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On the  N o n o s c i l l a t i o n  of  El l ipt ic  Integrals  
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To V. L Arnold on the occasion of his sixtieth birthday 

Consider the elliptic integral 

f P(x ,  y) + Q(x, y) dy (1) dx 

of a real polynomial 1-form over the real ovals y2 .{_ x2 -I- x 4 = t ,  t > 0,  on the plane. 
In this paper we est imate the number of zeros of the integral (1) regarded as a function of t. The esti- 

mat ion is based on a new assertion concerning the nonoscillation of a linear combination of eigenfunctions 
of a second-order linear differential operator (see Lemma 1 below). 

The problem of est imating the number of limit cycles generated under a per turbat ion of a Hamiltonian 
polynomial vector field can be reduced to the problem of estimating the number of zeros of a real polynomial 
form over the level ovals of a real polynomial. 

Let flrn be the space of integrals of the type (1) for real polynomial 1-forms of degree < n.  
The main result of the paper is the following. 

T h e o r e m  1. The space ~r has the Chebyshev property on the ray t > O. This means that the number 
of zeros (counted according to their multiplicities) of every integral in ~r that is not identically zero is 

2[(n- 1)/21 + 1. 
+ x 4 - x 2 = t was proved earlier in [1]. This 
Here we give a different (real) version of the 

less than the dimension of the space ~r which is equal to 

An analog of this theorem for integrals over the ovals y2 
proof can be applied to the integrals in Theorem 1 as well. 
proof. 

I. Scheme of the proof of Theorem I. The proof of Theorem 1 is based on the following assertion. 

L e m m a  1. Let f and g be continuous functions on a (possibly (semi)infinite) interval I = (a, b) 
and let the .function f be positive. Suppose that A1 < . . .  < Ak and there are solutions Yl, . . . ,  Yk of the 
equations ~)i = (Ai,f(t) + g(t)) Yi with the .following properties: 

1) Yl vanishes nowhere on I; 
2) yi ( t )  o as t a; 
3) the derivatives of the functions Yi are bounded in a neighborhood of a. 
Then the space or functions of the .form k Y~i=l ciyi is a k-dimensional Chebyshev space. 

Lemma 1 is proved at the end of the paper. 
This lemma was first s ta ted and proved by the author  for the case in which g = 0 and ,f(t) = 

1/(t(4t + 1)). It  is this special case of the lemma that  is used in the proof of Theorem 1. Khovanskii 
noticed that  the author 's  proof remains completely valid under the assumptions of Lemma 1 in the general 
case. Note tha t  if k = 2, then Lemma 1 is a special case of the Sturm comparison theorem (see Sec. 4) 
under the assumption tha t  the functions ,f and g can be continuously extended to the point a.  

We shall show that  the space J n  belongs to the class of Chebyshev spaces in Lemma 1. 
Theorem 1 is a consequence of Lemma 1 and the following three assertions. 

L e m m a  2. There is a basis {Yi} in ~r .formed by solutions of the second-order equations 

A~ 
~ii = t (4t + 1) y~' A1 < 0 < A2 < . . . .  (2) 

The solution Yl is everywhere positive. 

Lemma 2 is proved in the next section. 
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L e m m a  3. The space ~r is just the space of polynomial linear combinations 

IoPo + I1P1 

of the special elliptic integrals Io and I1 of the forms Wo = y dx and wl = x2y dx with real polynomials 
Po and P1 of degrees not exceeding [(n - 1)/2] and [(n - 1)/2] - 1, respectively. 

P r o p o s i t i o n  1. All integrals (1) can be analytically continued by zero to the point t = O. 

Analogs of Lemma 3 and Proposition 1 for integrals over the ovals y 2  -t- x 4 - -  x 2 ---- t were considered 
in [1]. The proof can be applied to the integrals from the space r 

To prove Theorem 1, it remains to note that  the basis functions Yi in Lemma 2 satisfy the assumptions 
of Lemma 1 (see Lemma 2 and Proposition 1). By Lemma 1, or is a Chebyshev space. The assertion of 
Theorem 1 concerning the dimension of this space follows from Lemma 3. 

2. P r o o f  o f  L e m m a  2. We seek a basis {Yi} in J ~  for which the assertions of Lemma 2 hold. The 
equations for Yi mean that  the Yi are eigenfunctions of the operator L = t (4t + 1) d2/dt 2 . 

