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TESTING FOR PARAMETER CHANGES IN ARCH MODELS 1 

P. Kokoszka z and R. Leipus 3 

Abstract. The paper develops the asymptotic theory for CUSUM-type tests for a change point in parameters of an ARCH(~) 
model. Special attention is given to asymptotics under local alternatives. 
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1. INTRODUCTION 

This paper studies CUSUM-type tests for a change point in the parameters of an ARCH model defined by 
the equations 

rk = r ~r 2 = bo + ~ bird_j,  (1.1) 
j = l  

where the random variables ej ,  j = 0, 4-1, 4-2 . . . . .  are zero mean iid errors and the coefficients bj are non- 
negative constants. We assume that the ej have finite moments up to order eight and that  the following condition 
holds: 

(E$o8) 1/4 ~bj < 1. (1.2) 

j= l  

Condition (1.2) guarantees that Eqs. (1.1) have a strictly stationary solution {rk} such that the sequence Xt = r~ 
is fourth-order stationary and satisfies the functional limit theorem (see Theorem 1.1 below and Giraitis et al. 
[5], [6] for more details). 

2 The main feature of  ARCH processes is that while the rk's are uncorrelated, the sequence of the squares r k 
has a rich dependence structure. In modeling financial data, the squares of the re turns  rk are used to estimate 
the so-called volatility, which is an important parameter in asset pricing models. An excellent account of the 
theory and applications of  ARCH models is given by Gourirroux [9]. 

2 Denoting by b :=  (bo, bl ,  �9 .) the parameter For the reasons outlined above, we focus on the squares Xk = r k �9 
sequence in (1.1), we write {Xk} ~ ~(b)  if the Xk are obtained from Eqs. (1.1) with b satisfying condition (1.2). 

We test the null hypothesis 

H0 :X1  . . . . .  XN is a sample from {Xk} ~ ~(b)  for some b 
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against the change-point alternative 

Hi: 3 b (x), b (2), satisfying b 0) # b (2), 

and such that the sample X l  . . . . .  XN has the form 

{X~ 1) if 1 ~ k ~< k*, 
Xk = V(2)' if k* "'k ' < k ~ N ,  

(1.3) 

- ( 1 )  where {X k } E 7~(bO)), {X~ 2}} e 7~(b(2)), k* = [N~*], 0 < 3" < 1 is fixed. The sequences {Xk (1)} and {X~ 2)} 
are generated by the same noise sequence {ek}. 

Testing for parameter constancy against some kind of unstability in the parameters of the conditional variance 
of the returns r~ is very important in financial data analysis. In particular, in order to avoid spurious inferences 
about a model, it is important to test the stability hypothesis against an alternative of structural breaks in 
parameters (see, e.g., Lamoureux and Lastrapes [12]; Hamilton and Susmel [10]). 

Despite its importance, the problem of detecting parameter changes has not received as much attention in 
the context of A R C H  models as in the setting of linear time series models. In the latter area, the literature is 
so extensive that we restrict ourselves only to citing the recent monograph [4]. As far as we are aware, the 
only tests available for ARCH sequences are Lagrange multiplier tests developed by Chu [3] and Lundbergh and 
Ter~isvirta [14]. Change-point estimation in ARCH models was studied by us in [11]. 

Our aim is to consider a family of tests for the constancy of the parameter b and to investigate their asymptotic 
properties. We study CUSUM-type tests based on the process {UN(t ) ,  t ~ [0, 1]}, where 

[Nt] N ) 
U N ( t )  = N 1/2 [ N t ] ( N  - [Nt]) 1 1 

N2 ~ y ~ X j  N - [ N t ]  ~ Sj . (1.4) 
j = l  j=[Nt]+l 

The partial sums in (1.4) are estimators of the variance of the rk, so the tests are designed to detect a change in 
parameters, which leads to a change in variance. 

