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P L A N E  L I N E A R  P R O B L E M  OF T H E  I M M E R S I O N  OF A N  E L A S T I C  P L A T E  

I N  A N  I D E A L  I N C O M P R E S S I B L E  F L U I D  

A. A.  Korobkin and T. I. Khabakhpasheva UDC 532.58 

A plane unsteady-state linear problem of the immersion of an elastic plate of finite length 
in an ideal incompressible weightless fluid is considered. The deflection of the plate and the 
velocity of its points are known at the initial moment of time. The fluid occupies the lower half- 
plane, and its boundary outside the plate is free. The plate which is the bottom of a structure 
immersed in the fluid with a constant velocity is modeled by an Euler beam. At the initial stage of 
immersion, when the displacement of the structure is much smaller than the length of the plate, 
the plate deflection and the distribution of bending stresses in it are determined. The model used 
allows one to estimate the maximum stresses occurring in the elastic plate during its impact on 
water and to predict the moment and site of its occurrence. Calculations are performed under 
the conditions of the experiment carried out in MARINTEX (Norway). Qualitative agreement 
between the numerical and experimental results is shown. 

I n t r o d u c t i o n .  A plane unsteady-state problem of the immersion of an elastic plate of finite length 
in an ideal incompressible weightless fluid is considered. At the initiM moment  (t ~ = 0), the fluid occupies 
the lower half-plane (yl ~< 0); the segments of its boundary - L  < x ~ < L and y~ = 0 correspond to the 
elastic plate, and the segments z ~ > L, x ~ < - L ,  and y~ = 0 to the free boundary of the fluid (Fig. 1). The 
dimensional variables are primed. The plate is hinged to a structure which is being immersed in the fluid 
with constant velocity V. The  impact phenomena, which are connected with the beginning of the motion, 
determine the initial plate deflection w'(x', 0) and the velocity of its points (Ow'/Ot)(x', 0), which are assumed 
to be known and are denoted by W~o(X ') and w~(x'), respectively. At the initial stage of immersion, when the 
structure is displaced to a much smaller extent than the length of the plate, one needs to determine the plate 
deflection and the distribution of bending stresses in it. 

The problem is considered within the framework of a linear approximation. The fluid flow is assumed 
to be plane and potential. The plate is modeled by an Euler beam, and the bending stresses in the transverse 
direction are assumed to be negligible. 

The  impact by a shallow wave on a plate of finite size is divided into two stages [1]. At the first (impact) 
stage, the plate is wetted only partially, and the hydrodynamic loads on the plate are great and depend on the 
rate of expansion of the region of contact between the plate and the fluid. Generally, for shallow waves, this 
stage is short, and the stresses in the plate do not reach maximum values. At the second stage (immersion), 
the plate is wetted completely and continues to be immersed in the fluid. Here, the hydrodynamic loads on 
the plate are already insignificant and cannot be classified as impact. The plate vibrates mainly owing to the 
potential energy of elastic strains and to the kinetic energy accumulated in the plate during the impact  stage. 
At both stages, the fluid boundary can be replaced by a plane boundary if the wave is quite shallow, and 
the depth of immersion of the plate is small compared with its size. The last remark explains the problem 
formulation for the second stage considered in the present work as a problem of immersion of a floating plate 
in an ideal weightless fluid for which the initial deflection and the velocity distribution are given. 
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Fig. 1 

The investigations of the interaction between elastic structures and the fluid were reviewed by Grigolyuk 
and Gorshkov [2]. Lotov [3] solved the problem of the impact of an elastic plate on the fluid surface within 
the framework of Sedov's impact theory. This theory does not take into account the specifics of the fluid flow 
at the impact stage and assumes that all points of the plate come in contact with the fluid simultaneously. 
This assumption is valid for infinitely long waves. It is shown that immediately after the moment of impact, 
the plate deflection can be ignored, and the vertical velocities of the points of the plate do not depend on its 
rigidity and the support conditions for its ends. 

