Lithuanian Mathematical Journal, Vol. 39, No. 2, 1999

LIMIT THEOREMS FOR THE MAXIMAL EIGENVALUES OF THE
MEAN-FIELD HAMILTONIAN WITH RANDOM POTENTIAL

A. Astrauskas

Abstract. Let Hy = x[&v +Ev(x), x € V C Z", be the mean-field Hamiltonian with » > 0 and random i.i.d. potential
gy. We prove limit theorems for the extreme eigenvalues of Hy as [V| — oo. The limiting distributions are the same as for
the corresponding extremes of £y only if either (i) £y is unbounded and » > 0, or (ii) &y is bounded with “sharp” peaks
and » <« 1. Localization properties for the corresponding eigenfunctions are also studied.
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1. INTRODUCTION

The mean-field (Curie-Weiss) model is given by the random (symmetric) operators Hy, V C ZY, acting on
the functions ¥: V — R according to the formula

Hyy(x) = %xAyy +ExX)Y(x), x €V, (1.1)

where Ayy = N™! 2 cev ¥(x), N is the number of sites in V, 3¢ > 0, and the potential §(x), x € Z”, consists
of independent identically distributed (i.i.d.) random variables with (continuous) distribution function -F(-). The
Hamiltonian (1.1) represents a simplified modification of the Anderson model

Hyy(x) = Ay (x) +Ex)¥(x), x €V, (1.2)

with the Laplacian A (cf. [11]), and has been introduced by Bogachov and Molchanov [5] to investigate long-time
intermittency phenomena for evolution problems with a Gaussian random potential.
Let

A.],N > }‘-Z,N > e > }\N,N (13)

be the (random) eigenvalues of the Hamiltonian (1.1), and let ¥ (- ; A n) be the corresponding (random) eigen-
functions normed by the condition erv ¥? (x; Mn) =1, 1 €k < N. Clearly, if 5 = 0, then (1.3) is simply
the variational series

§(ziN) =& v > E(zan) =6 n > > E@NN) = 6NN,

and the Kronecker symbols 8(x; zj,n), 8(x; z2.n8), ..., 8(x; zyn), x € V, are the corresponding eigenfunctions.
The purpose of this paper is to study the asymptotic properties (as N — 00) of eigenpairs Ag,n, ¥ (-; Ak, n),
for fixed K = 1,2, ..., for s > 0 and arbitrary F(-).

The asymptotic behavior of the maximal eigenvalues of Hy was earlier discussed in [5] for a Gaussian i.i.d.
&(-) and in [7], [8] for an exponentially distributed i.i.d. £(-). This asymptotical analysis was shown to play
a crucial role in the investigation of the long-time behavior of the evolution associated with Hy. In [3], we
discussed limit theorems for the maximal eigenvalue A; v of the Hamiltonian Hy for an arbitrary i.id. £(-),
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118 A. Astrauskas

provided there exists a density p(t) = F’(¢) satisfying some condition on a continuity at a right endpoint of
£(0). The results of the present paper are proven under continuity conditions weaker than those in [3].

Clearly, asymptotic properties of the upper bound of the spectrum of the Hamiltonians (1.1), (1.2) in an
increasing volume V depend strongly on both the diffusion constant ¢ and on the “tail behavior” 1 — F(¢) as ¢
goes to the right endpoint of £(0).

For the Anderson model (1.2), we have shown in [4] that if —In(1 — F(t)) = o(t?) as 1 — oo (the case of
&v = {£(x)}xev with extremely rare high peaks), then the asymptotic behavior of the maximal eigenvalues for
s > 0 is similar to that for » = 0. Namely,

(L) a single-point localization takes place: limy ¥2(zx.n; Ax.~) = 1 in probability, and

(LT) if for some (normalizing) constants ay > 0 and by € R the weak (non-degenerate) limit FN (by +

tay') = G(t) (as N — 00) exists, then
P(an(hg.n — by) <) —> Gk(r)

as N = oo, with Gy (1) '= iy [l gy Vo '™ dv.

Note that if li_m,_,oo(-t"2 In(1 — F(#))) > 0, then the strong influence of the parameters of model (1.2) on
both limit theorem for Ax v and localization theorem for ¥ (-; Ax ») has been established (see also [2], [9]). The
latter phenomenon is caused by the neighboring effects due to the local (strong) properties of the Laplacian A.

In contrast to A, the mean-field diffusion seems to be a long-range (weak) operator. This property, as well
as the absence of neighboring effects in model (1.1), leads to the fact that every unbounded &(-) may be treated
here as a potential with strongly pronounced peaks. The following two classes of i.i.d. £(-) lead to qualitatively
different asymptotic behaviors of the maximal eigenvalues of Hy for any s > 0:

(1) for unbounded &(- ) satisfying (2.9), properties (L), (LT) hold (cf. Theorem 5.1 and Corollary 2.1 below),

(2) for bounded &(-) such that

PEO)>1)=(1—-1)% 0<r<1, foragl (1.4)

(the case of &y with weakly pronounced peaks), there exists a constant A = A%a, ») > 1 such that /N (A1 y—A%)
converges in distribution to the Gaussian variable. In addition, the eigenfunction ¥ (-; A y) is approximately
“uniformly” distributed on V, i.e., a complete delocalization takes place (cf. Theorems 2.2° and 5.2° below).

