NONFERROUS METALS AND ALLOYS

UDC 669.715'793'296:669.017.11

TIME-TEMPERATURE SECTION OF THE PHASE DIAGRAM OF THE Al-Sc-Zr SYSTEM AT 500°C

E. M. Sokolovskaya,¹ E. F. Kazakova,¹ E. I. Podd'yakova,¹ and A. A. Ezhov¹

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 29 – 30, May, 1997.

The prospects for the use of scandium and zirconium for alloying aluminum alloys with the aim of increasing their high-temperature strength make it necessary to investigate the interaction between aluminum and these metals. The present work is devoted to a study of phase equilibria in the AI - Sc - Zr system at 500°C by methods of physico-chemical analysis and of the effect of a third component on the principal characteristics of binary intermetallic compounds.

Phase equilibrium in the Al-Sc-Zr system at 500-600°C in the aluminum-rich region has been studied in [1-6]. It has been established that the ScAl₃ and ZrAl₃ phases are in equilibrium with Al. The aluminum-rich region does not contain intermetallic compounds, but it has been shown in [6] that up to 15% Zr² can dissolve in the ScAl₃ phase at 550°C and up to 2.5% Sc can dissolve in the ScAl₃ phase. The presence of such phases with a variable composition can exert a considerable effect on softening processes in the alloys, which makes it necessary to study phase equilibria in the Al – Sc – Zr system in greater detail. In the present work we plotted the time-temperature section of the phase diagram of the Al – Sc – Zr system in the entire range of aluminum concentrations at 500°C.

The alloys for the investigation were melted in an electric arc furnace in an argon atmosphere. The specimens were subjected to a homogenizing annealing for 110 h at $500 - 750^{\circ}$ C (depending on the composition of the alloy). Then the firing temperature was decreased to 500° C. The firing at 500° C was conducted for 400 h.

The charge was prepared from aluminum of grade A99, scandium of grade S_kM , and zirconium iodide. The compositions of the studied alloys are presented in Fig. 1. The composition of the alloys was controlled by emission spectral analysis using an ISP-30 spectrometer. The analytic pairs of Sc – Al lines (at wavelengths $\lambda = 269.9$ and 266.0 nm, respectively) and Zr – Al lines (at $\lambda = 339.2$ and 305.0 nm, respectively) were used for the spectral analysis of the contents of Sc and Zr.

The microstructural analysis was conducted using a Neophot-2 metallographic microscope (at a 200-fold magnification). The specimens were etched in a 10% solution of HF and in a mixture of 5% solutions of HF, HCl, and HNO₃. The x-ray phase analysis was conducted by a powder method in

Fig. 1. Time-temperature section of the phase diagram of the Al – Sc – Zr system at 500°C: $^{\circ}$) single-phase alloys; $^{\bullet}$) double-phase alloys; $^{\Delta}$) triple-phase alloys; I) region of ScAl₃ + ZrAl₃ + ScAl₃; 2) ZrAl₃ + ScAl₂ + ZrAl₂; 3) ScAl₂ + ZrAl₂ + Zr₂Al₃; 4) ScAl₂ + Zr₂Al₃ + ZrAl₃ + ZrAl₃ + ZrAl₁ + Zr₄Al₃; 6) Zr₃Al₂ + $^{\circ}$ + Zr₄Al₃; $^{\circ}$) a continuous series of solid solutions between Sc₂Al and Zr₂Al; $^{\circ}$) a continuous series of solid solutions between $^{\circ}$ SC and $^{\circ}$ -Zr.

[,] Moscow State University, Moscow, Russia.

^{*} Here and below we use the element atomic fraction.

Fig. 2. Dependence of the hardness on the composition of alloys of the Al-Sc - Zr system corresponding to the following sections: a) $ScAl_3 - ZrAl_3$; b) $Sc_2Al - Zr_2Al$.

Fig. 3. Dependence of the lattice parameters on the composition of alloys of the Al – Sc – Zr system corresponding to the following sections: *a*) ScAl₃ – ZrAl₃ [(\bullet) ScAl₃; (\circ) ZrAl₃]; *b*) Sc₂Al – Zr₂Al.

copper K_{α} radiation using an URS-60 x-ray installation and a DRON-3 x-ray diffractometer. The Vickers hardness was measured by a PMT-3 device under a load of 8 – 10 N.

The results of the study are presented in the form of a time-temperature section of the phase diagram of the Al - Sc - Zr system at 500°C (Fig. 1).

It has been established that phases with a crystal structure differing from the structures existing in binary systems do not form in ternary systems. The ScAl₃ and ZrAl₃ systems are in equilibrium with aluminum (Fig. 1). A double-phase region of ScAl₃ + ZrAl₃ has been shown to exist between the ScAl₃ and ZrAl₃ single-phase regions (Fig. 1), which confirms the behavior of the curves of the concentration dependence of the

TABLE 1

Intermetallic compound	Region of homogeneity, at.%	Intermetallic compound	Region of homogeneity, at.%
ScAl ₃	6.0 ± 0.5	Zr ₂ Al ₃	7.5 ± 2.5
ScAl ₂	15.5 ± 1.5	ZrAl	25.0 ± 5.0
ScAl	$6.0 \pm 1,0$	Zr ₄ Al ₃	2.5 ± 2.5
ZrAl ₃	6.5 ± 1.5	Zr_2Al_3	2.5 ± 2.5
ZrAl ₂	2.5 ± 2.5	Zr ₃ Al	2.5 ± 2.5

* Atomic fraction of the third component.