Lemma 2 follows from the lemma below. 

L e r n m a  4. The space ofn is invariant with respect to the operator L .  The function Io is its eigen- 
function with a negative eigenvalue. The other eigenvalues of the operator L on the space o],, are positive 
and pairwise distinct. 

Lemma 4 is proved in Sec. 3. 
The desired basis {Yi} consists of eigenfunctions of the operator L with Yl = Io. Its existence follows 

from the fact that  the eigenvalues of this operator are pairwise distinct. To complete the proof of Lemma 2 
it remains to note that  the function Io(t) is positive because it is equal to the area of the domain bounded 
by the oval at the level t .  This proves Lemma 2. 

3. P r o o f  o f  L e m m a  4. Let us show that the operator L is represented in the basis of the functions 
Io, I1, tIo, t I 1 , . . ,  by an upper triangular matrix whose first diagonal entry is negative and the others 
are positive and pairwise distinct. This will prove Lemma 4 because the diagonal entries of an upper 
triangular matrix are its eigenvalues and I0 is an eigenfunction. 

The proof of the assertion in the foregoing paragraph will be based on the following property of the 
integrals Io and I1. 

L e m m a  5. 

4 t I ~ - 2  ' 2 tI~ + ( 4 t + 4 ) I ~ .  (3) 
Io = 5 Ii, 11 = 

Similar equations for the integrals over the ovals y2 + x4 _ x2 __ t are given in [1] and equations remain 
valid for integrals over an arbitrary family of ovals on complex level surfaces (for instance, over the ovals 
that are intersections of a level surface with the plane y E R, x E iR). The equations in Lemma 5 can be 
derived from these general equations by substituting x = ix' .  

We first show that  the operator L preserves the space of linear combinations of the integrals I0 and 
/1 and is represented by the matrix 

- 3 / 4  1/2 
0 5 /4]  (4) 

in the basis Io, I1. The proof is reduced to a straightforward calculation of the values of the operator 
L on Io and I1. On differentiating Eqs. (3) and transposing the terms containing I~, j = 0, 1, to the 
left-hand side we obtain 

2 1 , 2 t i , o , + ( 4 t + 4 ) i ~ ,  (5) I~ = -4tI~' + 2I'1', 1--5 I~ + -~ 11 = -1-5 

The substitution of the right-hand side of the first equation for I~ into the second equation results in 

I~ = 2tI~' + 4tI~'. (6) 
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Now let us express the integrals Io and 11 via their second-order derivatives. To this end, we substitute 
formulas (5) and (6) for I~ and I~ into nqs. (3) to obtain 

4 t (4 t  + 1)I~' 4 I 0 = - ~  = - ~  LIo, 

8 t ( 4 t + l ) I ~ ' +  t ( 4 t + l ) I ' ( =  L I o + - g L I t .  I1 = -~ 

This implies the desired assertion concerning the action of L on Io and I t .  
We now show that L preserves the flag of subspaces that corresponds to the basis Io, 11, tlo, tI1, . . .  

(and thus the related matrix is upper triangular). We shall prove that  the diagonal element associated 
with the basis function t~Io (tklt) is equal to - 3 / 4  + k (4k + 2) (5/4 + k (4k + 6), respectively). All these 
numbers are positive (except for - 3 / 4 )  and, as can readily be seen, pairwise distinct. This proves the 
assertion in the beginning of Sec. 3. 

To find these diagonal elements, we calculate the value of the operator L on the function tklo (tkli) 
up to a linear combination of the preceding basis functions. We have 

L(t~Ij) = tkLIj + k(k - 1)t (4t + 1)tk-2Ij + 2ktk(4t + 1)13. (7) 

Let us perform the calculation for j -- 0. The sum of the first two terms on the right-hand side of (7) is 
equal (with the indicated accuracy) to (-3/4 + 4k(k- 1))(tklo) (see (4)). To calculate the third term we 
express t (4t + 1)I~ via Io and I t  using the first equation in (5). On multiplying this equation by t (4t + 1) 
we obtain t (4t + 1) I~ = -4 tLIo  + 2LIt.  This is equal to 3tlo modulo a linear combination of the integrals 
I0 and 11 (see (4)). Hence, up to the accuracy indicated at the beginning of the paragraph, the third term 
on the right-hand side of (7) is equal to 6ktklo, and therefore L(tklo) is equal to ( - 3 / 4  + k (4k + 2)) tklo. 
We can similarly prove that ,  up to the corresponding accuracy, L(tklt)  is equal to (5/4 + k (4k + 6))tkI1. 
This proves the assertions in the foregoing paragraph. The proof of Lemma 4 is complete. 