We shall briefly illustrate a connection between asymptotics of the maximal eigenvalues of Hy (cf. (1) and
(2)) and asymptotics (as T — 00 and V — Z”) of the solution u(z, x) > 0 of the equation

du(r, x)
at

= ;-Z(u(r, ) —u(, x)) + E®u(r,x), u@x=1,7t>0, xeV.
yeV

In fact, the equation describes an evolution of a particle system of the branching type in a medium &y, and
u(r, x) stands for the mean number of particles at site x at time . The notion of intermittency refers to the
appearance (as T — 00) of extremely high isolated “peaks” of u(z, -), where most of the mass y_, u(r, x) is
concentrated (cf. [5], [7] —=[9]). The solution u(-, - ) admits the spectral representation

N

u(z,x) =) exp{thin — 2Tvx}¥r(x; Mw) (W (5 e, 1);
k=1

here (-, -) stands for a scalar product in L2(V). Write

(7, x) = u(z,x)/ Y _ u(r, )

yeV

for the “mass concentration function.” Let T — o0 and V — Z' simultaneously, and N = O(z#) for some
B > 0. Straightforward calculations based on Theorems 2.1 and 2.2° below show the validity of the following
statements for any 3¢ > O:
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(1) for unbounded & (- ) satisfying (2.9), a complete localization for (r, - ) in the record point of £y is observed,
viz.«t(z, z1,4) — 1 in probability (intermittency effect);

(ii) for &(-) satisfying (1.4), u(z, -) is approximately “uniformly” distributed on V, i.e., a complete delocal-
ization takes place. )

The exact asymptotics of evolution associated with Hy for an arbitrary i.i.d. £(-) is studied in our forthcoming
paper.

Our paper is organized as follows. In Sec. 2, we formulate the limit theorems for Ag x. Sections 3 and 4 are
devoted to the proof of the results of Sec. 2. In fact, in Sec. 3 Theorems 2.1-2.3 are restated under conditions
expressed in terms of §x n and some functionals on &g n. The asymptotic behavior of such functionals is
considered in Sec. 4. Finally, Sec. 5 is devoted to the localization theorems for the eigenfunction ¥ (-; Ag,n).

2. LIMIT THEOREMS FOR Ak v

Let £(x), x € Z", be a sequence of i.i.d. random variables on a probability space (2, F, P) with a common
(continuous) distribution function F(-). Given a realization &y = {£(x)}rev, we first consider the spectral
problem

Hyy(x) = Ap(x), xeV. (2.1
From (2.1) we conclude that
wAyyr
x) = —. 2.2
¥ (x) T (22)
Averaging (2.2) with respect to x € V (note that Ay # 0), we arrive at the dispersion equation
1 ~1
— =N"1 - .
~ 2 (~£0)7 23)
xeV

where N := |V|. Again by (2.2) the eigenfunction ¥(x; A), x € V, corresponding to the eigenvalue A and
normed by the condition ¥_ ., ¥?(x; A) = 1, can be written as

~1/2
Y0 = (- £00)7 (Z (- s<y>)‘2> : 2.4)
yev
Let
Ein>E N> >EvnN (2.5)

be the variational series based on a sample £(x), x € V. The inequalities in (2.5) are strict with probability 1
because of the continuity of F(-). Thus, with probability 1 Eq. (2.3) has exactly N roots Ay y > Ay y > -+ >
An,n such that

Ay > &N, Exn <Agn <Ek-1in <K N). (2.6)

To formulate our results (here and in the sequel) we need some additional notation. Given F(f), we write
F(t) =1— F(t). Let wp stand for the right endpoint of & := £(0):
WF = sup [t: f(t) > 0}.

For wr € (—00, 00] and any [ € (0, co), we write

{((wp —&)7) for wp < 00, @7

er|] =
! 0 for wr = 00,

and er := ef,|, where (- ) denotes the expectation with respect to P. Further, introduce the following functional:

[ I{fl/’(t) <v< l}v"“(f(t —v) - f(t)) dv, if wp = 00,

JYFY () <v < wp =t} 7Y (F(t —v) = F)) dv,  if oF < o0, (28)

Ip (1) = {
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where [ := [;, and I{A} denotes the indicator of a set A.
. Finally, for a sequence of random variables Xy y > 0, we write Xy » < 1 (as first N — 0o and afterwards
M — ©0) in probability if and only if

0 < P-limlim Xy pr < P-limlim Xy 5 < 00
M N M N

or, equivalently, if and only if

. vt tonnd . I 3 1
limm i P(Xw v < ) = limim Tim P(XN'M > 8) =0.
These values of limits mean that the sequence of distributions {P(Xy py € dt), N=1,2,..., M =1,2,...}is
weakly compact and any of its weak limits (as first N — oo and afterwards M — oo) has no atom at zero.

In what follows, we consider the pair (ef, ») as a vector parameter of the model and distinguish between the
following three zones of (ef, 3):

(A) 1/5 > eF (the case of weak diffusion or strongly pronounced asymptotic structure of the “peaks” of &),

(B) 1/5¢ < e (the case of strong diffusion or weakly pronounced asymptotic structure of the “peaks” of &v),
and

(C) 1/3¢ = ef (“critical” points).

