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Abstract We consider  a chemical  react ion network model  
in which some of the reactions are stochastic and depend  on 
past  history. In this chemical  reac t ion  network,  we found 
the emergence  of  autocatalyt ic  sets (ACS)  and complex 
dynamics in which ACS are repea ted ly  created and 
destroyed.  

Key words Self-organizing systems �9 Self-repairing sys- 
tems �9 Self-replicating systems 

memory  or history of the system. The system is an abstract  
model  of  a chemical  react ion network.  We descr ibe the 
model  and the typical dynamic behavior  of the system, in 
par t icular  the spontaneous  creat ion and destruct ion of self- 
reinforcing react ion structures. Finally, we briefly discuss 
similarit ies and differences with other  mode l  systems, 
and the significance for model ing biochemical  and living 
systems. 

1 Introduction 

A living system of  any scale has many  states so that it can 
reform itself in o rde r  to fit its environment .  If a system has 
only a few states, it would have only a l imited number  of 
choices. Such a system would not  be able to keep  up with 
dynamic changes in the environment ,  and would not have a 
great  potent ia l  to develop or  evolve. Having many states 
and the potent ia l  to form a variety of  dynamic structures is 
essential  for living systems. We can see this at any scale of 
living systems, e.g., immune systems, the genetic code, and 
species in ecological  systems. In this paper  we present  a 
model  system which exhibits the abil i ty to form and reform 
a variety of dynamic structures,  with a complex dependence  
on the accumulated effects of past  dynamics,  and the 
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2 Model 

We consider  an abstract  model  of chemical  reactions,  a type 
of "abst ract  chemistry."  The model  assumes that  substances 
can interact  with each o ther  according to reac t ion  rules 
which change the amounts  of the substance, and that  reac- 
tion tendencies  change depending on the react ion history. 
Reac t ion  rules are assumed to be of the form x --) y, which 
means that  the amount  of substance x decreases  and the 
amount  of substance y increases. React ions  occur at rates 
which depend  on the amount  of the first substance x and the 
strength of the react ion x --r y. The strength of each react ion 
is increased in p ropor t ion  to how often the react ion has 
occurred recently.  

Specifically, we considered a form of this mode l  which 
is imp lemen ted  according to the following procedure .  The 
state of the system is represen ted  by the amounts  Ix] of  the 
chemical  substances,  and the strengths wy:x of the react ion 
rules. (For  general i ty,  we use "amount"  ra ther  than "con- 
cent ra t ion"  or  "number  of molecules.")  React ions  are ex- 
ecuted one at a time. The first substance and the react ion 
rule are each selected stochastically. The probabi l i ty  of  se- 
lecting substance x is p ropor t iona l  to the relat ive amount  of 
the substance [x], and the probabi l i ty  of selecting the reac- 
tion x ~ y is p ropor t iona l  to the relat ive strength Wy:x of  the 
reaction. When  the react ion x ~ y occurs, the amount  of 
substance x changes from Ix] to Ix] - 1 and the amount  
of substance y increases from [y] to [y] + 1. The strength of  
the react ion x ~ y is w = (q*R + 1), where q is the number  
of times the react ion has occurred in the last M react ions of 



x, and R is the strength of the reinforcement .  If react ions  
have not  been selected recently,  or  there  is no reinforce-  
ment,  then react ions  have a minimal  strength of w = 1. 

In o rder  to implement  the react ion dynamics,  we used 
abstract  rewri t ing system on multisets (ARMS) .  1 A mult iset  
is a type of set which allows duplicat ion of the same ele- 
ment.  A react ion x ~ y rewrites the mult iset  {x,x,x] to 
{x,x,y}. 

The stochastic model  we use is based on a wel l -known 
model  in probabi l is t ic  theory,  Polya 's  urn. 2 Selecting a node  
is equivalent  to picking a ball  out of an urn, where a node  
name is pa in ted  on each ball. In the urn, there are  N - 1 
types of ball, excepting itself. Before  picking a ball  out  of 
the  urn, R balls are  added  to the urn for each of the M most  
recent ly selected nodes,  in addi t ion to one extra ( "pe rma-  
nent  memory" )  ball  for each node in the network.  Initially, 
the urn will contain  just one ball for each node,  and the 
probabi l i ty  of choosing any node will be the same. The  
model  react ion system can be thought of as a network.  Each  
substance corresponds  to a node of the network,  and each 
di rec ted  connect ion  be tween one node and another  corre- 
sponds to a cata lyzed react ion rule. However ,  since each 
connect ion has a probabi l i ty  which depends  on recent  activ- 
ity, it is different  from other  models  such as models  based  
on a r andom graph.  3 We can think that  each node  has a 
"memory  store" where  it memor izes  the names of the M 
most  recent  outgoing links, and then uses this memory  to 
de te rmine  the probabi l i ty  of  selecting an outgoing link. 
A n o t h e r  descr ipt ion is as follows. There  are two types of 
link. Each node  has (N - 1) + M outgoing links, (N - 1) 
pe rmanen t  links, and M dynamic links. There  is one pe rma-  
nent  link to every one of the other  (N - 1) nodes.  Othe r  
dynamic links are  created and dest royed dynamically.  Once  
a link is act iviated to a node,  then an addit ional  repl ica link 
is added,  and the oldest  dynamic  links are destroyed.  One  
of  the (N - 1) + M links is chosen randomly  with a bias 
weight of R for dynamic links compared  with pe rmanen t  
links. 
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3 Dynamic behavior: emergence of structures 

This model  exhibits an interplay be tween  popula t ion  dy- 
namics and a react ion rule dynamics.  This in terplay results 
in a variety of complex behaviors.  A unique feature  of the 
model  is the mechanism for re inforcement  of the react ion 
strengths. If this re inforcement  is s t rong enough, it creates a 
tendency for the accumulat ion of substances in closed reac- 
tion paths,  resulting in the emergence  of structures. Here ,  
we present  some examples  to descr ibe  typical behavior.  

