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LIMIT THEOREMS FOR THE MAXIMAL EIGENVALUES OF THE 
MEAN-FIELD HAMILTONIAN WITH RANDOM POTENTIAL 

A. Astrauskas 

Abstract. Let f t v =  xLxv + ~v(x), x ~ V C Z v, be the mean-field Hamiltonian with x > 0 and random i.i.d, potential 
~v- We prove limit theorems for the extreme eigenvalues of/ ')v as [VI ~ oo. The limiting distributions are the same as for 
the corresponding extremes of ~v only if either (i) ~v is unbounded and x > 0, or (ii) ~v is bounded with "sharp" peaks 
and x << 1. Localization properties for the corresponding eigenfunctions are also studied. 
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1. INTRODUCTION 

The mean-field (Curie-Weiss) model is given by the random (symmetric) operators/~v, V C Z ~, acting on 
the functions ~:  V -~ N according to the formula 

I2Iv~(x) = ~ZXv@ + ~(x)@(x), x ~ V, (1.1) 

where A v ~  = N -1 Y:.xsv @(x), N is the number of sites in V, ;4 >/0, and the potential ~(x), x e Z ~, consists 
of independent identically distributed (i.i.d.) random variables with (continuous) distribution function F(- ). The 
Hamiltonian (1.1) represents a simplified modification of the Anderson model 

Hv~(x)  = xAvgr(x)  + ~ ( x ) ~ ( x ) ,  x ~ V, (1.2) 

with the Laplacian A (cf. [11]), and has been introduced by Bogachov and Molchanov [5] to investigate long-time 
intermittency phenomena for evolution problems with a Gaussian random potential. 

Let 

L1,N > )~2,N > "'" > )-N,N (1.3) 

be the (random) eigenvalues of the Hamiltonian (1.1), and let ~'(. ; )~k,N) be the corresponding (random) eigen- 
functions normed by the condition Y'~.x~V ~2 (x; Lk,u) = 1, 1 ~< k ~< N. Clearly, if ~: = 0, then (1.3) is simply 
the variational series 

~ ( Z l , N )  : =  ~I ,N > ~(Z2,N)  :-'~-" ~2, N > " ' "  > ~(ZN,N) := ~N,N, 

and the Kronecker symbols 8(x; z1,n), 8(x; z%N), . . . ,  8(x; zn,~v), x ~ V, are the corresponding eigenfunctions. 
The purpose of this paper is to study the asymptotic properties (as N ~ oo) of eigenpairs ~-K,N, ~ ( ' ;  ~-X,N), 
for fixed K = 1, 2 . . . . .  for :4 > 0 and arbitrary F(. ). 

The asymptotic behavior of the maximal eigenvalues of /~v  was earlier discussed in [5] for a Gaussian i.i.d. 
~(. ) and in [7], [8] for an exponentially distributed i.i.d. ~(. ). This asymptotical analysis was shown to play 
a crucial role in the investigation of the long-time behavior of the evolution associated with Hr .  In [3], we 
discussed limit theorems for the maximal eigenvalue ).l,lv of the Hamiltonian Hv for an arbitrary i.i.d. ~(. ), 
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provided there exists a density p(t) = F'(t) satisfying some condition on a continuity at a right endpoint of 
~.(0). The results of the present paper are proven under continuity conditions weaker than those in [3]. 

Clearly, asymptotic properties of the upper bound of the spectrum of the Hamiltonians (1.1), (1.2) in an 
increasing volume V depend strongly on both the diffusion constant ~ and on the "tail behavior" 1 - F(t) as t 
goes to the right endpoint of ~(0). 

For the Anderson model (1.2), we have shown in [4] that if - ln(1 - F(t)) = o(t 2) as t --+ oo (the case of 
~v = {~(x)}x~v with extremely rare high peaks), then the asymptotic behavior of the maximal eigenvalues for 
x > 0 is similar to that for ~ = 0. Namely, 

(L) a single-point localization takes place: limN ~2(ZX.N; ).K.N) = 1 in probability, and 
(LT) if for some (normalizing) constants aN > 0 and bN 6 R the weak (non-degenerate) limit F N (bN + 

ta~ 1) -~. G(t) (as N --+ oo) exists, then 

P(aN()~K,N -- bN) < t) w> GK(t) 

I oo I )K_ I as N --+ cx~, with GK(t) :=  (K-I)! f2InG(t) e -~ dr. 
Note that if l i m t ~ ( - t  -2 ln(1 - F(t))) > 0, then the strong influence of the parameters of model (1.2) on 

both limit theorem for LI~,N and localization theorem for lp(- ; LI~,N) has been established (see also [2], [9]). The 
latter phenomenon is caused by the neighboring effects due to the local (strong) properties of the Laplacian A. 

In contrast to A, the mean-field diffusion seems to be a long-range (weak) operator. This property, as well 
as the absence of  neighboring effects in model (1.1), leads to the fact that every unbounded ~(. ) may be treated 
here as a potential with strongly pronounced peaks. The following two classes of i.i.d. ~(. ) lead to qualitatively 
different asymptotic behaviors of the maximal eigenvalues of Hv for any ~ > 0: 

(1) for unbounded ~(. ) satisfying (2.9), properties (L), (LT) hold (cf. Theorem 5.1 and Corollary 2.1 below), 
(2) for bounded r ) such that 

P(~(0) > t ) = ( 1 - t ) ' ~ ,  0 ~ t  ~ 1, f o r a ~ < l  (1.4) 

(the case of ~v with weakly pronounced peaks), there exists a constant L ~ = )~0(a, ~) > 1 such that 4~'(L1,N--)0) 
converges in distribution to the Gaussian variable. In addition, the eigenfunction ~p(. ; L1,N) is approximately 
"uniformly" distributed on V, i.e., a complete delocalization takes place (cf. Theorems 2.2 ~ and 5.2 ~ below). 

We shall briefly illustrate a connection between asymptotics of the maximal eigenvalues of Hv (cf. (1) and 
(2)) and asymptotics (as z ~ oo and V ~ Z v) of the solution u(r ,  x) >/0 of the equation 

au(r, x) 3"r 
a - - ~  = N" ~ (u(r,  y ) -  u(r, x)) + ~(x)u(r,x) ,  

yEV 

u(0, x ) = l ,  z >>,O, x f V. 