Note that, by definition, if £ is unbounded (viz., wr = 00), then, for any » > 0, the parameter (er, »)
belongs to (A), whereas, if £ is bounded and ((wr — &)~!) = oo, then, for any s > 0, the parameter (er, )
belongs to (B).

In case (A) we have

THEOREM 2.1. Let K 2 1 and 1/5c > ef. If, moreover,
Ip (1) — 0 ast 1 wr, 2.9)
then
P-imNQxn ~&x.n) = 1/(;1; - e}-')

and
A. -
P- ll K.N SK,N

=0; (2.10)
N Ex 1N — Ak N

here &y N = wp.

Theorem 2.1 and Lemma 4.1 below imply the following extremal-type limit theorem for eigenvalues (cf. also
Remark 2.1).

COROLLARY 2.1.  Let the conditions of Theorem 2.1 be fulfilled. Assume, in addition, that there exist
constants ay > 0, by € R, and a nondegenerate distribution function D(-) such that

t
FN<bN + —) 2, D(t) as N — co.
ay
Then for any (fixed) K =1,2,...,

P(aN(AK,N —by) < t) - Dg(@) as N — oo,

where
o0

1 -1 -
DK(t)z(K—_l—)T f SK 1e SdS.
.-lnD(t)
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The class of possible (extreme value) limit distributions D(-) is discussed, for example, in the monograph
[10] of Leadbetter et al. (Chap. 1).

Cases (B) and (C) are more delicate. For (B) and K = 1, the following central limit theorem holds:

THEOREM 2.2°. Let K =1 and 1/ < er, and suppose that \° > wr is the solution of the equation

L ~1
—={0"~97)
Then
. 0 1 t v?
lwxp(\/N(xl,N-A)<t)=am/exp{—ﬁ}dv @.11)

for all t € R, where a* =1 — (A% — £)"1)2((A0 - £)~2)-1.

THEOREM 2.2. Let K 22 and 1/ < ef.
(W) If er <o and Ig () > O ast 1 wr, then

1
P-UmN(Ex-1,8 —Ak.N) = 1/(61-' - ;)

and
P-lim SK=LN ZARN 2.12)
N Ag.n—Ek.N
(i) If -
F(t) = (wr =D*(14+0(1)) ast?owr, (2.13)
and a € (0, 1), then
NY*@Eg_yn —rgw) < N Ok w —Exw) < 1 (2.14)

in probability as N — oo. _ _
(iil) If im; o Flwr —vt)/F(wp —1t) =1 for all v > 0 (i.e., F(wr — 1), t > 0, is slowly varying at zero),
then
LN —A
P-lim k1N — AK.N

=K-1. (2.15)
N Agn —§k.N
Case (C) below differs slightly from (B):

THEOREM 2.3°. Let K =1 and 1/ = ep.
(i) If e < 00, then the central limit theorem (2.11) holds with \° = wr.
(i) If (2.13) is fulfilled with a € (1, 2), then

NYE@un = §,8) = NV wp — x| < 1

in probability as N — oo.

THEOREM 2.3. Let K > 2 and 1/ = er.
() Ifers < oo and Ips(t) > 0 as t t wr, then both the limits

P- liArln N(wr — &gk, N)Ex-1,N —Ak,N) = 1/er

and (2.12) hold.
(1) If (2.13) is fulfilled with o € (1, 2), then (2.14) holds.
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Remark 2.1. For any ! € (0, 00), the condition Iz ;(t) — 0 as ¢ 1 wr implies

Fe-F'o) 1 ast4 2.16
——% —> 1 ast? owr, .
7O F (2.16)
provided er; < co. For [ = 0, condition (2.16) (i.e., F(t — 0)/F(t) = 1) is well known in the extreme value
theory for i.i.d. random variables as sufficient and necessary for a Poisson character of the occurrence of large
values of £y in limit as N — oo (cf. [10], Sec. 1.7).
On the other hand, if ef  is finite, assumption (2.9) of Theorem 2.1 is sufficient for the existence of the limit

in probability, which in turn implies the assertions of Theorem 2.1 (the necessity of (2.9) follows by a slight
extension of the proof of Lemma 4.2 (ii)). The class of distribution functions satisfying (2.9) includes, for
example, F(-) from (2.13) with @ > 1 (but not with « < 1).

Proof of Theorems 2.1-2.3. Theorems 2.2° and 2.3° are proved in [3].

Theorem 2.1 for K = 1 follows from Lemma 4.2 (i), (ii) (with [ = 1) by the same argument as in the proof
of Theorem 1 in [3]. Theorem 2.1 for K > 2 follows from a combination of Lemma 4.2 (i), (ii) (with [ = 1)
and Lemma 3.1.

In Theorem 2.2, part (i) follows from a combination of Lemma 4.2 (i), (ii) (with [ = 1) and Lemma 3.2 (i);
part (ii) follows from Lemmas 4.4 (i) (with ! = 1) and 3.3 (i), and part (iii) follows from Lemmas 4.4 (ii) and
3.3 (ii). '

Finally, in Theorem 2.3, part (i) follows from Lemmas 4.2 (with [ = 2) and 3.2 (ii); part (ii) follows from a
combination of Lemma 4.4 (i) (with [ = 2), its Corollary 4.1, and Lemma 3.3 (i).

