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The  Absence  of an Addi t iona l  Real -Analyt ic  First Integral  
in Some  P r o b l e m s  of  D y n a m i c s  
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1. S t a t e m e n t  o f  t h e  r e su l t s .  It was proved in [1, 2] that in some dynamic  problems in the com- 
plexified phase space, there is no additional meromorphic first integral (functionally independent of the 
known integrals). 

In the present paper,  we prove that  there are no meromorphic (in particular, analytic) first integrals 
for these problems in the real phase space as well. The following theorems hold. 

T h e o r e m  1. In the problem on the motion of a heavy rigid body about a fixed point, the existence of 
a general additional real-meromorphic* first integral takes place only in the well-known Euler, Lagrange, 
and Kowalewski cases. The existence of a particular integral (for the area constant equal to zero) takes 
place only in the above three cases and in the Goryachev-Chaplygin case. 

R e m a r k .  For a dynamically nonsymmetr ic  body, the assertion of Theorem 1 follows from [3, 4]. For 
the problem on the motion of a dynamically symmetric heavy rigid body about a fixed point, the absence 
of an additional (general or particular) real-meromorphic first integral was proved in [5, 6] (also see [7]) for 
the case in which one of the principal moments  of inertia is much smaller than  the other two (a perturbed 
spherical pendulum),  in [8, 9] (also see [7, 10]) for the per turbed Lagrange case, and in [11] for the case in 
which the center of gravity lies in the equatorial plane and the ratio of the principal moments  of inertia is 
greater than 4. 

T h e o r e m  2. The Henon-Heiles system [12] has no additional real-meromorphic first integral. 

T h e o r e m  3. In the Suslov problem [13] on the motion of a rigid body about a fixed point with the 
nonholonomic constraint prescribing that the angular velocity is orthogonal to a direction fixed in the 
reference frame attached to the body, for the case in which this direction coincides with one of the principal 
inertia axes at the suspension point, the body is in a uniform gravitational field, and the center of gravity 
lies on the above-mentioned axis, the existence of an additional real-meromorphic first integral takes place 
only if the body is dynamically symmetric (an analog of the Lagrange case of the motion of a heavy rigid 
body about a fixed point without additional constraints). 

2. S o m e  fac t s  to  b e  u s e d .  We use the following definitions from [15]. Let M be a complex manifold, 
let v be an analytic vector field on M ,  and let F be a complex phase curve of v other  than an equilibrium. 

Let f be an analytic function on M such that  f is constant on F.  By ff  we denote the function on 
the normal  bundle N F  = T r M / T F  of F in M generated by the function df on T r M .  Obviously, ff  is 
linear on the fibers of N F .  

Let H = (H1, . . . ,  Hi) ,  1 > 0, be analytic first integrals of v whose differentials are linearly independent 
on F.  The reduced phase space of the system in normal variations along F is defined as the level surface 
NpF = {~ E N F  I H'(~) = p}, p E C t , of the first integrals H '  of this system; the reduced system in 
variations is the restriction of the system in normal variations to this surface. 

Obviously, NpF is a holomorphic affine bundle (for p = 0, a holomorphic vector bundle) over F,  and 
the reduced system in variations is linear (for p = 0, homogeneous linear). 

The  monodromy group of a linear system in a holomorphic affine (vector) bundle over a Riemann surface 
is the image of the natura l  antirepresentation of the fundamental  group of this surface at some point in 
the group of affine (linear) transformations of the fiber over that  point. 

* That is, representable as a ratio of real-analytic functions in the neighborhood of any point. 
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P r o p o s i t i o n  [15]. If  the differential equation corresponding to v has an additional meromorphic first 
integral in a domain U C M such that the fundamental group of F (at some point) can be represented by 
loops entirely lying in U, then the monodromy group of the reduced system in variations along F has a 
rational first integral for any p E C t �9 

We use the expression "almost all" to mean "all except for possibly countably many." 

3. P r o o f  o f  T h e o r e m s  1-3 .  We assume that the body in the problem on the motion of a heavy rigid 
body about a fixed point is dynamically symmetric. As was mentioned, for a dynamically nonsymmetric 
body the result follows from [3, 4]. 