We show that the process {UN(t)} satisfies invariance principles in D[O, 1] under both the null hypothesis 
and local alternatives that converge to the null hypothesis at the rate 1/v/N. Thus, the asymptotic theory for 

the standard statistics sup0~<t~<l IgN(t)] ,  f2 g~(t)dt and their modifications follows automatically. The main 
attention in the paper is devoted to the asymptotic behavior of the process { UN (t)} under local alternatives. Our 
results show that the tests based on continuous functionals of the process {UN (t)} have positive asymptotic power 
against such alternatives. In the context of linear time series models, similar results were obtained by Giraitis 
and Leipus [7] and Leipus [13], who studied statistics based on the pefiodogram, and by Giraitis et al. [8], who 
used an approach based on the empirical distribution function. Bai [1] studied the asymptotics of a test based 
on the empirical distribution function under local altematives of a change in regression parameters. 

In the proofs, we frequently use the following Volterra expansion: 

0o oo  

. . . - - J , "  "J-l,  .... -J, 
/ = 1  J l  .. . . .  Jt =1 

) bj,. 2 = e ) - k  . . . .  --jm " 
l = 0  J l  .. . . .  Jl =1 

(1.5) 

In (1.5) and in the sequel, we assume that J0 = 0. For the convenience of the reader, we state here the following 

result established by Giraitis et al. [5], which is extensively used in the proofs below. In the sequel, D[0,11 stands 
for the weak convergence in the space D[0, 1] endowed with the Skorokhod topology. 
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THEOREM 1.1. If  condition (1.2) holds, then 

[Nt] 
N -1/2 y ~ ( x j  - e x j )  ~176 

j=l 

where W (t) is a standard Wiener process and 

OO 

~2 = ~ Cov(Xj, x0). 

In the proofs, C stands for a positive constant whose value may change from line to  line. We denote in the 
sequel ~.k := Eleol k. 

In Section 2, we establish the asymptotics for the statistic (1.4) under the null hypothesis. In order to obtain 
a parameter-free asymptotic distribution, the statistic UN(.) must be normalized by a variance estimator gN,q, 
which is also introduced in Section 2. In Sections 3 and 4, the local alternatives are investigated. In Section 3, 
we describe the local alternatives and give the corresponding asymptotics of the process Us (-). In Section 4, we 
obtain the asymptotics for the rescaled process UN(')/SN,q. 

2. ASYMPTOTICS UNDER THE NULL HYPOTHESIS 

THEOREM 2.1. 

where 

Under the null hypothesis/40, 

UN(t) o[0:.~l orW0(t), 

OO 

~2 = ~ Cov(Xj, Xo) 

and W~ is a Brownian bridge. 

Proof. The proof follows from the representation 

and Theorem 1.1. 

[[m] 
UN(t) = N-I/2 ~j~I(Xj  - E X j ) -  [Nt] ~ ( X j  -- EXj )  

N j=l 

~2 
N,q = E wj(q)~'j, 

ljl<~q 

where the ~j are the sample covariances: 

1 N-Ijl 
~j = ~ ~ (xi - ~) (x i+tj l -  x),  

i=1 

)~ is the sample mean N -x )-~7=1Xj and 

wj(q) = 1 - I/I 
q + l '  

are the Bartlett weights. Then the following theorem holds. 

(2.1) 

IJl < N, (2.2) 

IJl ~<q, 

In order to use Theorem 2.1 to construct asymptotic critical regions, we must estimate the parameter a. 
Define 
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THEOREM 2.2. Assume that q ~ oo, q / N  ~ O. Then under the hypothesis Ho 

UN(t)̂ o[o,]] wO(t). 
SN,q 

(2.3) 

Proof. First of all, note that by Theorem 3.1 in [5] 

~2 P 0.2 
N,q > (2.4) 

for any fourth-order stationary process {X j} satisfying 

Icov(xj, Xo)l < 
j -~---00 

(2.5) 

and 

uniformly in k. Here 

0~ 

[Cum(Xo, Xk, gt,  Xm)l < ~ 
l,m=--oo 

(2.6) 

Cure(X0, X~, Xt, Xm) = E[(X0 - Iz)(Xk -- tx)(Xt - lx)(Xm - / x ) ]  

-- Cov(S0 ,  Xk)Cov( Xl, Xm) -- Cov(X0,  XI)Cov( Xm, Xk) 

- Coy(X0, Xm)COv(X~, Xl) 

is the fourth-order cumulant and/x = EXo. Giraitis et al. [5] showed that conditions (2.5) and (2.6) are satisfied 
by the process {Xk} 6 7"4(b). Therefore, convergence (2.3) follows from (2.4) and Theorem 2.1. 