3. ASYMPTOTIC RELATION BETWEEN Ax y AND & y FOR K > 2

We assume throughout this section that £y (x), x € V, are random (not necessarily i.i.d.) series; N := |V| > 1.
Let &1y > &y >« -+ > &n, N denote the variational series based on a sample §v. (Assume that the inequalities
are strict with probability 1.) Let A; vy > Ao x4 > --- > Ay n be the solutions to the equation

N
wl = NI Z(x—gk,,v)-‘. (3.1
k=1

Recall that, with probability 1, A; vy € (&1 5,00) and g v € (Ex v, Ex—1n) foral 2 K < N,
We write

re.LN =8k N —ELN, KN =TEK+LN, 3.2)
N
& - ~{ & _ p®
Reiw= ZrK,k,N’ Ry =Ry kN (3.3)
k=L

and Rg ny = RQ?N; here L>1,K > 1,and ! €{l, c0).

The purpose of this section is to show in what manner the asymptotic properties of r; y, Rg)  influence the
asymptotic behavior of Ag y in probability as N — oo, for each (fixed) K > 2. (Note that r, 5 and Ry n
depend only on the variational series §; y > & v > -+ > &En,n.) Below, we formulate three lemmas in the
situations where rx_i, N(% — Rg n) — 00, = —oo and = O(1) in probability, respectively.
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LEMMA 3.1. Suppose that
, N
P-hmr,(_l,,v(— - RK,N) = o0. G.4)
N po4

Then, for each N > 1,

(% - RK—I.N>-1(1 +pn) <Agnv —Ek N < (% - RK,N)_I’

where
P- llgl oy =0,
and, consequently, (2.10) holds.
Proof. We have from Eq. (3.1) that
- N _ N
kv =& === Oiw—&w) > — - Rew. (3.5)
> oy ”

Note that P-limy(§k-1,v — Ag.n)/rx-1.8 = 1 by (3.5) and (3.4). Thus, again by (3.1), the left-hand side of
(3.5) does not exceed

N K-1 1 N K +o(1) N
—+ + — Ry n=——Rg N+ ———= (— - RK—-I,N)(I +o(1))
n  Exk\N—AKN TK-LN w . TK—1,N »
in probability by (3.4). Lemma 3.1 is proved. a
LEMMA 3.2. Suppose that
. N
P-limrg_sn (RK_I,N - —) =0 forK 3. (3.6)
N >
1) If, moreover,
. N
P-h[{,n "K—l.N(RK—l,N - ;) = 00, 3.7
then for each N > 1,
Ny-1 Ny-1
(Rew = =) A+ 1w <xmiw ey < (Reciy — =) (L4 o), (3.8)
> »
where
P-limpiny =0 (=12,
and, consequently, (2.12) holds.
(i) If, in addition to (3.6),
N
. @) —172 —
P-lm(RE. | )™ (Reow = —) = oo, (3.9)

then both (3.8) and (2.12) hold with the difference that in (3.8) Rg,n is replaced by Ry n.
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Proof. (i) By (3.1),

1 _K—2

N N
P2 + Rg- — — = (Rg. - — (1 + 1 3.10
ExN —AEn oy T Rx-y =2 ( K-1N J{)( o(1)) (3.10)

in probability, because of (3.6) for K > 3. On the other hand, by (3.1), the left-hand side of (3.10) does not
exceed

1 N N
ew—Ern + Rg,n — ~ = (RK,N - ;)(1 +o(1)),

since Ag y — &g, v = rk—1,~(140(1)) in probability by (3.10) and (3.7). Consequently, (3.8) and (2.12) follow.
(i1) Note that assumptions (3.6) and (3.9) imply (3.10). Then we have from (3.1} that

N
1 N N
<) G =& = =Riy——
Ek-1N —Ak N » P
N
+ (Ex-1,v — Ag.N) Z (rk-1en(re—1en — Gx-1n — )U(,N)))—l
k=K

= (Re-1 - %)(1 +o(D)

in probability by virtue of (3.10) and (3.9). Lemma 3.2 is proved. O
The case
—_ N
P-hmrg_l_NlRK,N——I <o (3.11)
N »
is more delicate.

LEMMA 3.3. (i) If (3.11) holds and ifp-grﬁrK,I,NlRK_l,N — &) < 00, then

k-1 N — Ak N X Ak N —EKN X TK-1N (3.12)
in probability as N — o0.
(i1) If the conditions
P-lim N~ Rk y = 00 (3.13)
and
P-li]\r,nrk_l,NRk,N =0 for any2<k<K (314)

are fulfilled, then (2.15) holds.