In the present work, another approach that is applicable to the case of waves of moderate length is 
used. The plate deflection and the vertical velocity of its points at the impact stage are first determined within 
the framework of the Wagner theory [4] without additional simplifying assumptions. The velocity of the plate 
points and its deflection at the end of the impact stage are used as the initial data for numerical calculation 
of the elastic behavior of the plate at the stage of immersion. 

In a linear approximation, the strain of the fluid boundary is not taken into account, and the boundary 
conditions are used on the line yl = 0 and are linearized [5]. The fluid flow is uniquely described by the 
velocity potential ~'(x', y~, t'), which satisfies the Laplace equation in the lower half-plane (y' < 0) and is zero 
on the segments of the free boundary Ix~l > L and y~ = 0. In addition, the vertical velocity of the liquid 
particles on the elastic plate (O~2'/c3y~)(x ', O, t') coincides with the absolute velocity of the points of the plate 
- Y  + (Ow'/Ot')(z',t') ([z'l < L and t' > 0), whereas the fluid pressure p'(x',y',t ') is connected with the 
velocity potential by the relation p~ = -p(Oqo'/O~'), where p is the density of the fluid. 

It is assumed that the elastic strains of the plate are described by the Euler equation 

02w' 04w ~ 
MB ~ + Eg~x~4 = p'(x', 0, t') (1) 

and are determined by the initial data 

C~Wt t t 
w'(x' ,o)  = or, (=' ,o)  = ), (2) 

by the boundary conditions 
02W I 

w'(+L, 0) = 0, o=,2 (+L,  0) = 0, (3) 

and the hydrodynamic loads on the plate. Here MB is the mass of the beam of unit length, J is the moment of 
inertia of its cross section, and E is Young's modulus. The Euler model includes only bending stresses along 
the plate. The stresses in the transverse and longitudinal directions are not taken into account. 

The problem consists of two mutually connected parts: a hydrodynamic part (the determination of the 
fluid flow and the pressure distributions over the known velocities of immersion of the points of the plate) 
and an elastic part (the determination of the strains in the plate with the use of the known initial data 
and distribution of the hydrodynamic pressure along the plate). It is convenient to write the hydrodynamic 
part of the linearized problem relative to the pressure p'(x',y',t ').  The function p~(x',y',t') is harmonic in 
the lower half-plane y~ < 0 and is zero at the free boundary by virtue of the dynamic condition. On the 
segment Ix ~] < L and yJ = 0, after the no-flow condition has been differentiated with respect to time, it 
gives (Op~/Oy')(x ', O, t') = -p(O2w' /Ot t2 ) (x  ', t') for t' > 0. One can see that, at the stage of immersion, which 
follows the impact stage, the pressure profile depends only on the acceleration of the points of the plate, rather 
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than the velocity of immersion if the latter remains constant. 
Below, dimensionless variables are used. Analysis of the behavior of the elastic plate at the impact stage 

[6] shows that  W~o(X ') = (L2/R)wo(x ' /L) ,  where R is the radius of curvature in the crest of the wave, and 
w~(z') = Vwl (x ' /L ) .  The functions wo(z) and Wl(Z) are limited for Ixl < 1, where x = x ' /L .  The quantity 
T = [pLh/(EJ)] 1/2, which has the order of the period of oscillations of the first mode for a plate floating on 
the surface of a weightless fluid [1], is used as the time scale, L as the scale of length, and the product V T  as 
the scale of strains at the fluid-plate boundary. The other scales are the derivatives of those indicated above: 
p V L / T  is used for the pressure, and VL for the velocity potential. 

The linear approximation is formally true in the case where the depth of immersion of the plate is 
much smaller than its length: V T  << L. With allowance for the definition of the time scale T, it is convenient 
to write the last condition in the form 