Remark 2.1. Chu [3] considered, among other tests, the Lagrange multiplier test (LMU) for the constancy of 
unconditional variance against a single structural break. This test is based on the maximum of the statistic 

LN(t) = 1 1 E ( X j  _ X) + ( X j - X )  . 
SN'q j=l  N - [Nt] j=[Nt]+l 

The theory was developed in the context of a finite-order GARCH model. Noting that 

k(N - k) 
N 2 

( 1  k 1 N  ) ( k )  j~l  
= u  - '  1 - 2  ( x j - 2 ) ,  

j=l N kj=k+l = 

we obtain that, under the assumptions of Theorem 2.2, 

N1/z [ N t ] ( N  - [N t ] )  LN(t) 
N z 

D[0,~] (1 -- 2t)W~ 

3. ASYMPTOTICS UNDER LOCAL ALTERNATIVES 

In the investigation of statistical properties such as the efficiency of tests, it is important to know the behavior 
of the statistics under local alternatives. As indicated in the introduction, we focus our attention on the local 
alternatives that converge at the rate 1/4"N. We show in Theorem 3.1 that under such alternatives the statistic 
UN(') has an asymptotic distribution that differs from the one occurring in Theorem 2.1 by a deterministic 
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function. In conjunction with Lemma 4.1, this allows us, in principle, to compute the asymptotic power of tests 
b~sed on functionals of  the rescaled process UN(')/SN,q. 

Formally, we consider the local alternatives 

H(I~ 3 b 0'N), b (2'N), satisfying b 0'N) #: b (2`N) 

and such that 

x(N)k = [ XO'N)k , i f l ~ < k < ~ k * ,  
! X~ 2"N), i f k * < k ~ N .  

y(i,N) (1.)(i,N) i.)(i,N) Here "'k ~ 7~(b(i'N)), i = 1, 2, with b (i'N) -- wo , ~l . . . .  ) satisfying the following assumption: 

(3.1) 

ASSUMPTION A. Assume that 

with t)i ) O, 

and 

where we denote 

Set B* := Y'~q~176 j + fl~), B 
imply, in particular, 

[•)i,N) by "N) = bj + ----~-, j~>0 ,  i = 1,2, (3.2) 

fl(i,N) ) fly) as N --+ c~, (3.3) 

,•1/4 S E(bJ+fl;  )<1'  
j=l 

(3.4) 

flj* := max sup [fl(i'N)[ < cxL (3.5) 
i=I ,2N>/I  

oo b h! i'N) We see that assumptions (3.2)-(3.4) : :  Y'~-j=l ./ and B (i'N) = ~-~j~l-j �9 

lim B (i'N) = B and 
N-+oo 

o o  

lim V'~(B O'N>- B (a'~v)) = f f '~ ' ( f l r  ,B:Z)). 
N---~ oo 

j = l  

The last two relations are used in the proof of the following lemma: 

LEMMA 3.1. Under the hypothesis HI l~ 

EUN(t )  > (t /x v* -- tv*)A as N --+ ~ ,  (3.6) 

where 

A = 
_ ~-~o0 f R O ) / ~ : 2 ) ) ]  - & % ( l  z a) + 

(1 --  ~.2B) 2 

Proof. By a straightforward verification we obtain 

EUN(t )  = 
k* N 1/2 (1 [Nt] )_~(EX(oI ,N)EX(o2,N) , ,  

if 1 ~< [Nt] <~ k*, 

if k* < [Nt] <~ N. 
(3.7) 



Testing for parameter changes in ARCH models 187 

Since 

we have 

c~ c~ l 
X(oi,N) ^2L(i,N) (b!i,N) E2 . . 