In fact, the equation describes an evolution of a particle system of the branching type in a medium ~v, and 
u(r ,  x) stands for the mean number of particles at site x at time r.  The notion of  intermittency refers to the 
appearance (as r --+ e~) of  extremely high isolated "peaks" of u(r ,  �9 ), where most of  the mass ~ x  u(r,  x) is 
concentrated (cf. [5], [7] -[9]). The solution u ( . , - )  admits the spectral representation 

N 

u(r ,  x) = ~-'~ exp{r~.k,N -- 2 r v x I ~ ( x ;  ).k,N)(~(" ; )'k,N), 1); 
k = l  

here ( - , - )  stands for a scalar product in L2(V). Write 

t~(r, x) = u(r ,  x ) / ~  u(r ,  y) 
y~V 

for the "mass concentration function." Let r --+ oo and V ~ Z ~ simultaneously, and N = O(r #) for some 
/3 > 0. Straightforward calculations based on Theorems 2.1 and 2.2 ~ below show the validity of the following 
statements for any x > 0: 
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(i) for unbounded ~(. ) satisfying (2.9), a complete localization for ~(r, �9 ) in the record point of ~v is observed, 
viz., t~(r, Zl,N) ~ 1 in probability (intermittency effect); 

(ii) for ~(. ) satisfying (1.4), fi(r, �9 ) is approximately "uniformly" distributed on V, i.e., a complete delocal- 
ization takes place. 

The exact asymptotics of  evolution associated with Hv for an arbitrary i.i.d. ~(. ) is studied in our forthcoming 
paper. 

Our paper is organized as follows. In Sec. 2, we formulate the limit theorems for LIr,N. Sections 3 and 4 are 
devoted to the proof of  the results of Sec. 2. In fact, in Sec. 3 Theorems 2.1-2.3 are restated under conditions 
expressed in terms of  ~X.N and some functionals on ~K.N. The asymptotic behavior of such functionals is 
considered in Sec. 4. Finally, Sec. 5 is devoted to the localization theorems for the eigenfunction ap(-; Lr,iv). 

2. L IMIT T H E O R E M S  FOR LtC,N 

Let ~(x), x 6 Z ~, be a sequence of i.i.d, random variables on a probability space (f2, f ,  7 9) with a common 
(continuous) distribution function F(-) .  Given a realization ~v = {~(X)}x~V, we first consider the spectral 
problem 

I21vap(x) = Lap(x), x ~ V. (2.1) 

From (2.1) we conclude that 

M X v a p  

a p ( x )  - L - 

Averaging (2.2) with respect to x ~ V (note that ~vap # 0), we arrive at the dispersion equation 

(2.2) 

1 N-'  E (L ~(x)) -1, (2.3) 
;.f 

x E V  

where N := IVt. Again by (2.2) the eigenfunction ap(x; L), x 6 V, corresponding to the eigenvalue ), and 
normed by the condition ~']x~v ap2(x; L) = 1, can be written as 

(y~V 2 \  - 1/2 ap(x; L) = {L- -1 Ix -  ) (2.4) 

Let 

~l,lv > ~z,lv > " "  > ~u,u (2.5) 

be the variational series based on a sample ~(x), x ~ V. The inequalities in (2.5) are strict with probability 1 
because of the continuity of  F( .  ). Thus, with probability 1 Eq. (2.3) has exactly N roots LI,N > LZ,N > "-- > 
Lu,u  such that 

L1,N > ~l,N, ~X,U < L r , N < ~ X - I , N  ( 2 ~ K ~ < N ) .  

To formulate our results (here and in the sequel) we need some additional notation. 
F( t )  = 1 - F( t ) .  Let WF stand for the right endpoint of ~ := ~(0): 

O)F = sup {t: Y(t) > 0}. 

For (.o F E ( - o o ,  o(3] and any 1 ~ (0, c~), we write 

(2.6) 

Given F( t ) ,  we write 

{((.O F -- ~)-l} for o) F < OO, (2.7) 
e y , l =  0 f o r w F = O 0 ,  

and eF := eF, l, where (.) denotes the expectation with respect to P. Further, introduce the following functional: 

ff I{F1/t(t) < v < 1}o-t-l(F(t- v) -  F(t)) dr, 
IF,l(t) = I { F 1 / l ( t )  < v < a ) F - - t } v - l - l ( F ( t - - v )  - F( t ) )  dr ,  

if tOF = ~ ,  
(2.8) 

if O)F < oo, 



120 A. Astrauskas 

where f := fa,  and I{A} denotes the indicator of a set A. 
Finally, for a sequence of random variables XN,M >1 O, we write XN,M • 1 (as first N --+ oo and afterwards 

/~/--+ ~ )  in probability if and only if 

0 < P-limlimXN, M <. P-limlimXN,M < oo 
M N M N 

or, equivalently, if and only if 

l imlimfimP(XN,M < e) =limliMml~nP X N ,  M • = 0 .  
e$O M N ~$0 

These values of limits mean that the sequence of distributions {P(XN.M E dt), N = 1 ,2  . . . . .  M = 1,2 . . . .  } is 
weakly compact and any of its weak limits (as first N --~ oo and afterwards M --+ cx~) has no atom at zero. 

In what follows, we consider the pair (eF, x) as a vector parameter of the model and distinguish between the 
following three zones of  (eF, x): 

(A) 1 / x  > eF (the case of weak diffusion or strongly pronounced asymptotic structure of  the "peaks" of ~v), 
(B) 1 / x  < ep (the case of strong diffusion or weakly pronounced asymptotic structure of  the "peaks" of ~v), 

and 
(C) 1/~c = eF ("critical" points). 
Note that, by definition, if ~ is unbounded (viz., co?- = oo), then, for any ~ > 0, the parameter (eF, x) 

belongs to (A), whereas, if ~ is bounded and ((wF - ~)- l )  = co, then, for any x > 0, the parameter (eF, ~) 
belongs to (B). 