Fig. 4. Microstructure of the A1 – 5% Sc – 20% Zr (a) and A1 – 8% Sc – 17% Zr (b) alloys.

lattice parameters of the intermetallic compounds on the hardness of alloys with a constant aluminum content (75%) (Figs. 2 and 3).

Based on an analysis of the results of the conducted investigation we determined the boundaries of the regions of homogeneity of intermetallic compounds in the AI - Sc - Zr system (see Fig. 1 and Table 1). It seems that in the transition from a binary to a ternary system the atoms of the third component replace statistically not only the atoms of the *d*-transition element, but aluminum atoms too. In turn, this widens the region of homogeneity of phases with a constant ScAl₃ and ZrAl₃ composition and, possibly, ScAl₂.

Figure 4 presents the microstructure of an Al - 5% Sc – 20% Zr alloy corresponding to the single-phase ZrAl₃ region, and of an Al - 8% Sc – 17% Zr alloy that is a part of a double-phase ZrAl₃ + ScAl₃ region.

With the addition of zirconium the region of homogeneity of the ScAl₂ intermetallic compound deviates from the time-temperature 66.7% At concentration curve towards lower aluminum concentrations. It seems that the concentration stability of this phase increases too. Such a widening of the regions of homogeneity can be explained by the fact that scandium and zirconium have favorable size $(r_{AI}/r_{Sc, Zr} =$ 1.1) and electron factors (the difference in the Hordy electronegativities amounts to 0.1) [7]. It should be noted that such a widening of the regions of homogeneity of the $ScAl_3$ and $ZrAl_3$ phases, and probably the $ScAl_2$ phase, opens a possibility for replacing the expensive scandium by the cheaper zirconium while preserving the structural effects.

We established the existence of a continuous series of solid solutions between the Sc_2Al and Zr_2Al intermetallic compounds (Fig. 1). This was not unexpected, because it has been known from [8, 9] that these phases have the same type of structure (Ni₂In) with a lattice of a hexagonal crystal system and close parameters. The existence of a continuous series of solid solutions between the $ScAl_2$ and $ZrAl_2$ phases is confirmed by the even behavior of the dependences of the hardnesses of the alloys and their lattice parameters (Figs. 2b and 3b) on the zirconium content.

CONCLUSIONS

1. The ScAl₃ and ZrAl₃ phases in the Al - Sc - Zr system at 500°C are in equilibrium with aluminum.

2. The ScAl₂ and ZrAl phases have the most extended homogeneity regions in the Al – Sc – Zr system at 500°C.

3. The concentration stability of the $ScAl_3$ and $ZrAl_3$ phases increases with the addition of a third component, which widens their regions of homogeneity.

4. With the addition of zirconium the region of homogeneity of the $ScAl_2$ phase deviates from the time-temperature 66.7% Al concentration dependence towards lower contents of aluminum.

5. A continuous series of solid solutions exists between the Sc₂Al and Zr₂Al phases in the Al – Sc – Zr system.

REFERENCES

- V. I. Elagin, V. V. Zakharov, S. G. Pavlenko, et al., "Effect of Zr additives on the aging of Al – Sc alloys," *Fiz. Mekhan. Mater.*, 60, Issue 1, 97 – 100 (1985).
- B. Ya. Kotur, V. V. Kinzhibalo, A. T. Tyvanchuk, et al., "Isothermic sections of Sc – (Ti, Zr, Hf) – (Al, Sc) systems in regions enriched with aluminum (scandium)," in: Phase Diagrams of Metallic Systems, Tez. Dokl. V Vsesoyuzn. Sov. [in Russian], Moscow (1989), p. 117.
- T. V. Dobatkina, L. S. Toropova, A. N. Kamardinkin, et al., "Phase diagram of Al-Sc-Zr in an aluminum-rich region,", Ibid., p. 123.
- E. M. Sokolovskaya, E. F. Kazakova, E. I. Podd'yakova, and A. A. Ryzhov, "Reaction of aluminum with zirconium and scandium in the Al – Sc – Zr system," Ibid., p. 137.
- L. S. Toropova, A. N. Kamardinkin, V. V. Kindzhibalo, and A. T. Tyvanchuk, "A study of alloys of the Al – Sc – Zr systems in the aluminum-rich region," *Fiz. Mekhan. Mater.*, 65, Issue 12, 108 – 111 (1990).
- A. N. Kamardinkin, T. V. Dobatkina, and T. D. Rostova, "Isothermic sections of the Al – Sc – Zr system at 550 and 600°C in the aluminum-rich region," *Izv. Akad. Nauk, Metally*, No. 2 (1991).
- M. E. Drits (ed.), Properties of Elements, A Reference Book [in Russian], Metallurgiya, Moscow (1985).
- 8. Ch. C. Barret and T. B. Massal'skii, *Metal Structures, Part I* [Russian translation], Mir, Moscow (1984).
- S. A. Elesevier, "Sc₂Al with Ni₂Al structure type," J. Less-Common Met., 19, 441 – 443 (1969).