Z Z ..... 
/=0 Jl ..... jl=l m=l 

oo co l oo ).2b (i,N) 
EX(oi'N) = )~2b(oi'N) E 2 I-I  (@2 N)~'2) = )'2b(oi'N) Z ()~2B(i'N))I = 1 - )~2B (i,N)" 

/=o Jl ..... jt=l m=l /=o 

By (3.7) and Assumption A, the last relation implies (3.6). 

Before establishing our main result, Theorem 3.1, which gives the asymptotics for the statistic U~v(.) under 
the local alternatives, we state a useful lemma that follows from representation (1.5) and elementary algebra. 

LEMMA 3.2. Suppose /u t--k J E ~(b(i)), i = 1,2. For any integers k, l, 
(1) X~2)) (i) Cov(X k , 0; 

( i i ) / f  max{b~ 1), (2) , , b) } <. bT, j ) O, where b* - (b o, b! . . . .  ) satisfies assumption (1.2), then 

Cov(X~ i), X~ i')) ~ C o y  (X~, S ; ) ,  i, i ' = 1,2, 

with {X~} ~ 7~(b*). 

THEOREM 3.1. Under the hypothesis H(l~ 

Uu(t) o[0,~1 crwO(t ) + G(t), (3.8) 

where 

G(t) := (t A v* -- t r* )A,  

with a defined by means of {Xj} ~ 7~(b) given by (1.5) as in Theorem 2.1 and A as in Lemma 3.1. 

Proof. By Lemma 3.1, (3.8) follows if we prove that under hypothesis H~ l~ 

UN (t) -- EUN (t) D[0,~] cr W~ (3.9) 

To prove (3.9) we will show: (1) the convergence of the finite-dimensional distributions of {UN(t) -- EUN(t), 
t 6 [0, 11} under H(l~ (2) the tightness of the corresponding probability measures on D[0, 1] under H} I~ 

Since, by the definition of the local alternatives H(1~ the process {Xj} defined by (1.5), with {hi} from 
Assumption A, is in the class 7r we obtain from Theorem 2.1 that 

Nt/2 [Nt](N-[Nt]) ( 1 [Ntl 1 N ) D~O,~] 
N2 [ - ~  j~l(X).= - EXj) N --[Nt] j=[ml+l ~ (Xj - EXj)  crW~ 
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Denote  

Z~ i'N) := (X  (i'N) -- EX~  i'N)) - (Xj  - E X j )  

= 1 - I  : - + '  ~)--jl--,,,--jm -- bjm *2--Jl . . . .  --Jm -- ) ~ 1  
l=O Jl ..... jl=l m=O = /=0 Jl ..... jl=l m=O 

)o )(H ) N) bj= e? �9 . - Lt2 +1 i = 1, 2, (3.10) ~ J --Jl --...--Jm 
l-----O Jl ..... jt=l = m=O 

and 

N 2 E Z~lV) N - [ N t ]  Z Z~ N) ' 
j = l  j=[Nt]+l 

where 

7(I ,N) 
z-.~ k Z(k N) = 7(2,N) 
z.., k 

if  1 <~ k ~< k*, (3.11) 
i f k*  < k <<. N. 

The convergence  o f  finite-dimensional distributions will follow if we prove that f ini te-dimensional  distributions o f  

the process {UN(t), t ~ [0, 1]} satisfy UN(t ) d d > 0. Here and below ---+ means the conve rgence  in distribution. 

Define the partial sums A~)(t) = N-U2 z.~j=t~'[Ntl Z~ i'N). Then, by straightforward verification,  

{ A(1)t-,~ N[N 0 3(l)t,,.,,~ [Nt] a(2)~,l,~ _a_ [Nt] A(2)[~.,-~ 
~N t - J - - ~ - , ~ N  t -  J - - W -  ~'N ~ ' J ~  U " 'N~~  ~, i f [ N t ] < ~  [Nr*] ,  

Ou(t)= ( 1 - ~ ) a ~ ) ( r * ) - ( 1 - t - ~ ) a ~ ) ( r * ) +  A ~ ) ( t ) - I ~  l A~)(1) ,  i f [ U t ]  > [Nz*] .  