In case (A) we have 

THEOREM 2.1. Let K >1 1 and 1 / x  > eF. If, moreover, 

IF, l(t) ' > 0 as t 1" OOF, (2.9) 

then 

and 

P - I ~ N ( L K , N - - ~ X , N ) =  1 / ( 1  -- eF) 

P-l ira )~K,N--~X,N = 0 ;  (2.10) 

here ~O,U :=  OOF. 

Theorem 2.1 and Lemma 4.1 below imply the following extremal-type limit theorem for eigenvalues (cf. also 
Remark 2.1). 

COROLLARY 2.1. Let the conditions of  Theorem 2.1 be fulfilled. Assume, in addition, that there exist 
constants aN > O, bN E ]R, and a nondegenerate distribution function D(. ) such that 

( �88 w> F N btr D(t) a s N - - + ~ .  

Then for any (fixed) K = 1,2 . . . . .  

P(au().K,N -- bu) < t) w> Dx(t)  as N --+ oo, 

where 
oo 

1 f sX- le  -sds. 
D x ( t )  - (K - 11--------~ 

- I n  D(t) 
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The class of possible (extreme value) limit distributions D(. ) is discussed, for example, in the monograph 
[10] o f  Leadbetter et al. (Chap. 1). 

Cases (B) and (C) are more delicate. For (B) and K = 1, the following central limit theorem holds: 

THEOREM 2.2 ~ Let K = 1 and  1 I x  < eF, and suppose that ~o > WF is the solution o f  the equation 

1 
_ = _ 

X 

T h e n  
t 

1 f 0 2 
limP(V/-N(LI'NN -- LO) < t) -- 0 - ~ _ ~  exp { - - ~ 2  } dv 

f o r  all t E R, where 0 -2 = 1 -- ((k ~ - ~ ) - 1 ) 2 ( ( , ~ 0  _ ~ ) - 2 ) - 1 .  

(2.11) 

THEOREM 2.2. Let K >. 2 and 1/x < e r. 
(i) I f  eF < oo and IF, l ( t )  --+ 0 as t t COF, then 

/( ') P - l i m N ( ~ x - l , u  -- )~IC N) = 1 ey  -- 

and 

( i i ) / f  

and o t e  (0, 1), then 

P- lim qX-l,tr - LK,N = 0. (2.12) 
iv ~.X,U -- ~,r,u 

F( t )  = (WE --t)~(1 +o (1 ) )  as t ~ WF, (2.13) 

N1/a (~K-I,N - ~ . K , N )  ~, N1/ct (~.K,N - - ~ K , N )  X 1 (2.14) 

in probability as N ~ cx~. 
( i i i ) / f  limt$0 F (WF -- vt ) / F (wF - t) = 1 f o r  all v > 0 (i.e., P (O~F -- t ), t > O, is s lowly varying at zero), 

then 

P- lim ~X-I,N -- )~x,~v = K - 1. (2.15) 
N XK,N -- ~K,,v 

Case (C) below differs slightly from (B): 

THEOREM 2.3 ~ Let K = 1 and  1 / x  = eF. 
(i) I f  eF,2 < O0, then the central  limit theorem (2.11) holds with L ~ = OOF. 
(ii) If  (2.13) is fulfilled with ot ~ (1, 2), then 

N1/c~(L1,N -- ~I,N) X N1/~IWF -- )'-I,N[ ~ 1 

in probability as N --+ oo. 

THEOREM 2.3. Let K >>. 2 and  l / x = e F. 
(i) I f  eF,2 < oo and lF,2(t) ~ 0 as t ? WF, then both the limits 

P-  lim N(WF - -  ~ K - 1 , N ) ( ~ K - 1 , N  - -  " ~ ' K , N )  = 1/ev,2 
N 

and (2.12) hold. 
(ii) If  (2.13) is fulfilled with ot ~ (1,2),  then (2.14) holds. 



122 A. Astrauskas 

Remark  2.1. For any 1 6 (0, ~ ) ,  the condition IF, t ( t )  --+ 0 as t ? WF implies 

? ( t  - 

,F(t) 
1 as t 1" ooF, (2 .16 )  

provided eF,l < C~. For l = 0, condition (2.16) (i.e., F ( t  - O ) / F ( t )  --+ 1) is well known in the extreme value 
theory for i.i.d, random variables as sufficient and necessary for a Poisson character o f  the occurrence of large 
values of ~v in limit as N --+ oo (cf. [10], See. 1.7). 

On the other hand, if eF,1 is finite, assumption (2.9) of Theorem 2.1 is sufficient for the existence of the limit 

N 
1 1 

F _ ,  -  m,U m=K+l  

> eF 

in probability, which in turn implies the assertions of  Theorem 2.1 (the necessity of (2.9) follows by a slight 
extension of  the proof of  Lemma 4.2 (ii)). The class of distribution functions satisfying (2.9) includes, for 
example, F(-)  from (2.13) with ~ > 1 (but not with ~ ~< 1). 

Proo f  of Theorems 2.1-2.3. Theorems 2.2 ~ and 2.3 ~ are proved in [3]. 
Theorem 2.1 for K = 1 follows from Lemma 4.2 (i), (ii) (with l = 1) by the same argument as in the proof 

of Theorem 1 in [3]. Theorem 2.1 for K ) 2 follows from a combination of Lemma 4.2 (i), (ii) (with l = 1) 
and Lemma 3.1. 

In Theorem 2.2, part (i) follows from a combination of Lemma 4.2 (i), (ii) (with l = 1) and Lemma 3.2 (i); 
part (ii) follows from Lemmas 4.4 (i) (with l = 1) and 3.3 (i), and part (iii) follows from Lemmas 4.4 (ii) and 
3.3 (ii). 

Finally, in Theorem 2.3, part (i) follows from Lemmas 4.2 (with l = 2) and 3.2 (ii); part (ii) follows from a 
combination of Lemma 4.4 (i) (with l = 2), its Corollary 4.1, and Lemma 3.3 (i). 