For each of the systems in question, in [1, 2] an invariant complex real-analytic manifold M 2 is indicated 
on which the system has a real-analytic first integral (the energy integral) and is integrable by quadratures. 
Moreover, in [1, 2] a one-parameter family r k ,  0 < k < 1, of complex phase curves of this system is 
indicated which axe not equilibria, on which the differentials of the known first integrals H = (H1, . . . ,  Ht) 
are linearly independent,  and for which the following assertion holds. 

P r o p o s i t i o n  1. For almost all k, there ezists a p E C t such that the monodromy group of the reduced 
system in variations along the phase curve Fk on the reduced phase space NvFt  = {~ E NFk [ H'(~) = p} * 
has no rational first integral. 

Proposition 1 together with the proposition stated in Sec. 2 implies the following assertion. 

P r o p o s i t i o n  2. None of the systems in question has an additional meromorphic first integral in a 
domain U of the complezified phase space such that the fundamental group of the phase curve Fk can be 
represented by loops entirely lying in U for more than countably many values of k .  

P r o o f  o f  P r o p o s i t i o n  1. Let us show that Proposition 1 holds with p = 0 for all systems in question 
except for the problem on the motion of a heavy rigid body about a fixed point in the Goryachev-Chaplygin 
c a s e .  

Indeed, for the Henon-Heiles system it was proved in [1] that  the desired first integral can exist only for 
the values of k such that  the eigenvalues of a two-dimensional linear symplectic transformation depending 
analytically on k, which are not identically equal to + i ,  assume the values + i .  Obviously, there axe at 
most countably many such values of k. 

For the problem on the motion of a heavy rigid body about a fixed point for the case in which the 
center of gravity does not lie in the equatorial plane, it was proved in [1] that  the above-mentioned first 
integral cannot exist throughout  the interval 0 < k < 1 ; however, the proof given there also remains valid 
for any subset of this interval that has an accumulation point, in particular, for any uncountable subset. 

For the problem on the motion of a heavy rigid body about a fixed point  for the case in which the 
center of gravity lies in the equatorial plane, as well as for the Suslov problem, the results of [1, 2] imply 
the following. 

(I) The reduced system in variations is invariant with respect to an involutive diffeomorphism that has 
no fixed points and is linear in the fibers of the reduced phase space (this diffeomorphism is generated by 
an involutive diffeomorphism of the original phase space, which is written out explicitly in [1, 2]). 

(II) The monodromy group of the factor system of the reduced system by the action of the above- 
mentioned diffeomorphism can have a rational first integral only for the values of k such that  the eigen- 
values of a two-dimensional linear symplectic transformation analytically depending on k, which axe not 
roots of unity identically, are roots of unity. Clearly, the set of such k is at most countable. 

Since a linear system in a holomorphic vector bundle over a Riemann surface obviously has a meromor- 
phic first integral if and only if its monodromy group has a rational first integral, property (II) implies the 
following. 

(III) For almost all k, the factor system has no meromorphic first integral. 

* Rigorously speaking,  in the  nota t ion  for the opera t ion  H -~ H I , one  should indicate  the  value of the  pa ramete r  k of 
the curve Fk ; to simplify t he  nota t ion ,  we agree not  to do so. 



By a l emma in [15, Sec. 1.5], it follows from (I) and (Ill) tha t  for these k the reduced system in 
variations also has no meromorphic  first integral, whence, in turn,  it follows tha t  its monodromy group 
has no rational first integral, which completes the proof. 

It remains to prove Proposi t ion 1 for the Goryachev-Chaplygin  case. In this si tuation,  the Euler-  
Poisson system describing the mot ion  of a heavy rigid body about  a fixed point  has the following form for 
an appropriate  choice of the  units  of measurement  and the directions of the principal  inertia axes at the 
suspension point  [1]: 

O) 
;tl = 4Ms'r2 - M2"rs, ;~2 = -4M3~h + Ml~ls, ;rs = M~"rx - M~'r2. 