Therefore,  it is sufficient to prove that for  any fixed 0 < t ~< 1 

A~)(t) P> 0, i = 1,2.  (3.12) 

For simplicity, assume that i = 1 and t = 1. Relation (3.12) will be proved if we show that 

N 

E ( A ~  )(1))2 = N-1 E EzO'N)z(I"N)J j, > O. 
j,j'=l 

Write 

N N N 
N - 1  E EN~ I'N, Z(j} 'N, : N -1 E EZ~I'N)~J'7(I'N) -t- N - '  E 

j,j'= 1 j,jt=l j.j'=l 
Ij-j~I<<K Ij-jq>K 

EZ~I'N)z (I'N)j, --'--. I~ N) + I~ m), 

where 0 < K = KN < N and K/N -+ O, K ~ oo as N ~ oo. To show that 

I~ N) ----+ 0 (3.13) 
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write 

E T ( 1 , N )  7(1,N) 
~i "-'i' = 

~ c:~ l 1 l '  1' 

Y~* E (I-Ib~l"N)-I-Ibjm)(Eb!"N)--I-Ibjtmt)jm ! 
l,l'=O jl ..... jl=l j[ ..... jtS=l " m=O m=O = mr=0  

l I t 
/ + I  2 ) 

•  l q + , ,  ..... , . - ~  ~ ( I 7 ~ ,  . . . .  - ; ; + '  . ] \ I -11 . . . . .  J.,, 
\ m ~ 0  mt~0 

~ k ~ , ~ [  1 l l l m ~  0 I t ]  
<- I7 ~U'- I7 +. ~!~'"'- FI +:, Jm t 

l,l'=O jl ..... jt=l j~ ..... jl,=l m = 0  m = 0  = mr=0  

X E 4 E _j[ . . . . .  j~mt . ej_j, . . . . .  j .  
m=O + m~=O 

Note that 

( I  4 ) 1 / 2 ( l '  4 ) 1 / 2  

E I-I  8j_j, . . . . .  Jm g 1-I ~'-j~ . . . . .  j:, 
m = 0  , ,  x rap=0 + 

Thus, since #{(j,  J')l 1 ~< j ,  j '  <~ N, 

a(l+l')/2 
~.4A 4 

IJ - J'l <~ K} = 2 K N  + N - K ( K  + 1), we have 

ii(~>l ~< N -' )v 4 )v14/2 ,N) I - I  bjm 
J.J t=l Jl ..... jl=l = m = 0  ' /  

Ij-jq<~K 

(= <~ ( 2 K  + 1  K(Klkl -~- 1 ) )  ~'4 ~-~* 11/2"'4 b)(: ' N ) -  bjm 

' "  1=0 j! ..... jl=l m=O m = 0  

(3.14) 

We will show that 

Since, by (3.2), 

and 

we obtain 

Therefore, setting 

rN :-~. ~ ~1/2 "~4 
1=0 Jl ..... jt=l 

b~l.. ' u ) -  <. C N -1/2. 

m=O 

Ib~ ''N)- bjl < N-'/Zl~ff"N'I 

1 1 l 

. . . . .  bjm_ltOjm --Ojm)OJm+l ' '  
m=O m=O m=O 

1 l 

m = 0  

l 
<~ N-l~  2 Z bjl " " bj~_, lfl~: 'N) b9 'g) �9 . . h!l, N) 

- Jk+l V Jl " 
k=O 

~i,N) " =  max {I/~y'N)], bj, b~ i'N) } 
oo 

and ~(i,N) .--'-- ~ _  j~!i,N), i = 1, 2, 

j = l  

(3.15) 