3. ASYMPTOTIC RELATION BETWEEN LK,N AND Cr,tr F O R  K ~> 2 

We assume throughout this section that ~v (x), x 6 V, are random (not necessarily i.i.d.) series; N :=  I VI >/1. 
Let ~x,~v > ~z,~v > " '" > ~Jv,N denote the variational series based on a sample ~v. (Assume that the inequalities 
are strict with probability 1.) Let L1,N > L2,~v > .-- > LN,N be the solutions to the equation 

N 

x - l  = N - I  ~ ( X  - ~k,N) - l .  
k = l  

(3.1) 

Recall that, with probability 1, ;q,N 6 (~l,N, ~ )  and Lx,u 6 (~Kjv, ~ x - l , u )  for all 2 ~< K ~< N. 
We write 

rK.L,N = ~K,N -- ~t,,lV, rlf,N = rzg,x +l,tr (3.2) 

N 

R (0 R (~) (0 X,L,N = Z r~'Ik,N' /r = Rr,X+I,N (3.3) 
k=L 

and R x , u  = R~)u; here L >/ 1, K ) 1, and l 6 [1, oo). 
1 

The purpose of this section is to show in what manner the asymptotic properties of  rL,N, R (t) influence the L,N 
asymptotic behavior of Lx,N in probability as N --+ e~, for each (fixed) K >/ 2. (Note that r z , u  and RL,lv 
depend only on the variational series ~l,/v > ~2,tr > " "  > ~u,~v.) Below, we formulate three lemmas in the 
situations where rK_I ,N(  N -- R x , u )  --~ oo, --~ --c~ and = O(1) in probability, respectively. 
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LEMMA 3.1.  Suppose that 

Then, for each N >>. 1, 

where 

( N - - R K _ I . N ) - I ( I + p N ) < . k K , N - - ~ K , J v ~ ( N - - R K , N )  -1, 

and, consequently, (2.10) holds. 

Proof. We have from Eq. (3.1) that 

O.K,N - ~K,N) < = N 
Md 

P- lim p/v = 0,  
N 

- - -  y '~ . (XK,N--~k,u)  -~ >/ N - - - R K , N .  (3.5) 
x 

k # K  

Note that P-limN(~K-I,N -- ~.X,N)/rK-I,tr = 1 by (3.5) and (3.4). Thus, again by (3.1), the left-hand side of 
(3.5) does not exceed 

N K - 1 1 N K + o(1) 
+ + - -  R K - I , N  = ~ - -  R K - 1 , N  + 

X ~ K - 1 , N  --  )~K,N r K - 1 , N  Y r K - I , N  

in probability by (3.4). Lemma 3.1 is proved. 

LEMMA 3.2. Suppose that 

(i) lf, moreover, 

then for each N >1 1, 

RK,N -- - -  

where 

and, consequently, (2.12) holds. 
(ii) If, in addition to (3.6), 

P-li~nrK-2,U RK-I,N -- = O0 for K >t 3. 

P-li~nrK-1,N(RK-LN N )  = oo, 

N)-~( I+pLN)<.~K_~ ,N- -XK,N<~(RK_~,N- -N) -~( I+p2 ,N) ,  

P -  lira p~,N = 0 (i  = 1, 2 ) ,  
N 

P- liNm(R(~) I,N)-I/Z(RK_I,N - N )  = ~ ,  

then both (3.8) and (2.12) hold with the difference that in (3.8) RK,lv is replaced by RK-1,N. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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Proof .  (i) By (3.1), 

, N ( 
>i - -  + R x - l , U  - - -  = RK-I ,N  -~" 1 + 0(1)) (3.10) 

~ K - 1 , N  --  ~.K,N r K - 2 , N  x 

in probability, because of (3.6) for K ) 3. On the other hand, by (3.1), the left-hand side of (3.10) does not 
exceed 

1 N ( N)( 
+ Rx,  lv -- - -  = Rx ,~  -- 1 + o(1)), 

k x , u  - ~X,u 

since LK,N --~K,U = rK-I ,N(1  + O(1)) in probability by (3.10) and (3.7). Consequently, (3.8) and (2.12) follow. 
(ii) Note that assumptions (3.6) and (3.9) imply (3.10). Then we have from (3.1) that 

1 N N N 
~ K - 1 , N  --  LK ,N  <~ 2 ( L K ' N  --  ~ k ' N ) - I  - -  --~ = R K - 1 , N  --  --x 

k=K 

N 

+ ( ~ K - I , N - ) ~ K , N ) ~  ( r K - l , k , N ( r K - l , k , N -  ( ~ X - I , N -  ~.K,N))) -1 
k=K 

= (RK-I,~ N -~)(1 + o(1)) 

in probability by virtue of (3.10) and (3.9). Lemma 3.2 is proved. 

The case 

is more delicate. 

LEMMA 3.3. (i) If  (3.11) holds and if  P - I ~ r K - I , N [ R K - I , N  -- N[,, < C~, then 

in probability as N --+ ~ .  

(ii) I f  the condit ions 

and  

~K-1,N --  )~K,N X )-K,N -- ~K,N ~ r K - 1 , N  

P- l im N - 1 R x , N  = c<~ 
N 

P - l i m r k - l , N R k , N  = 0 for any 2 ~< k ~< K 
N 

are fulfilled, then (2.15) holds. 

Proof .  (i) Fix K ~> 2, and introduce the events 

[] 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

f2 + = {LX,N -- ~X,N < 6rK-l,U}, LN 

f2~N = (~K-1,N -- XK,N < s r x - l , N } ,  

(3.15) 

(3.16) 
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where e E (0, 1) and 8 ~ (0, 1). We get from (3.1) that, under the event (3.15), 

K - 1  N 
1 1 N 

' k = l  k = K + l  

K N 
- -  R K - 1 , N  + - - .  