Here ~ = (MI ,  M2, M~) and "7 = ( '~ ,  "r~, "Is) are the kinetic m o m e n t  of the body and the unit  
vector in the direction opposi te  to the gravitational force, respectively, defined by their projections on the 
principal inert ia axes at the suspension point. 

Let us consider system (1) in the complexified phase space M ~ = {x = ( ~ , - ~ )  E C n I "7 2 =  1}. The 
system has the functionally independent  general first integrals 

(the energy integral) and 

H 1 2 2M~ -- ~ (M 1 + M~) + + ")'1 

(the area integral); on the manifold M0 4 = {x E g 5 [ P ( z )  - 0}, the  system has the addit ional  particular 
first integral 

F = M3(M  + - M1 3. 

System (1) has the invariant two-dimensional manifold M 2 C M~ defined in M 5 by the equations 
M1 =M3 ='r2 = 0 .  

On M 2 , the sys tem has the one-parameter  family of solutions x = ~(t,  k) ,  0 < k _~ 1, given by the 
formulas 

M~ --- Ms = ~2 = O, M2 = M2(~, k) = - 2 k  cn(t,  k),  
(2) 

3'1 = @1 (t, k) = 2k 2 sn2(t, k) - 1, 73 = ~3(t, k) = 2k sn(t ,  k) dn( t ,  k),  k = X/(1 + h)/2,  

where sn(t ,  k) ,  cn(t ,  k) ,  and  dn(t ,  k) are the Jacobi elliptic functions of modulus  k and h is the energy 
integral constant .  

These solutions are single-valued and meromorphic;  if 0 < k < 1 (which is assumed in the sequel), then 
they are doubly periodic in t with periods T~ ,2 (k) = 2K(k) :h  2iK ' (k ) ,  where K(k )  is the complete elliptic 
integral of the  first k ind wi th  modulus  k,  K ' (k)  = K(k ' ) ,  and k' = ~/1 - k 2 ; in the periodicity cells, each 
of the solutions has the two poles el ,2(k) = =l=ig'(k) (rood T~,2(k)). We denote  the corresponding phase 
curves by Fk.  

The  reduced system in variations along Fk o n  the reduced phase space NvFk = {~ E NF~ ] H'(~) = O, 
P'(~)  = p},  p E C ,  has the form 

-~/i = 3~'I2(t, k)M~,  h;/~ = - ' r ; ,  ~ (3) 

~ = ; r s ( t , k ) M ~  -4~ l l ( t , k )M~,  ; r l ( t , k )M;  +X~s(t,k)M~ + M2(t,k)~l~ = p .  

Let ~i,k: [0, 1] --+ rk  (i = 1,2) be smooth  loops wi th  a c o m m o n  marked  point  such tha t  their lifts 
/3i,k : [0, 1] -+ C with respect  to ~ ( . ,  k) are, respectively, a rectil inear pa th  such that /31,k(1)  - /31,k(0) = 
4K(k)  and a loop tha t  goes around the pole al (k) of the solution x = ~(t, k) once in the positive direction. 
Let gi,k,p be the corresponding monodromy transformations.  

By a Jordan affine t ransformat ion we mean one having a fixed point  and a Jo rdan  block as the matr ix 
of its linear part .  



The eigenvalues and eigenvectors of an affine t ransformat ion are defined as those of its linear part, 
Let F '  be the restr ict ion of the function k , p  

F' = M~(t, k)M~ - •3(t, k )MI : UI'k -+ 12 

to the fiber of NpI'k over ai,k(O). 

L e m m a .  For almost all k and for all p, 91,~,p is a Jordan tranaformation with unit eigenvalue and 
with eigenvector annihilated by the 1-form F'  For all k and all p # 0 the transformation 92,k,p is k ,O " 

a translation by a vector that is not annihilated by this 1-form (g~,k,p is Lhe identity transformation for 
p=0). 

It follows f rom the l e m m a  (el. [16, 17]) that  the m o n o d r o m y  group has no rat ional  first integral for 
almost all k and all p # 0. Indeed, the integral mus t  be constant  both  on all lines parallel to the 
eigenvector of gi,k,p and on all lines parallel to the t ransla t ion vector of g2,k,p; hence, it is identically 
constant ,  which is what  we had  to prove. 