(3.16) 
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we obtain 

Since 

ru <~ N -1/2 

<~ N-l~ 2 

N -1/2 

oo oo l l 

E Zt4/2 ~ Z[fl~:'N)[l-Imax{bjm'b~ "N)} 
l=0 Jl .. . . .  j t = l  k=0 m=0 

m#k 

O0 Oo l 

b(o LN)(I + 1)3"//2 Z H /~I,N) 
/=0 Jl ..... j l = l  m = l  

oo 

E/~(0"N)(I + 1)( ~'I/2/~(''N))t" 
1=0 

and, by (3.4), L14/2B * < 1, we obtain from (3.17) that 

rN <~ N-'/2(bo + fl~) ~-~(l + 1)(X]/2B*) t ~< CN -I/2. 
l=O 

Thus (3.15) follows and hence 

E 7 ( 1 , N  7(I ,N)  C ,~ oj, I<-~. 
This, together with (3.14) and the assumption that K/N ~ O, implies (3.13). 

Next we show that 
N 

2(N) N - I  Z (1 N) (I N) = EZ) '  Z),' >0 a s g - - + o o .  
j , j t = l  

I j - j q > K  

Note that 

ez,',~,7 " , ~ ' j  ~j, = cov(x~ ',~,, x~ .~,) -cov(x~ ',~, xj,)- cov(xj, x~ ,~) + cov(xj, xj,). 

By Lemma 3.2 (i), for (3.19) it is sufficient to verify that 

N 

j , j t= l  

I j - j ' l > g  

Lemma 3.2 (ii) implies that 

/&(1 N) cov(x? ~, x~ ,~) + cov(xj, xj,) + cov(x~ ',~', xy) .< 3covt~j, , ~,~') ,  

where 
co l l 

x ) i ' N ) : = Z  ~ H [ ~ N )  I-[e~-j, ..... Jz' i = 1 , 2 ,  
l=0 Jl ..... j t = l  m=0 m=0 

and the/~i.u) are given by (3.16). Thus (3.20) will be proved if we show that 

N 
N-1 ~-'~ COV(.,~')I'N), /~'~) 'N)) )' O. 

j , j t  = 1 
I j - - jq>K 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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Write 

N - l  
N 

2 C~ I'N)' 2~>'N)) = ~ (1--  L~)Cov(g(l,N), ~)~0(I,N)) 
J.Jl=l K <lj{<N Ij-jtl>K 

<~ 
K<IjI<N 

^(I,N) . 
Note that bj <~ bj + fl). Hence, relation (3.21) follows from (3.4), Lemma 3.2, and the assumption that 
K ~ ~ in conjunction with Proposition 3.1 of Giraitis et al. [6], which implies that the autocovariance function 
of any {Xk} 6 7~(b) is absolutely summable. 

It remains to verify that under H(1~ the sequence {U~v(-) - EU~t(-)} is tight. By Lemma 3.1, the functions 
EUN(.) converge to a constant in D[0, 1], so it suffices to verify the tightness of  the sequence {UN(')}. Set 

[Nt] 
Szv(t) = N -I/2 Z (X~ u) - EX~ u)) (3.22) 

j=l 

and observe that UN(t) = So(t)  - [~-ISN(1). Thus, the problem is reduced to the verification of the tightness 
of the sequence {SN(.)}. For this, it suffices to show that 

E(gN(t)) 4 <~ C([Nt l /N)  2. (3.23) 

Relation (3.23) implies that a tightness criterion for Su(t) is satisfied (see [2], Theorem 15.6). Indeed, for any 
tt < t  <t2, 

g(SN(t ) - SN(tl))2(SN(12)- SN(I)) 2 ~ (E(SN(t)- SN(tl))4g(SN(t2)- aN(t))4) 1/2 
[ N t ] - [ N q ] [ N t z ] - [ N t ]  C [ [ N t z ] - [ N t x ] ~  2 

~ C  
N N <<'-2 ~ ) ~ I  " 