4. P r o o f  o f  L e m m a  1. We first show that each eigenfunction Yi vanishes nowhere on I .  For i -- 1, 
this is one of the assumptions of the lemma. For i > 1, this follows from the inequality A~ > A1 and the 
following version of the Sturm comparison theorem appeared to Yt and yi. 

T h e  S t u r m  c o m p a r i s o n  t h e o r e m .  Let E(t) and G(t), F(t) < G(t), be continuous functions on 
a (possibly (semi)infinite) interval I = (a, b). Let the equations yl = F( t )y l  and ~/2 = G(t)y2 have 
solutions Yl and Y2 that are not identically zero. Suppose that the functions yi can be continuously 
extended by zero to the point a and that their derivatives are bounded in a neighborhood of a. Then there 
is at least one zero of the function Yl between any two zeros of the function Y2 on I U a. 

Since our version of the Sturm comparison theorem is somewhat more general than the classical state- 
ment  [2], we present its proof in full. 

P r o o f .  Assume that  there is a pair of zeros c, d E IU  {a} of the function Y2 such that  the function yl 
does not vanish on the interval (c, d). Without loss of generality, we can assume that  Yl, Y2 > 0 on (c, d). 
Let W = YlY2 - Y2Yl be the Wronskian of the pair of functions Yl, Y2. On one hand, the Wronsldan 
W(t) is strictly increasing on (c, d) because llV = Yly2 - Y2yl = (G - F)YtY2 > 0. On the other hand, 
as is shown below, W(c) > 0 >_ W(d).  (We assume that  W(a) = 0 because the function W can be 
continuously extended by zero to the point a according to the condition of the theorem.) The resulting 
contradiction proves the theorem. 

It remains to verify the inequalities at the end of the foregoing paragraph. By assumption, Y2 = 0 
at the points c and d, and hence W = yly2. The function Yl is positive on the interval (c, d), and, 
consequently, its endpoint values are nonnegative. This means that ,  at each of these points, the value of 
W either is zero or has the same sign as Y2. (If c = a,  then W(c) = 0.) We have y2(d) < 0 and the 
inequality y2(c) > 0 holds for c E I ,  which follows from the fact that  Y21(c,d) > 0 by assumption. This 
establishes the inequalities in the preceding paragraph and proves the Sturm comparison theorem. 

For any smooth  function q on an interval I ,  denote by #qlx the number of zeros of q counted according 
to their multiplicities. 
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L e m m a  6. 1. The inequa!i~y #q l l  <_ #q'lz + 1 holds for any smooth function q on the interval I .  
2. I f  a function q vanishes as the argument tends to one of the endpoints of the interval I ,  then 

#qlz _< #q'lI. 

Lemma 6 follows from the l~olle theorem according to which between any two zeros of a function there 
is at least one zero of its derivative. 

We now return to the proof of Lemma 1. Let Y = ~-~<k c~y~ be a nontrivial linear combination of the 
functions y~. Denote by q the quotient 

Y E Y' 
- -  - ~  C k  -~- Ci - -  �9 

Yk i<k Yk 

We must prove that  #q l l  _< k. By assertion 1 in Lemma 6, it suffices to prove that  #q ' lz  < k - 1. We 
have 

ql h 
= -  = c,(y,y  y,y ) y2,  where h ' - . 

i<k  

Thus, it suffices to prove a similar inequality for # h l z .  The function h can be continuously extended by 
zero to the point a (because the derivatives of y~ are bounded).  Therefore, by assertion 2 of Lemma 6, 
we obtain 

#hlz < #h' lz. (8) 

Furthermore, 

i<k  i<k  

The sum on the right-hand side of this relation is a linear combination of k - 1 functions y~, i < k. By 
induction, it is either identically zero, or has less than k - 1 zeros. This proves Lemma 1. 

I am indebted to Yu. S. II'yashenko and A. G. Khovanskii for useful remarks and to A. A. Glutsuk for 
help in the preparat ion of the manuscript. 
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