Y << ~/EJ/(pL3), (4) 

where the right-hand side has the dimension of velocity and is denoted by Vp. For example, for the experiments 
[1] carried out in MARINTEX (Norway) with a 1 x 0.5 x 0.008-m steel plate, we have E = 21 �9 10 l~ N/m 2, 
h = 8 m m ,  J =  h3/12 = 4 . 2 6 6 . 1 0  -8 m 3 , p =  1000kg/m 3 , L  = 2 5  cm, andVp ~ 2 4 m / s e e .  In this case, 
the inequality (4) means that  the height at which the plate falls on the water surface should be much smaller 
than 30 m. Only in this case can the correspondence be reached between the calculations carried out within 
the framework of a linear approximation and the experimental data. In the experiments, the height of falling 
of the plate was 50 cm. Here, the use of the linear approximation is justified for the following scales of the 
immersion characteristics: the time is 0.01 sec, the length is 25 cm, the velocity is 2.5 m/sec, the pressure is 
7.825 �9 104 N/m 2, and the displacements are 3.13 mm. Using the method of [6], for the central impact by a 
wave with a radius of curvature in the crest of R = 10.2 m, the functions wo(x) and Wl(X), which specify the 
initial conditions for the stage of immersion are determined, and the duration of the impact stage was found 
to be 8.5- 10 -4 sec. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  In dimensionless variables, relative to the pressure in the fluid p(x, y, t) 
and the plate deflection w(x,  t), the problem has the form 

p~x + p ~  = 0 (y < 0); (5) 

p = 0 (y -- 0, Ixl > 1); (6) 

cgp 02w . 
oy - b-~ (x ' t )  (y = 0, I~1 < 1); (7) 

p - ,  0 (~2 + y~ _0 o~); (8) 

cgZw 0% 
~ - ~  + ~ = p (~ ,0 , t )  (1~1 < 1, t > 0); (9) 

w(x ,0 )  = "/W0(X), Wt(X,O) ~ -  WX(X) (Izl < 1, t = 0); (10) 

(92w 
w(:kl , t )  = 0, ~x2 ( :kl , t )  = 0 (Ixl -- 1, t > 0). (11) 

The only important parameter a is equal to the ratio MB/(pL).  In particular, MB = hpB for a plate of constant 
thickness h with density PB of the material. The parameter 7 = LVp/(RV) characterizes the significance of 
the initial deflection of the plate w(x, 0) for its subsequent strains and the distribution of bending stresses. 
For shallow waves, we have 7 << 1. In the experiments described above, we have h = 8 mm, PB = 7850 kg/m 3, 
and R = 10.2 m, which gives a = 0.2512 and 7 = 0.1875. 

It follows from the determination of the parameter a and the conditions of applicability of the Euler 
equations of problem (1)-(3) that a is small for real materials. 

The role of the weightiness of the fluid is characterized by the parameter gTZ/L,  where g = 9.81 m/sec 2. 
In the case considered, this parameter is equal to 0.04, which allows one to ignore gravitational effects in the 
basic approximation. 
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Equations (5)-(8) are the hydrodynamic part  of the problem, and (9)-(11) is the elastic part. The 
problem is bounded: the pressure on the plate p(x,O,t), where Ix[ < i, and the plate deflection w(x,t) 
should be determined simultaneously. In dimensionless variables, the bending stresses in the plate a(x, z, t) 
are calculated by the formula 

~(x, z, t) = zw~(~ ,  t)/2, 

where the variable z varies over the thickness of the plate, z = - 1  corresponds to the lower wetted part of the 
plate, and z = +1 to its upper side in the sites of the largest thickness. The upper side of the plate becomes 
smaller for wxx(x, t) > 0 and is stretched for w**(x, t) < 0. Below, the notation a(z, t) = a(x, 1, t) is used. 
The scale of elastic stresses is hEVT/L  2. Under the experimental conditions of [1], it is equal to 841 N/ram 2. 

Problem (5)-(11) is linear; therefore, it suffices to construct and investigate its solution for two cases: 
the functions wo(x) and wl(x) are even and odd relative to x. Here, we consider only the first case, which 
corresponds to a wave impact on the center of a plate. 

For the solution of this problem, it seems to be natural to apply an approach within the framework 
of which the eigenvibration modes of a plate floating on the surface of a fluid LOre(x) (m = 1,2, . . . )  are first 
determined; the plate deflection w(x, t) is then searched as a Fourier series 

o o  

w(x,t) = ~ a. .(t)~m(x),  (12) 

It is difficult to determine directly the eigenvibration modes of a floating plate (normal modes); this is 
possible to do from numerical calculations even in the simplest cases. The normal modes of a floating plate 
are of doubtless interest, because they allow one to write the solution of problem (5)-(11) as a series whose 
coefficients are explicitly set by the initial conditions (10). 