To verify (3.23), set /~(N) :=  )--]i=l max{b~ 1'N), (z N) (Ee8)I/4~(N) oo b ) '  } and DN := . By (3.4), DN < ),~/4B* < 1, 
and so (3.23) follows from the inequality 

4 oo 
E(SN(t))4 ~ C I~-~12 (l~=o(l+2)2D1) (3.24) 

Inequality (3.24) was established in [5] with B := y~4~=1 bj instead of/~(N); its proof  carries over with bj replaced 
__~..r L(I,N) L(2,N)/ by ulgt~.rtuj , uj /" 

4. A S Y M P T O T I C  BEHAVIOR OF THE VARIANCE ESTIMATOR SN.q. U N D E R  LOCAL 
ALTERNATIVES 

As pointed out in Section 2, the tests should be based on the rescaled statistic UN(') /SN,  q. In order to prove 
the consistency of such tests against the local alternatives introduced in Section 3, we must show that under such 
alternatives the statistic Uu(')/gU,q tends to a nondegenerated random process different from a Brownian bridge. 
This is the content of  Corollary 4.1, which follows from Theorem 3.1 and the following lemma: 

LEMMA 4.1. Under hypothesis H(~~ if q --+ oo and q/~/ 'N --> 0, then g2N,q P ) cr a, where s?v,q̂* and ff 2 
are defined in (2.1) and in Theorem 2.1, respectively. 
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Proof. For the process {Xj} defined by (1.5), with the {b)} appearing in Assumption A, we have (see (2.4)) 

E (,oj(q)~j > 0 "2, 
Ijl<<.q 

where ~j is defined in (2.2). Therefore it is sufficient to verify that 

E ~ N) -  ~J) t'> 0. (4.1) 
IJl<.q 

Recall that the covariance estimator f,)N) is based on the observations "'tY(N), . . . ,  X(N N) given by (3.1). Let 

~,r and )~j be the estimators of the covariance function with 2(tr 2 replaced by corresponding theoretical 
expectations: 

and 

1 N-IJl 

: =  i ]k i+ljl--~'"i+lJl} 
i - - - I  

1 N-l j[ 
YJ := N" E (Xi - EXi)(Xi+IJl - ESi+lJl), IJl < N. 

i = 1  

To establish (4.1) we show that 

p[N) := E ~ N)- ~j.(N)) " 0 (4.2) 
[jl<<.q 

and 

p~N) := E wJ(q)(Yi'(u)- PJ) p'  O. 
Ijl<~q 

We prove that EIP(~V) I ~< Cq/N; therefore (4.2) holds under the weaker assumption q / N  --+ O. Rewrite 

(4.3) 

N-Ijl 
_ _ _  EXi+uI ) p[N) N E wJ(q) E -- " - 

[jl<.q i = 1  

_ _  (f~(N) I~'y(N)~[Y(N) - -  EXi+lJl) - -  ~'~i+lJl] - -  , . ,  , x  i ]k'"i+[jl 

- P t 2  - - "  , 1 , 2  

We first prove that 

For this, we estimate 

EIP[~)[ <~ Cq/N , O. (4.4) 

N-Ijl 
EIp(N) 1 Elyf(N) --(N) -- EXi+Ij I ',' <<" ~ E ogj(q) E -Ex~N)II'~(N) [ 

Ijl<~q i - - 1  

N-IJl 
EXi+ul) ) �9 

lJl~q = 

(4.5) 

Now we show that 
E(ff (N) - Ex}N)) 2 ~ C/N. (4.6) 
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Write 
N N 

E()((N) -- Ex~N))2= N-Z ~ ~ E(XJ N) - EX~e))(XJ, N) - EX~ u)) 
s = l  s ' = l  

s = l  s ' = l  s = l  

Using L e m m a  3.2, we  have  

where 

Cov(Xl N~ , x,,  r ~ Cov(2?'~, ~ ,  ~'(~,, 

o o  o o  l 

:= (b). es_jl  . . . . .  jm)' b) = max j b) }. 
l=O Jl ..... jt=l m=O 

By L e m m a  3.2, A s s u m p t i o n  A,  and the absolute summabi l i ty  o f  covariances  under condi t ion  (1.2) 