Proof. (i) Fix K > 2, and introduce the events

Qf y = {Ak.n — kN < Srg_in), (3.15)

Q;y = k-1, N — Ak, N < ETK-1 N}, (3.16)
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where ¢ € (0, 1) and & € (0, 1). We get from (3.1) that, under the event (3.15),

L S 1 - 1 N
Srg—1n S Ag.N —§1<N kz(gk'N —AKN)” "k;H()‘K,N — &N+ =
S Rewt (3.17)
(1 —8)rg-1,n T
Hence,
@P(QZ{N) < E—Vﬁp(rK—l,N‘RK—I,N - %Vt-‘ > constS‘l) —0 as8 )0 (3.18)

by the assumptions of (i). Similarly, again by (3.1), the event (3.16) implies

1 1 K-2 N N
S =- )+ Y kv =g = =
ErgK—1,N Ex—IN — Ak N ;(&»N K.N) I;{ KN =& nN) ”
1 + R N
S (l—ergoin LN
so that
fim - T N const
1115nP(Qg,N) <111{,nP(rK—1,N|RK,N—';{ > — ) — 0 aselO. (3.19)

Now (3.12) follows from (3.18) and (3.19).
(i1) Clearly, the conditions of (ii) imply (3.12). Consequently, Ax v —&x ¥ = O(rg,n) in probability by virtue
of (3.14) with k = K. Combining this with (3.13), (3.14), we have

1 K-1
[T v Z(&.N - /\K,N)—l!
KN —EKN i 620
1, N 1 _ 1
k;l(AK W SN T <f1<-1,1v> B 0<EK—1,N - kK,N>

in probability as N — oo. In particular, this implies (2.15) with K = 2. On the other hand, (3.14) with
2<k<K—1imply P-limyr n/rxk-1n =0 forany 1 <! < K —2 and any K > 3. Thus, again by (3.12),
we have, forany 1 <k < K -1,

K-2
Eenv—rky =Y nn+Ekan—rey = Ex-1v — A1 +0(D) 3.21)
=k
in probability. Substituting (3.21) into (3.20), we arrive at (2.15) for K > 3. Lemma 3.3 is proved. o

4. ON THE ASYMPTOTIC BEHAVIOR OF &k v

We consider here the asymptotic behavior (as N ——) o0) of the larger values & y (2.5) of an i.i.d. sample

£(x), x € V, and the functions rg v, RY K.m N and RY KN introduced in Sec. 3 (Lemmas 4.2 and 4.4). Throughout,
we use the notation introduced at the begmmng of Sec. 2 and assume that F'(-) is continuous and wg € {—0c0, 0ol
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LEMMA 4.1. Let F(-) satisfy condition (2.16) with | = 1, and assume that there exist constants ay > 0 and
by € R and a nondegenerate distribution function D(-) such that F¥ (by + ta;,l) 3 D(t)as N > . Then
h}{]n N-lay =0.

Proof. The assertion is an immediate consequence of the limit ay(§;,x5 —&2,5) < 1 in probability as N — o0
(which in turn follows from Theorem 2.3.2 in [10]) and assertion (i) of Lemma 4.2 (with [ = 1) below. ]

With eg; and Ig; as in (2.7) and (2.8), and K =1, 2, ... fixed, we have:
LEMMA 4.2. (i) Fix ! € [1, 00), and let F(-) satisfy (2.16). Then

P-li;/nN‘/"rK,N = 0. (4.1)

(ii) Fix [ € [1, 00), and let F(-) satisfy the following conditions:

efF] < CO, lim Ipyl(t) =0. 4.2)
ttwr
Then
P-lim N7'RYy =eru. (4.3)

(iti) If wr < 00 and if (4.2) is fulfilled with | = 2, then

P-lim(r —&x.n) T (N Ry — €)= era.

Remark 4.1. Let us show that (2.16) implies

. F(@r—=cFYiy)
lim ————~ =1

= 4.4
Jim = @4)

for any ¢ > 0. Indged, fix n = 1,2,... and assume that (4.4) is satisfied for any ¢ = 1, 2, ..., n. Then, having
written 2, =t — nF1/!(t), we obtain

FGt—(n+ 1)FVIr))  F@,— FY(t) F@—nFY' ()
1< = < — . = — 1
F() F(t,) F(@)
as ¢ 1 wg. Thus, (4.4) follows by induction.

Proof of Lemma 4.2. Forany N > 1 and any M > 1, we write
ty,n =inf {s: F(s)=M/N}, Ty = sup {s: F(s) =1/(MN)}. (4.5)

Write Qg mnv = {tuv <k v < Tun} C Q and Fy n(dt) = P({§1,v € dt} N2y p ). We need the following
technical results.

LEMMA 4.3. For some C > Q0 and any N 2 1, let g RN-K+1 5 [0, C] be functions such that
gk, Sk+1,---,88) = 0 if 5; < 55 for i < j, and assume, in addition, that the set of discontinuity points
of g, written as A C RN-K+1 satisfies the condition P((Ex.n»&Ek+1.Ns - --» EN.N) € A) = 0. Then we have, for
any M > 100K? and any N > 2MK,

(8Ex.Ny Ek+1Ns - - -» ENNT{Q\Qk M N)) S 3C/M =: 8y (4.6)
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and

Ck.m (<] gt Ekv1Ns - -+, ’;‘N,N)FM,N(dt)> - 5M> < gk Ny Ek iy - -, EN N QK )
@.7)

<Cyu </ 8, Ek+1,Ny v -y SN.N)FM,N(dt)>,

where the (positive) constants Ck y and C’K_ y do not depend on N.
Proof. By the definition of zy x and Ty y,

K-1

k M
Plex.n <tyn) = Z (N) FN~* ) (1 = Femn))* < M¥ exp [1 - 7} , provided N > 2MK,
k=0

and
P(xn > Tyun) <1 — F¥N(Tyn) <2/M, provided M > 3.