E i g e n v i b r a t i o n  M o d e s  o f  a F l o a t i n g  P l a t e .  Problem (5)-(11) is solved by the method of separating 
the variables. According to this method, the simplest nontrivial solutions of the form 

w(x,t) = W(t)ql(x), p(x,y, t)  = -P(t)Q(x,y) ,  (13) 

which satisfy all the equations of the problem, except for the initial conditions (10), are first found. The 
boundary condition (7) is satisfied if one sets 

P ( t ) = d2 W OoQyy dt 2 , (x,0) = ff/(x) (Ixl < 1). (14) 

Substituting (13) into the equation of beam vibration (9) and taking into account (14), we obtain 

d2W _ . .d4~ 
[ ~ ( ~ )  + Q(~, 0)]d-- ~ -  + w ( t ) - j ~  = o. 

The last equality leads to two relations: 

d2W 
dt--- T + w2W = 0; (15) 

d4~ 
~ 2 [ ~ ( x )  + Q ( x ' ~  dx4 (l~l < 1), (16) 

Equation (16) should be considered together with the boundary conditions (11), which give 

d2~ (+1) = 0, (17) 
q/(~l)  = O, dx 2 

and the boundary-value problem for the function Q(x, y), which follows from relations (5), (6), (8), and (14) 
and has the form 

Q ~  + Qyy -- o (y < o), Q = o (y = o, Ixl > 1), (18) 

0Q _- r (y = o, Ixl < 1), Q -~ 0 (~2 + y2 _~ ~ ) .  
Oy 
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A linear operator that  puts the function ~(x)  into correspondence with the function Q(x,O) ( - 1  < 
x < 1) by virtue of the boundary-value problem with the mixed boundary conditions (18) is denoted by A. It 
follows from the second Green theorem that  this operator is self-conjugate and allows one to write Eq. (16) 
in the form 

+ = (19) 
dx4'  

where I is the identical operator. The operator a I  + A is also self-conjugate; therefore, the homogeneous 
boundary-value problem (17), (19) has a countable set of real eigenvalues wj, where wj+l > wj (j = 1,2, 3 , . . . )  
and eigenfunctions tllj(x), which specify the eigenvibration modes of a plate floating at the boundary of an 
ideal fluid. It follows from (19) and (17) that ,  for i # j ,  the functions k~j(x) are orthogonal in the following 
meaning: 

1 

] (20) 
- 1  

It is convenient to introduce the new functions ~j(x)  equal to rYe(x) and orthogonal, by virtue of (20), in the 
usual meaning. It is clear that  C j ( + l )  = 0. An operator that  puts the functions ~j(x) into correspondence 
with the functions ~j(x)  is denoted by N. This operator is self-adjacent and allows one to write the solution 
of the problem 

'$/"(x) = @(x) (--1 < x < I), @(:E:l) = 0 (21) 

in the form �9 = N@. Indeed, 

1 1 1 1 

[ = dx = i ~ i N ~ j  dz. 
,# 

--1 --1 --1 --1 

Using the operator N, one can rewrite Eq. (19) relative to the new function @(x) = kg"(x) in canonical form 

A@ =/~@, (22) 

where A = N ( a I  + A)N and # = w -2. The operator A is self-conjugate. To determine its eigenvalues #j, it 
is natural to pass from the operator equation (22) to an equation in the finite-dimensional space, and, thus, 
the problem is reduced to an eigenvalue problem of the corresponding symmetrical matrix. 