F igure  1 i l lustrates a sample run for a par t icular  set of 
parameters .  In this example,  there  are  15 types of substance 
of the same amount  in the initial state: re inforcement  pa- 
ramete r  R = 10. (Other  pa r ame te r  values are described in 
the figure caption.) The  dynamic behavior  is complex,  with 
the amounts  of substances varying dramatical ly.  

Figure  2 shows an example  of typical  behavior  when the 
value of  the re inforcement  is increased.  Even though the 
amounts  of substances and the strengths of the react ion 
rules were  all equal  initially, after some time the reactions 
are domina ted  by just a few substances,  and the set of 
react ions among this l imited number  of substances is 
s trongly self-reinforcing. This is an example  of  the sponta-  
neous format ion of  dynamic structures. Eventual ly,  the 
structures collapse, and are  la ter  replaced by other  
structures. 

The re inforcement  pa rame te r  R is an impor tant  param-  
eter  governing the tendency for the emergence  of self- 
reinforcing structures. The memory  storage capacity M also 
plays a key role: when the capaci ty  is small, structures do 
not  emerge,  and when it is very large, structures are more  
stable. 

As  explained above,  the re inforcement  of react ion 
strengths creates a tendency for an increase in the amounts  
of substances in closed react ion paths  and the decrease of 
amounts  elsewhere.  The  amount  of a substance will tend to 
go to zero unless there  is a feedback  react ion path. For  
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Fig. 1. Changing amounts of substances with time (1-1000steps). This 
is a typical run for 15 substances with a reinforcement parameter R = 
10 and a memory parameter M = 400. The amounts of each substance 

are equal in the initial state (amount = 10). Different line patterns 
correspond to different substances 
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Fig. 2. Changing amounts of substances with time, showing the sponta- 
neous emergence and collapse of an autocatalytic structure. This is a 
typical run with a reinforcement parameter R = 300. Other parameters 
and conditions are the same as in Fig. 1. Inset a Topology of the 

network after 300 time-steps, where each vertex stands for a type of 
substance, and each edge stands for a reaction. Only strong reactions 
with a strength greater than 10 are shown. The reaction direction is not 
shown. Inset b The topology of the network after 400 steps 

example, consider a linear chain of  reactions a ~ b ~ c 
. . . .  If there is no reaction creating substance a, the 

amount  of a will decline to zero, and eventually b and c will 
also decline to zero. If the population of the start substance 
of the reaction goes to zero, the rule can never be selected 
and in a sense becomes dormant  until the action of other 
rules creates some of the start substance. However,  in our  
model, since we assume that permanent  links remain be- 
tween all substances, there is always a finite possibility of a 
reaction creating any substance. This provides a persistent 
mechanism for the decay of structures, and seeding the 
growth of new structures. 

4 Discussion 

We have shown that our abstract reaction model exhibits 
the spontaneous creation and destruction of self-reinforcing 
structures. Catastrophic events and recoveries have been 
found in various dynamic network models. 4'5 The structures 
in our  model can be described as autocatalytic structures, 
or autocatalytic sets (ACSs) .  6 An  ACS in a reaction net- 
work is defined as a set of nodes (substances) which have 
at least one incoming link from other  nodes in the set. Thus, 
an ACS has the property of catalytic closure, i.e., it contains 
a catalyst for each of its substances. A model which is 
similar in some respects is the model  of Jain and Krishna, 6 
which incorporates interplay between the network, popula- 
tion dynamics, and the environment.  The Jain-Krishna 
model  corresponds to a directed weight graph, where posi- 
tive and negative edges represent "catalytic" and "inhibi- 
tory" interactions, respectively. The network evolves as the 
least populated species, or "less fit" species, are replaced by 
new ones. A small autocatalytic sef, appearing by chance, 
provides the seed for the spontaneous growth of connec- 
tivity and cooperat ion in the graph, which corresponds to 
highly structured chemical organizations. Our  model differs 

from the Jain-Krishna model in key aspects, including the 
facts that the nodes are not explicitly eliminated or replaced 
by new ones, the evolution proceeds by a stochastic selec- 
tion of  reactions, and the probability of reaction is affected 
by edge weights which are changed dynamically by self- 
reinforcement. We emphasize, that the self-reinforcing re- 
action mechanism results in the emergence of autocataytic 
sets even without the explicit removal of "unfit" species. 
In the Jain-Krishna model, the least-fit substances could 
sometimes be "keystone" substances, 4'5 which play impor- 
tant organizational roles in the network despite their low 
populations. When such a node is eliminated, many other 
nodes can become disconnected from the ACS, causing the 
catastrophic collapse of  the ACS. On the other hand, in our 
model there are no explicit external operations of  removing 
least-fit substances or adding new types of substance into 
the reaction network. A recognition and understanding of 
this intrinsic mechanism to generate a variety of reaction 
structures, to create and recreate spontaneously, and to self- 
organize and reorganize without the influence of  external 
interactions could be important for understanding the 
developmental  and evolutionary processes of  complex 
biochemical and living systems. 

5 Conclusion 

We have presented an abstract model of a chemical reaction 
system that incorporates the interplay between population 
dynamics and a reaction network structure. We have shown 
that a reaction reinforcement mechanism based on a recent 
memory of  reactions can result in the spontaneous creation 
and destruction of complicated reaction structures without 
needing external operations. This type of  mechanism could 
potentially be useful in modeling the dynamic evolutionary 
processes of  various complex biochemical and living 
systems. 
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