procedure is equivalent to the Hamiltonian system describing the motion of 
a charged particle on the 2-plane with the Riemannian metric (49) in the 
constant magnetic field h3 dx A dy. 

7. THE EQUATIONS FOR THE MOTION OF A HEAVY RIGID BODY WITH A 
FIXED POINT 

First, recall that  the Lie algebra e(3) of the group of motions of the three- 
dimensional Euclidean space E(3) is spanned by the elements e14, e2, e3, 
f l ,  f2, and f~ meeting the following commutation relations: 

= f j ]  = = 0 .  ( 5 a )  

Denote by mi and 7j the adjoint basis in the co-algebra e*(3). The rela- 
tions (54) determine the Lie-Poisson structure on the space of functions on 
e(3) as follows: 

{ m i , m j } = ~ i j k m k ,  {rn4,Tj}=eijkTk,  { 7 i , 7 j } = 0 .  (55) 
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As in the case of the geodesic flows of left-invariant metrics on Lie groups, 
any Lagrangian system corresponding to a left-invariant metric and a "left- 
invariant" potential field on the group E(3) is reduced to a Hamiltonian 
system 

df -_ { f , H }  
dt 

on the algebra e(3) with a Hamiltonian 

1 i �9 1 i �9 1 i �9 H(m, 'y)  = ~a 3rn~rnj + 753(rn~3,j + mJ'~) + -~c 37i~/j + V(m,  "y), (56) 

where the matrices a i j ,  b ij, and c ij are symmetric and U is a linear function 
in m and 7. Here we call a potential field U(q) "left-invariant" if its gradient 
is left-invariant. Thus, denoting the local coordinates corresponding to ei 
and fj  by x i and y /we  conclude that 

3 fou(o) au(o) 

and a "left-invariant" potential field is determined uniquely by its gradient 
at the unit of the group. 

The Kirchhoff equations for the free motion of a rigid body in a liquid 
correspond to V --- 0 [11]. In this case the configuration space is the whole 
group E(3). 

By Theorem HS, in the Hamiltonian formalism constraints enter Ha.mil- 
tonian equations via a Hamiltonian function. Moreover, Theorem HS also 
holds for holonomic constraints. 

Hence, starting with the problem of the free motion of a heavy body 
in a potential field with the configuration space E(3) we pose holonomic 
constraints by fixing a point of the body. In this case the configuration 
space is homeomorphic to SO(3), but the Euler equations (see Sec. 5) are 
still written for the algebra e(3) and correspond to the Hamiltonian function 

( Irn, m) 
H(m,.y) = + (57) 

Thus, we obtain the well-known'Hamiltonian formalism for this problem. 
First, it was derived in physical terms. Here I is the inertia tensor, m is 

the angular momentum, -f is the vector in the direction of gravity, and r is 
the center of mass. All coordinates are taken with respect to the orthogonal 
frame attached to the body with the fixed point as the center of coordinates. 
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8. A N O T H E R DEFINITION OF "STRAIGHT LINES" AND PROBLEMS OF 

MECHANICS 

There is another way to define "straight lines" in nonholonomic geometry. 
We discuss only the case of constraints linear in velocities. 

Roughly speaking, geodesics of Carnot-Carath~odory metric are solu- 
tions of the following variational problem. Let L(x, ~) = ~ i j :~Jd t  be an 
energy hmctional on a suitable space of curves (periodic or with fixed end- 
points) in a manifold M n and let ~ j  be a Riemannian metric tensor. A 
geodesic v(t) of the Caxnot-Caxath~odory metric corresponding to ~ij and 
a distribution 5 r are local extremals of this functional with respect to the 
set of variations of the form ~/(t, u), where ~/(t, 0) = ~/(t) and 

e (58) 

Of course, all variations belong to the space of curves under consideration. 
But condition (58) can be replaced by another one: 

o (t, o) e (59) 

In this case the equations for "straight lines" are written as 

d OL OL (60) 
o~ 

(61) 

are the constraints, and the coefficients #a are derived from the condition 
that relations (61) hold. One can easily see the difference of these equations 
from Eqs. (8)-(9). 

Notice also that these "straight lines" are determined by the Lagrange 
function defined on the whole tangent space T M  '~ but not only on 9 r. 

The most famous example of such system is the Chaplygin top, the 
dynamically-asymmetric ball rolling on the horizontal plane and with the 
center of mass coinciding with its geometric center [6]. 

This system was integrated by Chaplygin without the use of the Liou- 
ville integrability theorem. Its algebraic origin was clarified by Veselov and 
Veselova who regarded it as a flow of "~traight lines" on E(3), the Lie group 
of motions of the three-dimensional Euclidean space, endowed with a left- 
invariant metric and a right-invariant nonlmlonomic distribution [18]. They 
also generalized this system to arbitrary Lie groups and succeeded in gen- 
eralizing the Chaplygin integration method for three-dimensional groups. 

where 
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9~ CONCLUDING REMARKS 

(1) The procedure of constructing a Hamiltonian structure is generalized 
for nonholonomic systems with Lagrange functions of the form 

= + 

in the usual manner. We already mentioned this in Sec. 7. 
(2) We have not found essentially new examples of manifolds which ad- 

mit the integrable geodesic flow of a Carnot-Carathdodory metric and have 
no Riemannian metrics with integrable geodesic flows. Nevertheless, we 
would like to mention that all methods of finding topological obstructions 
to integrability of the geodesic flows of Riemannian metrics [12], [14] (see 
also [15]) fail in the case of Carnot-Carathdodory metrics. The reason for 
this is clear. These methods use the compactness of the level set of a Hamil- 
tonian which cannot be compact for Carnot-Carathdodory metrics. Thus 
one can expect that the class of manifolds admitting integrable Carnot- 
Carathdodory geodesic flows is wider than the class of manifolds admitting 
integrable Riemannian geodesic flows. 

The lack of compactness of the level sets of a Hamiltonian also deters us 
from defining the entropy characteristics of such flows in the usual manner. 

However, in Sec. 5 we give an example of an integrable flow on SO(3) with 
compact level sets of the first integral ( Jx ,  x) which is not a Hamiltonian 
function. This situation is typical for the geodesic flows of left-invariant 
metrics on compact Lie groups but it is not generic, as one can see from the 
example given in Sec. 6. 

(3) Consider the simplest example 9 f degeneration of integrable Rieman- 
nian geodesic flows into an integrable Carnot-Carathdodory geodesic flow. 

Take the Lie group SO(3) and denote by el,e2, and e3 the generators of 
its Lie algebra so(3) with the following commutation relations: 

[e~, e#] = e~#kek. 

Denote by ~0 the subspace of so(3) spanned by el and e2. Consider the 
family of left-invariant metrics generated by the metrics on so(3) of the form 

,0 0) 
G D  = 0 1 0 . 

O O D 

The geodesic flows of these metrics are integrable. Tending D to infinity, 
D --~ c~, we arrive at the geodesic flow of the Camot-Caratheodory metric 
on SO(3) corresponding to the Riemannian metric G1 and the left-invariant 
distribution Lg.s [7], [19]. It is shown in Sec. 5 that this flow is integrable. 
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