The eigenfunctions of the operator A are searched for in the form 
OO 

r  = ~ @ir (23) 
i = 1  

where r (i = 1 ,2 ,3 , . . . )  are the eigenmodes of beam vibrations in a vacuum. For a simply supported 
beam, we have r  = cos)~ix and Ai = (2i - 1)~r/2. Substi tuting the representation (23) into Eq. (22) and 
taking into account the orthogonality condition for the functions r  we obtain the system 

A i ~  = #~b, (24) 

where �9 = (@1, @2,-..)t, A1 = D - 2 ( a I  + S )D -2, D = diag {A1, A2,...} is the diagonal matrix, and S is 
the added-mass matrix [6]. The  elements of the symmetrical matrix S are expressed in terms of zero- and 
first-order Bessel functions: 

7~ 

s . .  = 

The elements of the matrix A1 decrease rapidly as their numbers increase; therefore, to determine the 
eigenvectors and eigenvalues of this matrix, the reduction method  is used. By virtue of symmetry of the 
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matrix A1, the eigenvectors q~i, which correspond to different eigenvalues,/~j, are orthogonal. For clarity, we 
assume that the vectors ~ i  = (~jl ,  ~j2,- . .) t  are normalized, so that 

oo 
Z --4 2 Ai {}ji = l, r  <~ O (1 ~<j~<cc). (25) 
i=1 

The eigenmodes of plate vibrations on the fluid surface k~j(x) are defined as a solution of problem (21). For 
a simply supported plate, we have 

�9 j(x) -- - ~ ~ ( x ) .  (26) 
i = l  

The functions Oj(x ) satisfy Eq. (19) for wj = ~-1/2 and the boundary conditions (17). By virtue of (25), they 
are normalized 

1 

/ = 1 (27) 
-1 

and are orthogonal in the meaning of equality (20). The relative percent contribution from the ith mode of 
plate vibrations in vacuum r to the j th  vibration mode of the plate floating on the surface of an ideal 

2 - 4  and weightless fluid, ~j(x),  is equal to CjiAi �9 100. 
M e t h o d  of N o r m a l  Modes.  For the plate deflection, the solution of problem (5)-(11) is sought in 

the form of an expansion with respect to "wet" modes (12). Formulas (14) show that, if the coefficients an(t) 
are found, the pressure profile along the plate is determined by the series 

p(x,O,t) = -  ~_, am(t)Qm(x,O), 
m = l  (28)  

oo 
Qm(~, 0) = Arm(x)  = ~ ( ~ Z  2 - ~ 7 ~ 2 ~ ) ~ n C n ( ~ )  

n = l  

by virtue of (19) and (26). Substituting (12) and (28) into (9) and taking into account (19), we obtain 

d4 kg m 
@;.2am + am)~z4(X) = 0 (Ixl < 1, t > 0). 

m = l  

The orthogonality condition (20) gives 

h m + w 2 a m = O  ( t>O) .  (29) 

The initial data (10) allow one to determine am(0) = am0 and hm(0) = a,,,1 and to write the solution of Eq. 
(29) in the form 

am(t) = amo cos (wmt) + am1 sin@mr). (30) 
~ m  

The functions wo(z) and w~(z) in (10) are calculated in the solution of the impact problem at the initial stage 
[3], when the plate is wetted only partially, in the form 

~ ( x )  = ~ ~ j C j ( ~ ) ,  i = 0, 1. 
j = l  

Below, the coefficients wij are considered known; as a result, 

j = l  j = l  (31)  

2 2 ~m~ - - ~ ~ i a i ~ m ~  ~ Cmi, m ~> 1. 
j = l  j"----- 1 
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Substituting (30) and (31) into (12), we obtain 

= - E :  
j= l  

for the plate deflection, and 

1 ~ 
t )  = 

for the distribution of bending stresses along the plate. 

(32) 

oo  

s , ( t )  = 
m - ~ l  

(33) 

C o m p l i c a t e d  S u p p o r t  C o n d i t i o n s  for  t h e  P l a t e  Ends .  In the boundary conditions (11), the first 
equality is left unchanged, while the second equality is replaced by 