Thus, (4.6) is proved.

Clearly, it is sufficient to prove (4.7) for g(sg, Sk+1, - - -» SN) = 81(Sk)82(sk+1, - - -, n) for sg > sg41. (For
this we learn from the assumptions of Lemma 4.3 that the expectations in (4.7) can be regarded as Riemann’s
integrals with respect to the corresponding measures on RV~X+1 and, consequently, g in (4.7) can be approxi-
mated by linear combinitions of indicator functions of the (N — K 4-1)-dimensional rectangles with sides parallel
to the RV-K+1 axes.) Noting that éy_rny, Kk =0,1,..., N —1, is a Markov chain with transition probability
PEx n > tlggk oy =v) = (1 — F(0)X(1 = F(v))~%, t > v, for such g one obtains that

(81€x.M)82E k410 - - -, EN.N) TRk m.4})

= ((g1Ex, MUk, m.n ek +1.8)82Ek 41N, - - - EN.N))

< KFI—N(IM,N)(NF(TM,N))—I </ gt Ek+1,Ns -  EnN) FM.N(dt)>.

Next, applying (4.5), we arrive at the right-hand inequality in (4.7). The proof of the lefi-hand inequality in
(4.7) is similar. ]

We now turn to the proof of Lemma 4.2.

(i) To show (4.1), write g(sk,Sk+1,...,58) = L{sx — sx+1 < N~Y'e=1} in (4.6), (4.7). Recall that
limy P(Q2\Rk+1,m,n) < 8p (cf. (4.6)), and note that the event Qg1 p v implies {(MF(SK.*.LN))—I <N K
M/F (Ex+1.8)}. Thus,

P(rew < N™V'e™) < o(H{Qkvimn) (FY Exsrn + N7Ve™) = F¥(Ei10)) + 8m
< oM@+ 1.y nIN(FEg1n) ~ Flegn + N7V ™)) + 8y

F(éxrin + " F= V! Ex1n)) 8y By
F(Exv1,n)

< C’<I{9K+1.M,N} (1 -

as N — co, by (4.4). Since 8y — 0, we get (4.1).
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(it) To prove (4.3) for wr < co and [ € [1, 00), we write sk v = wr —§k, ~. Then, applying the law of large
numbers to the random variables (wr — £(x))™, x € V, and using (4.1) (cf. Remark 2.1), we rewrite (4.3) as

P-lim N~ Z rehen = Siw) = 0. (4.8)
k=K+1

To prove (4.8), we note that the kth summand in (4.8) does not exceed 31,- Zle h;(Ex ~, & ~), where the functions
h; are given by

k(@ v) = Hwr — )(wp — )~ ¢ = 0) It —v > oF — 1},

ha(t,v) =t —v)"'I{0 <t —v < wp —t).

Thus, it suffices to show that
N
-l )
=N §h,<5m, &n) — 0 4.9)

in probability as N — co foreachi = 1, 2.
For each i =1, 2, we use Lemma 4.3 with

N

Z hi(t, te) > s}

gilt,tkst, -, tN) = I{__
' k=K+1

to get

P(Z(;) > 8) < Ck,M </ 8i(t, EK+1.Ny-- -, SN,N)FM,N(df)> + &M

<cK,M<[{ S k(e s(x)>s]FM,N(dr>>+sM,

xeV

where 8y < const/M for M > 100K2. Thus, by the definition of Fy w, it suffices to prove that for any (large)
M and any (non-random) sequence ty, N > 1, such that ty € (ty,n, Ty, ),

—-Zh v, E(x)) — 0 (4.10)

xeV

in probability as N — oo foreach i =1, 2.
For i = 1, we have (via integration by parts)

2ty —owr

1—F(r)
(wr = D) (zy — D!

{h1(tn, §)) < const(wr —~ fN)< dt) — 0 as N — oo,

-0

since (wr — )" (1 — F(t)) »> 0 as ¢t } wp, due to er; < oo. This implies (4.10) with i = 1.
For i = 2, (4.10) is satisfied if and only if

P(ha(tn, &) > Ne) + (ha(tn, ) I{ha(tn, ) < Ne}) — 0 (as N — o0) 4.11)
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for any £ > 0 (see [6], Sec. IX.9). Elementary calculation shows that the left-hand side of (4.11) is equal (with
an accuracy of o(1)) to

constN (F(zy) — F (v — (eN)"VH)) +1 / dtI{EeN) ™V <t <wp -}t (Faw) = F(y = 1). (4.12)

From the definition of the numbers ty, v < Tn < Ty, v, it follows that N € [1/(M F (zn)), M/ F (ta)]. Substitut-
ing this into (4.12) and using both (4.2) and Remarks 2.1 and 4.1, we note that (4.12) tends to zero as Ty 1 wr.
This implies (4.10) for i = 2. The proof of (4.3) for wr < o0 is completed.
To show (4.3) in the case wr = 00, we write
R, ) =@ —-v)"1{0<t—v <M} forM>1.