P r o o f  o f  t h e  l e m m a .  (A) The case p = 0. For p = 0, system (3) has the first integral F '  and is 
integrable by quadratures .  The  general solution has the form 

M ~ = M . ~ ( t , k ) ( c + 3 f J ( t , k ) ) ,  M ~ = M 2 ( t , k ) ~ / 3 ( t , k ) ( c + 3 f J ( t , k ) ) + f . M ~ - 2 ( t , k ) ,  

7~ = -(~r~(t ,  k)~i(t, k) + ;y~(t, k))(c + 3f  J(t,  k)) - f . ~ 3 ( t ,  k)Z~3(t, k), (4) 

J(t, k ) =  k)d . 
(k) 

Here c and f are arbi t rary  constants  ( f  is the constant  of the integral F ' ) ,  to: (0, 1) - r  C is an 
arbi trary funct ion such tha t  to(k) 7[: b m,n(k), where the bm,n(k) = nK(k )+ i  ( m + 2 n -  1) K'(k)  (m, n E Z) 

are the zeros and  the poles of M2 = M2(t, k) ,  and the integral  is taken over an arbi t rary  piecewise smooth 
pa th  avoiding the points  b~,~(k).  

Formula (4) implies the following. 
(I) The  solution is single-valued, and consequently, ge,k,0 = id.  Indeed, since the  matr ix  of the right- 

hand side of system (3) has singularities only at the poles of the solution x = ~(t,  k ) ,  it follows that  the 
solution (4) can have a branching only at these points.  However, it follows f rom (2) tha t  the integrand 
in J(t ,  k) is regular at these points,  and consequently, the integral,  as well as the  entire solution (4), is 
single-valued. 

(II) For f = 0, the  solution is 4K(k)-periodic,  and therefore, the t ransformat ion  g~,t,,0 has a fixed 
vector. 

To prove the  l emma for the case p = 0, it remains to show tha t  for f 7 ~ 0 and  for almost all k the 
number  4K(k)  is not  a per iod of this solution, and consequently, gl,t,,0 is a Jo rdan  transformation.  

Let ilk: [0, 1] -+ C be a rectilinear pa th  such tha t  i lk(l)  - fit,(0) = 4K(k)  and  Imflk(0) ~ nK'(k) ,  
n E Z .  Set 

A(k) = J(flk(1), k) - J(flk(O), k) .  

We have 

zx(k) = k)d,.  

On passing to the new integrat ion variable 8 according to the  formulas "~x(t, k) = - s i n 0 ,  "~3(t, k) = 
cos0 (/9 coincides with the Euler nu ta t ion  angle for 0 < 8 < rr), we obtain 

A(k)  = 2-s/2 f~ (h+sinO)-5/2dO, h =  2 k 2 -  1, 
k 

where 6k: [0, 11 -* S~ is a loop on the complexified circle S~ = C/27rZ with angular  coordinate 0 
(mod 2rr) such tha t  6k goes around the segment Ik = [ -  arcsin h,  7r + arcsin h] once. The direction in 



which the loop is passed is related to the branch of the integrand as follows: as the loop 5k contracts to 
Ik, the real part  of the integrand is positive on the side of Ik on which the motion along the loop is in 
the direction of increase of Re 0. 

We obtain 

A(k) = 1 ~ f (h +sinO)-l/2dO = 
3x/-2 dh2 d6h 

2v/~ d2 f ,r /2 (h + sinO)-l/2dO - 4 d 2 
3 dh 2 ,-~,c, i .a 3 dh 2 K ( x / ( l + h ) / 2 ) "  

Since K(k) --~ oo as k --+ 1, it follows that  A(k) 7 ~ 0 for almost all h and hence, as desired, for almost 
all k. 

(B) The case p 7~ O. Since for any i,  k, and p the linear part  of the transformation gi,k,p coincides 
with gi,k,o, it remains to show that 

(i) for almost all k and all p, the transformation gl,k,p preserves the linear function F~,p; 
(ii) for all k and all p • 0, the transformation g2,k,p does not preserve this function. 
Indeed, it follows from (A) and (i) that  for almost all k and all p the transformation gl,k,p has a 

Jordan linear part  and preserves the lines parallel to the eigenvector of the linear part. It follows that 
gl ,k,p has a fixed point and hence itself is a Jordan transformation. 