(1 -- 8)rK-1,N x 
(3.17) 

Hence, 

l i f f l P ( ~ 2 ~ , N ) ~ I ~ N m P ( r K - I , N R K - 1 , N  s -I) 
by the assumptions of  (i). Similarly, again by (3.1), the event (3.16) implies 

>0  as ,~ .1. 0 (3.18) 

1 1 
~ <<. _~ 
8rK-1,N ~K-I,N -- XK,N 

K - 2  N 

-- - ~)-~(~k,N - LK,N) -1 + Z ( ; k K , N  - ~k ,g) - '  N 
k= 1 k= K 

1 N 
~< (1 - e ) r x - l , u  + RK,N -- --,:,r 

so that 

( I ~ P ( S 2 ~ . N ) ~ < l i m P  rK-1,NRKN --  > -~ , > 0  a s 6 $ 0 .  (3.19) 
' N ' 2,~ 

Now (3.12) follows from (3.18) and (3.19). 
(ii) Clearly, the conditions of (ii) imply (3.12). Consequently, LK,N --~K,N = O(rK,N) in probability by virtue 

of (3.14) with k = K. Combining this with (3.13), (3.14), we have 

K - 1  

1 Z (~k,u -- ZK,N) -1 
XX,N -- ~K,N k=l 

N N 1 

-< I2 
k = K + l  X , 

1 

= ~ N -~.K,N ) 

(3.20) 

in probability as N --> oc. In particular, this implies (2.15) with K = 2. On the other hand, (3.14) with 
2 ~< k ~< K - 1 imply P - l i m u r l , N / r K - t , U  = 0 for any 1 ~< l ~< K - 2 and any K >/3. Thus, again by (3.12), 
we have, for a n y l  ~ < k ~ < K - 1 ,  

K - 2  

~k,U --) .K,N = ~ rt,N + ~ K - 1 , N -  )~K,N = (~X-l,U - )~K,N) (1 + 0(1)) 
l=k 

(3.21) 

in probability. Substituting (3.21) into (3.20), we arrive at (2.15) for K ~> 3. Lemma 3.3 is proved. [ ]  

4. ON T H E  ASYMPTOTIC BEHAVIOR O F  ~K,N 

We consider here the asymptotic behavior (as N ~ c~z) of the larger values ~k,u (2.5) of  an i.i.d, sample 
q) ~" N, R~C).N introduced in Sec. 3 (Lemmas 4.2 and 4.4). Throughout, ~(x),  x ~ V, and the functions rlr,N, R K ..... and , 

we use the notation introduced at the beginning of Sec. 2 and assume that F( .  ) is continuous and coy 6 ( - e~ ,  oo]. 
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LEMMA 4.1. Let F( .  ) satisfy condition (2.16) with l = 1, and assume that there exist constants aN > 0 and 

bN" 6 R and a nondegenerate distribution function D(.  ) such that FN (b~ + ta~ 1) --~ D ( t )  as N ~ co. Then 

l im N - t a N  = O. 
N 

Proof. The assert ion is an immedia te  consequence  o f  the limit au(~l,N --~2,N) ~ 1 in  probabili ty as N --+ c~ 
(which in turn fol lows f rom Theo rem 2.3.2 in [10]) and  assert ion (i) o f  L e m m a  4.2 (wi th  l = 1) below. [] 

With eF, t and IF, t as in (2.7) and (2.8), and K = 1, 2, . . .  fixed, we have: 

LEMMA 4.2. (i) F/x l ~ [1, oo), and let F(. ) satisfy (2.16). Then 

P - l i m N t / t r x ,  N = ~ .  (4.1) 
N 

(ii) F/x 1 ~ [1, c~z), and let F(. ) satisfy the following conditions: 

eF, l < ~:~, l im IF,1 (t) = 0. (4.2) 
ttoJF 

Then 
P -  l im N - 1 R  (l) ( 4 . 3 )  N K,N ~ eF, l" 

(iii) I f  WF < ~ and if  (4.2) is fulfilled with I = 2, then 

P -  lim(o)F - -  ~K,N)-I ( N=I  R~) N -- ev,1) = ey,2. 
N 

Remark 4.1. Let  us show that (2.16) implies 

P(t  - cPl/~(t))  
lim = 1 (4.4) 
,,,or F( t )  

for  any c > 0. Indeed,  fix n = 1, 2 . . . .  and assume that  (4.4) is satisfied for any c = 1, 2 . . . .  , n. Then, having  

writ ten tn = t - nP l / t ( t ) ,  we obtain 

F(t  - (n + 1)Fl/ t ( t ) )  F(tn - P l / t ( t ) )  T'(t - nP l / t ( t ) )  

1 <~ F( t )  <" F( t . )  F( t )  7 1 

as t ]" O~F. Thus,  (4.4) fo l lows by induction. 

Proof of  Lemma 4.2. For  any N >/ 1 and any M ~> 1, we write 

tM, N = inf  {s: F ( s )  = M / N } ,  TM,N = sup {s: F ( s )  = 1 / ( M N ) } .  (4.5) 

Wri te  ~'2K.M. N = {tM.N ~ ~K,N ~ TM,N} C ~'~ and FM.N(dt)  = P({~I,N 6 dt} A ~'21.M.N). We need the fol lowing 
technical  results. 

LEMMA 4.3. For some C > 0 and any N >>. 1, let g: R lv-x+l --+ [0, C] be functions such that 
g(sx ,  sx+l . . . . .  SN) =--- 0 i f  si < sj for  i < j ,  and assume, in addition, that the set of  discontinuity points 
of  g, written as A C •tc-x+l, satisfies the condition P( (~xdv ,  ~X+l,N . . . . .  ~Ndv) ~ A)  = 0. Then we have, for  
any M >>. 100K 2 and any N >1 2 M K ,  

(g(~K,N, ~K+I,N . . . . .  ~N,N)I{f2\~X,M,U}) ~< 3 C / M  = :  3M (4.6) 
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and 

(f ) K.M g(t, ~K+I.N . . . .  , ~N.N)FM.N(dt) , 

(4.7) 

where the (positive) constants CK M and C' do not depend on N. 
, K,M 

Proof. By the definition of  tM,U and TM,N, 

P(~x,u < tM,N) = ~_~ FN-k(tM,N)(I -- F(tM,N)) k <~ M x exp 1 - -~  , provided N >1 2MK,  
k=0 

and 

P(~K,N > TM,N) ~ 1 -- FN(TM,N) <~ 2 / M ,  provided M >1 3. 