Since (by definition) er; = 0, we only need to check
1
-1 —h =
P lllgn Ek 7 (k.N» Ek,N)

The proof of the last relation is similar to that of (4.10) (with i = 2 and wr < 00) and can be omitted.
(iii) First, applying the CLT and (4.1) with [ = 2 (cf. also Remark 2.1), we have

_rﬁ Z (sin —er) < oo.

=K+1
Further on,
ol 1 1
Z ( ———) = sk,nN (er2+o(1))
k=K +1 NEEN SN
as N — oo, because of the law of large numbers for the random variables s,;',zv (k=1,2,...,N) and Lemma
4.2 (i), (it) with I = 2. This proves (iii). a

The remainder of this section concerns generalization of Lemma 4.2 when er; = oo for / > 1. Let rx v and
RY,, be given by (3.2) and (3.3), respectively.

LEMMA 4.4. The following assertions hold in probability for any (fixed) K = 1, 2,...andl €[l, c0):
@) If F(t)(a)p — 1)~ 1(ast t wr)and a <, then

N=Yergh < NV (RQ )Y <1 as N — oo (4.13)
and
Runw = MUWIN“I/QRS?.M.N =<1 (4.14)

as N — oo and M — oo.
(i) If F(t — wF), t > 0, is slowly varying at zero, then

. (4 i/
e (RO )7 =0

Lemma 4.4 (i) (with [ = 1, 2) implies the following:
COROLLARY 4.1. Under the condition of Lemma 4.4 () with ¢ < 2,

P-@mm — NepiN~V® < oo,
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Proof of Lemma 4.4. (i) We exploit the fact that the random variables 7{x) = —In(1 — F(£(x))) are
independent exponentially distributed with mean 1, so that the variables ¢ v and & y are related by

wr — E N = Ty, N €Xp {—-a"nk'N} =:5n foranyk=1,2,..., N, 4.15)

where 7, y 1= (F (& N)(wF — Sk,N)'“)_l/ . We need some properties of 1y v (cf. [6], Sec. 1.6):

LEMMA 4.5. Forany N > 1,
(M) 1y = (Tek™ + Tk + D7 4+ TNN_l)xgng ; (4.16)

. . . . . d
here Ty, k > 1, are independent exponentially distributed random variables with mean 1, and = means that the
random vectors have the same distribution. Moreover, almost surely (a.s.)

N
Y Tk ~InN|x1 asN — 0 4.17)
k=K
for fixed K > 1, and
N
lim > Tk™'=-Ind | (4.18)

k=[N3]
for all 0 <8 < 1, where [t] denotes the integer part of t.

Now we are in a position to prove (4.14) (the proof of (4.13) is similar and can be omitted). Applying
(4.16)-(4.18) to (4.15) with k = [N§] and 0 < 6§ < 1, we get

0 <c(®) < P-limswsn < P‘WS[NB],N < C(8) < o0, (4.19)
N

where (non-random) constants ¢(8) and C(8) tend to zero as § | 0. Thus,
N
P-mN™/% 5 rifl v =0, (4.20)
k=[N3

since @ < [. 1
Further, by (4.15) and (4.16), the remaining kth summands in R;) M.N Can be rewritten as

d T 1T B
-1 a4 .- kN n R A
(rK,k,N)M<k<[N6] - SK.N< exp {— E : ] -1 T (SK,NrK-k,N)M<k<[N5] :
_A = '[‘K N (04 n XAt
' n=K M<kLING]

Consequently, combining (4.20) and the fact that sg vy < N~% in probability as N — oo, we see that the
left-hand side in (4.14) can be replaced by

(N3]

~ I ~
Run:=Ma"" ) Fern- (4.21)
k=M

Let us estimate (4.21). Again by (4.19) we choose (non-random) p{8) > 0 such that p(§) - O as 6§ { 0 and
the probability of the event Qs n := {1 — p(8) < infigkgns o < SUP s =X <1+p@)) CcQtends to 1,
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as N — oo, for any (small) § > 0. Write also Q; = {exp{a~! Z,A,:’;}( T,m™'} > ﬁ;} C Q. With the above
notation,

lim P (Ry.n > 1/¢) <Tm P ({Ruw > 1/6} N Qsv N Q) + P(2\Q)

k-1
2 l T, 1 (4.22)
< Pl (——=) M3t § :exp{—— § : —’i] > -) + P(Q\Qs)
<(1—p(5)) o ¢ —m £
for any ¢ > 0, and, similarly,
k-1

—_ . l T,
i < -_ -1 - - _m
fim P (Ry.w < ) < P((l — p(a)) k§>M: exp{ m§ K: - ] < a) + P(Q\S2). (4.23)

By applying (4.17) to the kth summands in (4.22), (4.23) when, first, M — o0 and then ¢ | 0, we arrive at
(4.14). Part (1) 1s proved.