N N 

N-2 ~--~ E C~ ~ju)'  -(N) X s, ) < . C / N .  
s=l s'=l 

Observe also that 

N 
S,  (EX?~ - EX~"') 
s = l  

k* )~2b~l"N) ~'2b(02'N) NEX[ N) 
= 1 - ~.2 B(1,N) "}- ( N  - k*) 1 - ~.2 B(2,N) 

~,1 ~-bo ~''~', ~b'o ~'~, ~#o" ~< 
1 - ~.2B 0,N) - 1 - ~.2B (2,N)" + N 1 - X2 B(2,N) 

I 
<~ CN 1/2. 

EX~ N) 

Thus, (4.8) and (4.9) imply  (4.6) ,  and therefore (4.4)  fo l lows.  

Next  w e  prove that EIP[,~)I  ~< Cq/N.  Write 

El P(m I E ,J,<~q N-Ijl 1,2 N ~ o.)j(q) Z ( 2 ( N ) -  Ex}N))'--(N) -- IZ'y(N) "l = (Xi+[jl ~"i+lJll 
i=1 

1E IJl<~q N-[jt ~v(I'N)~Iv(N) I~Y(N) '~l{i~<k*} <~ N ~_~ Coj(q) ~ ( f((N)--~AO ] k ~ i + l J l - - ~ " i + [ j l ]  
i=l 

N-[jl 1 
+ ~ E  ~ r Z (f((N)__ EXo2'N)) [Y(N)k''i+ljl - Ex}N}jl)I{ i>k*} 

j ~<q i= l  

_ .  AN) t(2 N) ~.  t 1 -[- . 

.(N) .(N) We now s h o w  that q ~< Cq/N.  The same est imate holds for t~ N). Estimate q as fo l lows:  

[j[<~q i=1 

t/N_Ijl 1/2 

- 

I j l < ~ q  \i,i'=l "*i'+[jl] ) 

(4.7) 

(4.8) 

(4.9) 
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By inequalities (4.7) and (4.8) we have 

N-Ijl 
E (N) y(N) "~ 

Cov(Xi+lJl' "~i'+ljl] <~ CN. 
i , i ' = 1  

Thus, by (4.6) we have 

1 2 q + l  
t~N) <~ C ~ E N-I /2NilT= C N 

IJl<~q 

An analogous argument shows that 

It remains to show that p(N) P 

elP~,~'l ~< Cq/N , o. 

> O. Write 

~ 0 .  

(x~N) ~.v(N)$/v'(N) _ Ey(N) -- x~ i  ]~fxi+ljt "'i+[jl] -- (Xi - EXi)(Xi+IJl - EXi+Ijl) 
7(N)[y(N) --I:'Y(N) ~ 7 ( N )  IX EXi), 

= ~ i  \ ~ ' i + l j l  ~"i+[jl) + ~ i + l j l  ~ i - -  

where Z~ ~v) is defined in (3.11), (3.10). Since by (3.18) 

~7~2,N). ,2 e(z},,%2 E(z?.%2 C/N, E ( z } N ) )  2 : E(z}l'N)l{i<~k ,} dr-j.~z~ i Jt{i>k*}] ~ -{- 

we obtain 

1 [ N~'J(z(N)[x(N) _EX}N~j[) +z~Nljl(Si _ EXi))[ EIP~N>I = -ff E ~ wj(q) \ i t i + l j [  

[jl<~q i = 1  

1 N-l i l t (  t/2 1/2 

Ijl<~q i=1 

1 N 2 q + l  
<" v E E cN- l '2=c  ~ ~o. 

Iji<~q i=1  

Thus, (4.1) follows. This completes the proof  of  the lemma. 

COROLLARY 4.1. Let q --+ oo and q/~/'N ---> O. Under the hypothesis H[ l~ 

UN(t)̂ 0[0.>11 WO(t ) + cr_tG(t) .  
SN,q 
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