Thus, (4.6) is proved. 
Clearly, it is sufficient to prove (4.7) for g(sK, sx+l . . . .  , SN) = gl(sK)g2(sK+l, . . . ,  SN) for st; > sx+l. (For 

this we learn from the assumptions of Lemma 4.3 that the expectations in (4.7) can be regarded as Riemann's 
integrals with respect to the corresponding measures on R N-tr and, consequently, g in (4.7) can be approxi- 
mated by linear combinitions of  indicator functions of the (N - K + 1)-dimensional rectangles with sides parallel 
to the II~ N-x+t  axes.) Noting that ~U-k,N, k = 0, 1, . . . ,  N - 1, is a Markov chain with transition probability 
P(~K,N > t[~K+I,N = v) = (1 -- F(t))x(1 -- F(v)) - x ,  t >>- v, for such g one obtains that 

(gl (~K,N)B2(~K +I,N . . . . .  ~N,N) ~{~2K.M.N}) 

<~ KF'-N(tMm)(NP(Tm,u))-' (f  g(t,~K+t,u . . . . .  ~U,N)FM,N(dt)). 

Next, applying (4.5), we arrive at the right-hand inequality in (4.7). The proof of  the left-hand inequality in 
(4.7) is similar, rn 

We now turn to the proof of  Lemma 4.2. 
(i) To show (4.1), write g(sK,sx+l ,  . . . ,SN) = I{sK - - sK+t  < N-I/ I~ -1} in (4.6), (4.7). Recall that 

limu P(f2\f2g+l,M,N) <~ ~M (cf. (4.6)), and note that the event f2Ir implies {(MF(~x+I,N)) - l  ~< N ~< 
M/P(~K+I,N)}. Thus, 

P (rX,N < N-1/% -1) ~ C(I{f2K+I,M,N} (FN(~x+I,N + N-1/ te  -1) - FN(~K+I,N)))+ 3M 

< C(I{f2K+I,M,N}N(P(~K+I,N) -- P(~K+1,N + Y-1 / te -1) ) )  + 3M 

~< c' (I{f2K+,,M,N} (1 P(~K+LIV+C"P-~/t(~K+t'N))~ - f f ' ( ~  - / / + s M  ,,, 

as N --+ ec, by (4.4). Since 8~t ~ 0, we get (4.1). 
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(ii) To prove (4.3) for w~- < cx~ and l 6 [1, co), we write sx,N = o~t: - ~x,u. Then, applying the law of large 
numbers to the random variables (oaf - ~(x)) -1, x ~ V, and using (4.1) (cf. Remark 2.1), we rewrite (4.3) as 

N 

P - l i m N  - l  ~ r -t s-t  ( x,k,  - = o.  ( 4 . 8 )  
N 

k=K+l  

To prove (4.8), we note that the kth summand in (4.8) does not exceed ~ 2 ~ = 1  hi(~K,N, ~k,N), where the functions 
hi are given by 

ht(t, v )  = l ( c o y  - t ) (OgF - -  v ) - l ( t  - -  v ) - l l { t  - -  v > 0 9  F - -  t } ,  

hz(t, v) = ( t -  v)- / I{0 < t - v ~< WF -- t}. 

Thus, it suffices to show that 
N 

Z ( i )  :=  N-I  ~-~ hi(~X.N, ~k.~v) 
k=l 

) 0 (4.9) 

in probability as N --~ cx~ for each i = 1, 2. 
For each i = 1, 2, we use Lemma 4.3 with 

i/l  } gi(t, tK+l,.,  tN) := ~- Z hi(t, tk) > E 
k=K+l 

to get 

> .....  N,N)FM,N(dt))+BM 

<~CK'M(f I { N - l ~ - - ' h i ( t ' ~ ( x ) ) > e ] f M ' N ( d t ) )  

where ~M < const/M for M /> 100K 2. Thus, by the definition of FM,lV, it suffices to prove that for any (large) 
M and any (non-random) sequence rN, N >/ 1, such that rN 6 (tM,N, TM,U), 

1 ~ hi(rN, ~(x)) , 0 (4.10) 
N 

x E V  

in probability as N -+ oz for each i = 1, 2. 
For i = 1, we have (via integration by parts) 

(hl(VN, ~)) ~ const(coF --VN)(1 -+- 

2rN --OJF 

(OaF -- t)(VN -- t) t+l dt 
--00 

) 0 asN--+(x~,  

since (wF - t)-t(1 - F(t)) ~ 0 as t 1" wF, due to eF, t < c~. This implies (4.10) with i = 1. 
For i = 2, (4.10) is satisfied if and only if 

NP(h2(rN, ~) > Ne) + (hz(VN, ~)l{h2(tN, ~) < Ns}) > 0 (as N --+ co) (4.11) 
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for any e > 0 (see [6], Sec. IX.9). Elementary calculation shows that the left-hand side of  (4.11) is equal (with 
an accuracy of o(1))  to 

constN (F(~N) -- F (rN -- ( s N ) - ' / t ) )  + l  f d t l  { ( sN)  - V t  < t < O ) F  - -  7 2 N }  t - l-1 ( F ( r u )  -- F ( r u  - t ) ) .  (4.12) 

From the definition of  the numbers tM,U <<. ~N ~ TM,N, it follows that N 6 [1 / (MF(r lv) ) ,  M/F(VN)] .  Substitut- 
ing this into (4.12) and using both (4.2) and Remarks 2.1 and 4.1, we note that (4.12) tends to zero as rN j" my. 
This implies (4.10) for i = 2. The proof of (4.3) for WF < c~ is completed. 

To show (4.3) in the case wy = co, we write 

h ( t , v ) = ( t - v ) - t l { O < t - v < M }  f o r M >  1. 