(it) It suffices to prove the assertion for I = 1. Set Sy y = Z,‘:’; L Sk, ,IV Under the condition of Lemma 4.4 (ii),
P-limy sy nSp+1,8 = O for any (fixed) L = 1,2, ..., by Theorem 6 of [1]. Moreover, forany L +1 <k <N,
re N = Sk N(L—sp n/Sk,N) 2= sk,v (1 —sp v Spyrn). Thus,

-1
rek NRgw1nv < skt n(1 = Skr1.8Sk+2.8) " Sks2nw — 0

in probability as N — oo. Lemma 4.4 is proved. a

5. ON LOCALIZATION OF THE EIGENFUNCTIONS

In this section, we investigate the asymptotic structure (as N — oo) of the support of the normalized

eigenfunctions ¥x(x) = ¥(x;Agn). x € V (2.4), for any (fixed) K > 1. For any N > 1 and any

1<k <N, let ziny,2258,---,2Z08 € V and z&kz\,,zg‘;\,,.. z%‘)N € V denote (random) coordinates of

Ey-peaks and 1//,3-peaks, respectively, i.e.,

E(zin) =68 >E@nN) =6 > >EannN) =EvN

and

Vil > vEEE) > - > YREW-
Note that z,(‘lg, =z, n forany 1 I < N.

Definition 5.1. Given K =1, 2, ..., we will say that Y (-) has the property of
(a) M-point localization if

min{L: P- hmZy/K 5 ] =M < oo; (5.1)
(b) partial localization if
M
P-limlim ) © ¥ yEEE) =1 (5.2)
N m=1

and if the (finite) minimum in (5.1) does not exist;
(c) complete delocalization if

(K)
P- llmhAr/n Z I#K(Z

O<m<eN

In view of Theorems 2.1-2.3 and Definition 5.1, we obtain the following results.
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THEOREM 5.1. Let 1/sc > er and K = 1,2, ... . Under the conditions of Theorern 2.1, Yrg (-) satisfies the
single-point localization, viz.

P-lim ¥ (2 v) = 1.

THEOREM 5.2°. Let 1/x < er and K = 1.

() If either the conditions of Theorem 2.2° or the conditions of Theorem 2.3° (i) are fulfilled, then ¥ (-)
satisfies complete delocalization.

(4j) Under the conditions of Theorem 2.3° (ii), ¥ (-) satisfies partial localization.

THEOREM 5.2. Letl/x<erand K =2,3,....
() If either the conditions of Theorem 2.2 (i) or the conditions of Theorem 2.3 (1) are fulfilled, then single-point
localization holds, viz.

P- li]{,n YE(zg-1n) = 1.

() If either the conditions of Theorem 2.2 (ii) or the conditions of Theorem 2.3 (it) hold, then Yg (-) satisfies
partial localization.
(ij) Under the conditions of Theorem 2.2 (ii1), K-point localization holds, viz. for any 1 <k < K —1,

P-lim Y (zen) = 1/(K(K = 1)) and  P-limyg(zx.n) = (K — /K.
Theorem 5.2° is proved in [3]. To prove the remaining statements, we use the assertions of Theorems 2.1-2.3
and Lemmas 4.2 and 4.4.

Proof of Theorem 5.1. Using (2.4), (3.2), and (3.3),

(Ag,n - Ex.n) 72
Ak N —ExkN) 2+ (K — DAy —Ex-18) 72+ Rg,)N

Y (Zk.N) > =1+o(1) (5.3)

in probability, due to Theorem 2.1 and Lemma 4.2 (i), (ii) with [ = 1. |

Proof of Theorem 5.2. (j) follows by the same argument as in (5.3) with zx v replaced by zg_ .
(jj) Write

N
UKkMN = Z VE(zin) for M > 1.
k=K+M

Simple estimates show that

(Ek—1,n — Ek+mN) 72
(k —2)(¢k-2,n — Ek-1,N) "2+ (kN —Ek—1N) T2+ (kv — Ex N)TEH Rﬁ?,’,v

YK MN =

and thus, by applying Theorems 2.2 (ii), 2.3 (ii), and assertion (4.13), we arrive at

H{g%P(EK,M,N <&)=0 foreach M > 3. 5.4)
&

Similarly,

N N -1 Rf'(z)
— _ - K+M,
Veun < D Ok —Een) 2(Z(AK,N ~&,N) 2) < —;ﬁ’ﬂﬂ

k=K+M k=K K~1,N
This and Lemma 4.4 (i) for [ = 2 imply

1&@ PWgpyn >¢€)=0 foranye>0. (5.5)
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The claimed assertion follows from (5.4) and (5.5).

(ij) Forany 1 <1 < K, write

First,

K N -t
Yr@n) = gy — SI,N)‘2<Z + Y (k- Sk,N)_2> : (5.6)
k=1  k=K+1
N
kN Z < r%-x,NRg,)N =o(l) (5.7
k=K+1

in probability by virtue of Lemma 4.4 (ii). Further on, by (2.15),

P-lim ri_inkw —Exw) 2 = K2, (5.8

and, again by Lemma 4.4 (if) for | <k < K — 1,

P-limri_y yGen =A™ = P-limrg_, y(Ex-1n = 2ew) ™ = K*/(K = 1) (5.9)
Applying (5.7)—(5.9) to (5.6), we get the desired results. Theorem 5.2 is proved. O
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