O2w k Ow . 
~-~zz ( + l , t )  + ~ x ( + l , t )  = 0 (34) 

where k is the rigidity of a spring in dimensionless variables. The boundary condition (34) means that ,  as 
before, the plate is simply supported at the edges and, in addition, it is attached, near the edges, to the 
structure by spiral springs, which tend to return the plate in the equilibrium position [1]. From the applied 
viewpoint, condition (34) is preferred, because it allows one to model more exactly the specific features of the 
at tachment  of an elastic plate to a rigid structure by selecting k. We note that,  for k ~ 0, the problem of the 
determination of the eigenvibration modes of a floating plate ~j(x) and the eigenfrequencies w l 

d4~ 
+ = ~ (]x[ < 1), @(-1-1) = o, ~"(:t:l)  + k @ ' ( + l )  = 0 (35) 

is similar to problem (17), (19) and is transformed into it for k --~ 0. The solution of problem (35) is searched 
in the form 

�9 = 

i=l  

where r (i = 1 ,2 , . . . )  are the eigenmodes of plate vibrations in a vacuum. The functions r  depend 
only on the a t tachment  conditions, and they can be writ ten in the form 

. cosh Aix\ 
r  c o s A i x - c o S A i c o s h A / )  ( ] z ] < l ,  i = 1 , 2 , . . . )  

in the case of a centrM impact.  Here Ai(k) are the solutions of the equation 2A, cos An + k sin An + 
kcosAntanhAn = 0, such that  0 < AI(k) < A2(k) < . . . .  The representation Ai(k) = Ai(0) + "~i(k) 
[0 ~ 7i(k) <~ rr/2], where the numbers Ai(0) correspond to the case of a simply supported beam, hotds, 
i.e., Ai(0) = rr(2i - 1)/2. The eigenfunctions el(X) are orthogonal to each other and are normalized if one sets 
An = [1 + cos 2 An(cosh-2An + 2/k)]-1 /2:  

1 

j ~bj(z)~)i(x) dx  = 5ij. 
-1 

Equality (20) does not hold for k r 0. It follows from (35) that 

1 d4d2 i(  , �9 = 
f 0 (36) 

-1 

for i ~ j and under arbitrary at tachment conditions for the ends of the plate. Equality (20) is a particular 
case of (36), which is valid a hinged attachment and for a pinched plate. 

OO 

The functions ~j (x)  are sought for in the form ~j(x)  = ~kvj ir  here the boundary conditions in 
i=1 
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problem (35) are satisfied automatically, and the equation gives 

1 

~ j i  + ~ Sai(k)~ia = ~72~iA~(k), S.~(k) = f r162 d~. (37) 
n = l  - -1  

The added-mass matrix with the elements Sni(k) is denoted by S(k), and the vector with the components 
(k~jl, ~j2, . . - )  by ~ j ;  in addition, the matrix Al(k) = D-2(aI  + S(k))D -2, where D = diag{A1, A2,..., }, is 
introduced. Then the infinite-dimensional system (37) is rewritten in canonical form 

Al(k)~ j  = # j~ j ,  (38) 

where ~ j  = - D 2 ~ 1  and/~j = w~ -2. In Eq. (38), the matrix Al(k) is symmetrical, and its elements depend 
only on the parameter k. Equation (38) is transformed into Eq. (24) as k ---* 0. The elements of the added-mass 
matrix S(k) are calculated by the formulas 

Sam(k) = -~rAnAm[Sa(rn, n, k) + S2(m, n, k) + &(n, m, k) + S3(m, n, k)], 

"- AmJl(Am)Jo(An) - A,,JI(.Xa)Jo(Am) 
S~(m,~,k) = A ~ -  A~ ' 

Sa(n,n,k) = J(2)(An) + J?(An) 
2 

AmIa(Am)Jo(Aa) -4- AnJI(An)Io(Am) 
& ( m , n , k )  = b. A~. + A~ ' 

n, k) = 2b-~--~'~n (Ii(Aa)J0(Aa) + J1(Aa)Io(An)), &(., 

n )  - A.II(Aa)I0(Am) b"bmAmI~(Am)t~ A~ &(m,n,k) 
2 ,~3(n, n, k) = bn 2 cos An exp An 

T ( z ; ( A . ) -  I2(A.)), ba = coshA. ' 

where J0, -/1, I0, and It are the standard and transformed cylindrical functions of the zero and first orders. 
The nontrivial solutions of Eq. (38) are normalized in such a way that conditions (25), the form of which does 
not depend on the value of k, are fulfilled. The eigenvibration modes @j = D-2(k)~.i satisfy equalities (27) 
by virtue of the adopted normalization (25). 