Since (by definition) eF, t = 0, we only need to check 

1 
P - l i ~  ~ -~h(~x,N,  ~k,N) = O. 

k 

The proof of the last relation is similar to that of (4.10) (with i = 2 and oo~- < o0) and can be omitted. 
(iii) First, applying the CLT and (4.1) with l = 2 (cf. also Remark 2.1), we have 

N 

( k.N eF) < 00. P-l n-  s- '  -- 
k=K+l  

Further on, 1) 
~-" r~r;,N Sk.N = s x , N N  (eF,2 + o(1)) 

k=K+l  

as N --> oo, because of the law of  large numbers for the random variables s -2 (k = 1,2,  N) and Lemma k , N  " " " '  

4.2 (i), (ii) with I = 2. This proves (iii). [] 

The remainder of  this section concerns generalization of Lemma 4.2 when eF,t = oo for l >~ 1. Let rK,u and 

R (t) be given by (3.2) and (3.3), respectively. 
K , N  

LEMMA 4.4. The fol lowing assertions hold in probability for  any (fixed) K = 1, 2, . . .  and l E [I, c~): 
(i) I f  F( t ) (oaf  -- t) -~ -'+ 1 (as t ~ O)F) and ot < l, then 

N _ l / a r _  l N_t /~tR(t  ) ~l/t l<,N • ~ K,NJ • 1 as N --+ oo (4.13) 

and 
-(t).  N v 1 RM, N := M t / a - I N - t / ~  RK,m, 

as N --+ oo and M ---> 0o. 
(ii) I f  f f(t  - OOF), t >t O, is slowly varying at zero, then 

( L  / li~nrL,N R I,N = 0. 

(4.14) 

Lemma 4.4 (i) (with l = 1, 2) implies the following: 

COROLLARY 4.1. Under the condition o f  Lemma 4.4 (i) with c~ < 2, 

P-li'--~lRx.u - N e F I N  - l /~ < c~. 
N 
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Proof  of  Lemma 4.4. (i) We exploit the fact that the random variables r/(x) :=  - I n ( 1  - F(~(x)) )  are 
independent exponentially distributed with mean 1, so that the variables 0k,N and ~k,u are related by 

COF -- ~k,N = rk,N exp {--Ot-177~,N] =:  Sk,~ for any k = 1, 2 . . . .  , N,  (4.15) 

where rk,N := (,~(~k,N)(WF -- ~k,N)-~) -1/~. We need some properties of nk,N (cf. [6], Sec. 1.6): 

LEMMA 4.5. For any N >>, 1, 

(r/k,N)l~<k~<N _a_ (Tkk_ 1 + Tk+l(k + I) -1 + " "  + TNN-I)I<~k<~N ; (4.16) 

here Tk, k >>, 1, are independent exponentially distributed random variables with mean 1, and d means that the 
random vectors have the same distribution. Moreover, almost surely (a.s.) 

k ~ . K T k k - l - - l n N  •  a s N - +  ~ (4.17) 

f o r  f ixed K >>. 1, and 
N 

lim S "  Tkk- 1 = _ In 8 
N Z-- . . r  

k=[Nal 

f o r  all 0 < 8 < 1, where [t] denotes the integer part  o f  t. 

Now we are in a position to prove (4.14) (the proof of (4.13) is similar and can be omitted). 
(4.16)-(4.18) to (4.15) with k = [NS] and 0 < 8 < 1, we get 

" 7 " " -  
0 < c(6) < P-limstNal,N ~< P-l~astu~l,tr <. C(3) < oo, 

N 

where (non-random) constants c(8) and C(8) tend to zero as 8 $ 0. Thus, 

N 

(4.18) 

Applying 

(4.19) 

)-') 
-t d s_t rk,__._s exp 1 -- 1 := (sx. N X,k,N)M<~k<<.tNaI. 

(rX,k,N)M<<k<<[N6] = K,N rK,N et n=K M~k<~[N$] 

Consequently, combining (4.20) and the fact that sx,N • N -1/~ in probability as N --+ c~, we see that the 
left-hand side in (4.14) can be replaced by 

[NSI 

RM,N "= M I - 1  Z ' ~ K , k , N  �9 
k=M 

(4.21) 

Let us estimate (4.21). Again by (4.19) we choose (non-random) p(S) > 0 such that p(8) ~ 0 as ~ $ 0 and 
rk.~ tk,__._Lu ~< 1 + p(8)} C f2 tends to 1, the probability of the event f28,N := {1 - p(8) ~< infx~<k~<N8 ~ ~ supl~<k~<m rr.~ 

since ~ < l. 
Further, by (4.15) and (4.16), the remaining kth summands in 0r "'K,M,N can be rewritten as 

k=[NS] 

P- limN N-t/'~ ~ rg,t,N-t = 0, (4.20) 
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as N --+ oo, for any (small) 8 > 0. Write also f2a {exp{ot_l M-1 2 = ~-,m=K 7"' m-1 } > 1---=~} C f2. With the above 
notafion, 

l i m P  (RM N > l / e ) < ~ I - ~ P ( { R M , u  > l/e} n f2~ g fq f2~)+ P(f2\f28) 
N ' N ' 

~< P "7 ~ exp - -- > 
k~M Ol m=K 

) + P(f2\f28) 
(4.22) 

for any e > O, and, similarly, 

p ( 3 ) ]  ~ exp -- --ce ~m < e + P(f2\f28). 
k>.M m=K 

(4.23) 

By applying (4.17) to the kth summands in (4.22), (4.23) when, first, M --+ r and then e $ 0, we arrive at 
(4.14). Part (i) is proved. 