The solution of the initial problem with complicated boundary conditions for the attachment of the 
ends of a plate is searched for in the form (12) and (28). For the coefficients a=(t), Eq. (29) holds, but now the 
orthogonality condition in the form (37) is used for its derivation. Formulas (30) and (31) remain unchanged 
for k # O. 
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N u m e r i c a l  Resul t s .  The vibration modes of a beam in air and on the surface of a weightless fluid 
were compared for the following values of the parameters: ~ -- 0.2512, "7 --- 0.1875, and ~e = 2.85, which 
correspond to the experimental conditions of [1]. The fact that  the corresponding modes differ little from each 
other was supported. The principal vibration modes coincide, and the difference does not exceed 8% between 
the second modes, 7% between the third modes, and 6% between the fourth modes. 

The evolution of the deflection, the velocity, and the stresses at the center of the beam (z = 0) were 
studied for a~ = 2.85. It was noted that the deflection at the center of the beam is well described by several first 
modes, but this is not the case for the stresses and the velocity having high-frequency fluctuations. However, 
the distributions of the three quantities along the beam are quite smooth. 

Figure 2 shows the distributions of the deflection (a) and the velocity of the points of the beam (b) 
at the end of the impact stage. Curves 1 refer to the simply supported beam ends, and curves 2 to the 
elastic at tachment (a~ = 2.85). The elastic characteristics at the stage of immersion were calculated by direct 
summation of the series (32) and (33). For these parameters of the problem, it was sufficient to confine 
ourselves to 15 terms of the series. 

The solid curve in Fig. 3 shows the evolution of the deflection at the center of the beam, and the 
dashed curves refer to the experimental results [1]. One can see that the calculation results agree well with 
the experimental data on the initial interval of time, whose duration is approximately equal to half of the 
basic period of vibrations of the beam lying on the fluid surface. 

Figure 4 compares the calculated stresses at the center of the beam (curve 1) and the experimental data 
[7] (curve 3). One can see that the calculation results have the distinct peaks of high-frequency vibrations, 
which are absent on the experimental curve. However, the processes occurring with a frequency exceeding the 
limiting frequency of the gauge's sensitivity were taken into account in processing the experimental data in 
the integral meaning. In the calculations, this was allowed for by averaging over the limiting period. In [7], 
there are no sensitivity data on the gauge used, and, therefore, we took the appropriate data from [8]. In [8], 
to measure the stresses in a cylindrical shell at its impact on water, a gauge which records vibrations with a 
frequency below 5 kHz was used, which corresponds to the periods of vibrations greater than 1.25 �9 10 -3 sec. 
Curve 2 was constructed by averaging the calculation results over a time interval equal to 2.1.10 -3 sec, which 
corresponds to the limiting frequency of the gauge's sensitivity equal to 3 kHz and results in good agreement 
between the calculated and experimental curves. 

It is noteworthy that the thresholds of sensitivity of the pressure gauges and the gauges of relative 
elongation which were used in the water-impact experiments for elastic bodies differ by one order of magnitude. 
For example, in [7], pressure gauges with a limiting frequency of 100 kHz were applied. One can see in Fig. 4 
that an increase in the sensitivity of a gauge of relative elongation can lead to a change in the experimental 
curve 3 when significant irregular fluctuations occur. At the stage of immersion, the pressure calculations at 
the center of the plate revealed its irregular time-depending fluctuations, which corresponds to the hypothesis 

499 



that the calculated or measured pressures at impact cannot be used to estimate elastic characteristics [7]. 
The cMculations of maximum stresses in the plate and at the sites where they are reached at each 

moment of time (0 < t < 2) showed that the maximum stresses are most often reached either at the center of 
the plate or at the points of support, but sometimes they arise on the sites where (0.5 < Ix I < 0.7). However, 
the absolute maxima of stresses are reached at the center of the plate, and, therefore, Fig. 4 estimates the 
maximum stresses in the entire plate. 

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 96-15- 
96882 and 96-01-01767). 
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