(ii) It suffices to prove the assertion for I 1. Set SC,N = ~~.~=z s-1 Under the condition of  Lemma 4.4 (ii), k,N" 
P-l imu St.,NSL+I,N = 0 for any (fixed) L = 1, 2 . . . . .  by Theorem 6 of [1]. Moreover, for any L + 1 ~< k ~ N, 
rL,k,N = Sk, N(1 -- SL,N/Sk,N) >>- Sk,N(1 - SL.NSL+1,N).  Thus, 

- -SK+I ,NSK+2,N)  SK+2,N ----> 0 rK ,NRK+I ,N  ~ SK+I ,N( I  -1 

in probability as N --+ ocz. Lemma 4.4 is proved. [] 

5. ON LOCALIZATION OF THE EIGENFUNCTIONS 

In this section, we investigate the asymptotic structure (as N ---> ~ )  of the support of  the normalized 
eigenfunctions ~ x ( x )  :=  ~ (x ;Zx ,  u), x ~ V (2.4), for any (fixed) K /> 1. For any N /> 1 and any 

ilk) ~(k) (k) 1 ~< k ~< N, let ZI,N, Z2,N . . . .  ,ZN,N E V and "-I,N,'-2,N . . . . .  ZN,N ~ V denote (random) coordinates of 
~v-peaks and ~p~-peaks, respectively, i.e., 

~ ( Z l , N )  :~'-~" ~ I , N  :> ~ ( Z 2 , N )  : =  ~2,N > " ' "  > ~(ZN,N)  : ' =  ~N,N 

and 
~.]2. (k) ~ .t.2t~(k) ~ .ir2[~(k) \ 

k [Zl,N) > 'Pk k~2,N) > "'" > ~r'k \~N,N)" 

Note that ~(1) �9 a,N = Zt,U for any 1 ~< l ~< N. 

Definition 5.1. Given K = 1, 2 . . . .  , we will say that ~K( ' )  has the property of 
(a) M-point  localization if 

2 (K) min L: P - l im ~X(Zm,N) = 1 = M < e~; 
N 

m = l  

(b) partial localization if  
M 

2 (K) P- lira lira ~_, ~ x  (Zm.u) = 1 
M - 'N-  m =  1 

and if the (finite) minimum in (5.1) does not exist; 
(c) complete delocalization if 

P- lim lim ~ ,t,2 r.('~) ~ ~.gk~m,N) ~ O. 
EJ.O N 

O<m<~eN 

In view of Theorems 2.1-2.3 and Definition 5.1, we obtain the following results. 

(5.1) 

(5.2) 
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THEOREM 5.1. Let 1 /~  > eF and K = 1, 2, . . . .  Under the conditions of  Theorem 2.1, aPx(.) satisfies the 
single-point localization, viz. 

P-I  ( z x , u )  = 1. 

THEOREM 5.2 ~ Let 1 I x  <~ eF and K = 1. 
(j) I f  either the conditions of  Theorem 2.2 ~ or the conditions of  Theorem 2.3 ~ (i) are fulfilled, then lPl ( . )  

satisfies complete delocalization. 
(jj) Under the conditions of  Theorem 2.3 ~ (ii), g/l (") satisfies partial localization. 

THEOREM 5.2. Let 1 / x  <~ e F and K = 2, 3, . . . .  
(j) I f  either the conditions of  Theorem 2.2 (i) or the conditions of  Theorem 2.3 (i) are fulfilled, then single-point 

localization holds, viz. 

P- lim ~p~ (ZK-I,N) = 1. 
N 

(jj) I f  either the conditions of  Theorem 2.2 (ii) or the conditions of Theorem 2.3 (ii) hold,  then ~K (") satisfies 
partial localization. 

(jjj) Under the conditions of  Theorem 2.2 (iii), K-point  localization holds, viz. f o r  any 1 <. k <. K - 1, 

P-li~n~,~(zk N), = 1 / ( K ( K  -- 1)) and P-lim~2(ZK,N)N = (K -- 1 ) /K .  

Theorem 5.2 ~ is proved in [3]. To prove the remaining statements, we use the assertions of  Theorems 2.1-2.3 
and Lemmas 4.2 and 4.4. 

Proof  o f  Theorem 5.1. Using (2.4), (3.2), and (3.3), 

lpK(ZK,N ) ~ ()~K,N 2 ~K,N) -2 = 1 -k-o(1) 
n ( 2 )  

(LK,N -- ~K,N) -2 + (K  -- 1)(~.K,N -- ~K-1,N) -z + t~x, N 

in probability, due to Theorem 2.1 and Lemma 4.2 (i), (ii) with l = 1. 

Proof  o f  Theorem 5.2. (j) follows by the same argument as in (5.3) with ZK,N replaced by ZK-I,N. 
(j j) Write 

N 

~ K , M , N :  ~ I~2(Zk,N) for M~> 1. 

k=K+M 

Simple estimates show that 

~If K,M,N 
(~K-I,N -- ~K+M,N)-2 

(k 2)(~K-2,N --  ~ K - I , N )  - 2  + ()~K,N -- ~ K - I , N )  - 2  q- (~'K,N -- ~K,N) -2 "J- R (2) 
- -  K,N 

and thus, by applying Theorems 2.2 (ii), 2.3 (ii), and assertion (4.13), we arrive at 

l iml imP(C/x,g ,N < e) = 0  for each M/>  3. 
iS0 N 

(5.3) 

[] 

(5.4) 

Similarly, 

TX,M,N ~ ~ 0~K,N -- ~ ,N)  -2 ()~K,N -- ~k,N) -2 
k=K + M 

This and Lemma 4.4 (i) for l = 2 imply 

limlim P(~K,M,~ > e) = 0 for any e > 0. 
M N 

(2) 
RK,K+M,N <~ 

R(21 K--I,N 

(5.5) 
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The claimed assertion follows from (5.4) and (5.5). 
(jjj) For any 1 ~< l ~< K,  write 

I[t2 (Zl,N) = (~'K,N --  ~l,N) -2  Jff (•K,N --  ~k,N) -2  

= k = K + l  

(5.6) 

First, 
N 

r 2 .2 0(2) = 0(1) 
K-1,N ~ ~ "K-1,NL'K,N 

k=K+ 1 

in probability by virtue of  Lemma 4.4 (ii). Further on, by (2.15), 

P -  l i m  r2_I ,N( )~K,N --  $K,N) -2  = K 2, 
N 

(5.7) 

(5.8) 

and, again by Lemma 4.4 (ii) for 1 ~< k ~< K - 1, 

P- l imN r..-1N(_,N2 -- )~K,N) -2  = P-I~arZ_I,N(~K-I,N --  )~K,N) - 2  = K2/ (K  - 1) 2- (5.9) 

Applying (5.7)--(5.9) to (5.6), we get the desired results. Theorem 5.2 is proved. ra 
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