It follows from (A) and (ii) that for all k and all p 7~ 0 the transformation g2,k,p is a translation by a 
vector not annihilated by the 1-form F~,0. The proof is complete. 

Let fp be a function on Fk such that fp(x) is equal to the value of the derivative F '  of F '  along the 
trajectory of system (1), (3) on the fiber of NpFk over x (the derivative is constant on the fiber, since .~' 
is linear on the fibers of the normal bundle NFk and vanishes on the reduced phase space NoFk). 

On setting 

we obtain 

From (1), (3), and (2) we derive 

Ai(k, p) = F~,p o gi,k,p 

Ai(k' P) = fBi,h 

-F~,p ,  i = 1,2, 

k)) at. 

k)) = - p M , ( t ,  k) = 2pcn(t ,  k), 

whence A l ( k , p  ) = 0 and 

A2( k , p) = 4pkTri Res cn( iK'  ( k ) , k) = 4rp # 0 

for p r 0. The proof of the lemma and Proposition 1 is complete. 

Each of the systems in question has a real hyperbolic fixed point x0 on the manifold ~ 2 .  The real 
part of the phase curve P1 contains components that  are real phase curves of solutions that  tend to x0 as 
t --~ q-oo. (For the Henon-Heiles system there is only one such component; for each of the other systems 
there are two such components,  and their union coincides with Re F1 .) Let f~ be the closure of the union 
of these components. 

P r o p o s i t i o n  3. For any complex neighborhood U C M 2 of the set f~, there exists an e > 0 such that 
for 0 < Ik - 11 < e the fundamental group of the phase curve Fk can be represented by loops lying in U. 

R e m a r k .  Proposition 3 is valid for k = 1 as well, but  this is not needed in the sequel. 

Propositions 2 and 3 imply that  the systems in question have no additional meromorphic first integrals 
in any complex (and hence real) domain of the phase space containing f~, which proves Theorems 1-3. 

P r o o f  o f  P r o p o s i t i o n  3. For each of the systems in question, in [1, 2] a one-parameter family of 
solutions x = qo(t, k) corresponding to the phase curves Pk is indicated. For 0 < k < 1 these solutions 
are single-valued, meromorphic,  doubly periodic in t ,  and real for real t .  



Let T(k)  and T ' (k)  be, respectively, the minimal real and pure imaginary periods of the solution z = 
~o(t, k). For the Henon-Heiles system, they are primitive periods (that is, any period is an integral linear 
combination of these periods), and in each cell the solution has the single pole T ' ( k ) /2  (mod T(k) ,  T '(k)) .  
For the other systems in question, the primitive periods are T1,2(k) = (T(k) + T ' ( k ) ) / 2 ,  and the solution 
has the two poles +T' ( k ) /4  (mod T1.2(k)) in each cell. 

Let to(k) = T ( k ) / 2  for the Henon-Heiles system, and let to(k) = T ( k ) / 4  for the other systems. 
Let 7k, 71 : [0, 1] --+ Ft, be loops with a common marked point x~ = qa(to(k), k) which correspond to 
the variation of t ime along the periods T(k)  and T'(k)  of the solution x = qo(t, k).  It follows from 
the preceding that  for the Henon-Heiles system the homotopy classes of the loops 7k and 71 are the 
generators of the fundamental  group r l  ( rk) ,  whereas for the other systems these loops intersect at the 
second point z~ = qa(to(k) + T(k ) /2 ,  k) = qo(to(k) + T ' ( k ) /2 ,  k), and the fundamental  group ~'l(rk) can 
be represented by loops consisting of half-loops of these loops with ends at the points zk and z~. 

It follows from the formulas given in [1, 2] that xk tends to x0, the loop "/k tends to f~, and the loop "~ 
tends to x0 as k -~ 1 (the last assertion also follows from the normal form of the systems in question on 
M 2 in a neighborhood of x0 or from the continuous dependence of the solution of a differential equation 
on the initial data  and the boundedness of the period T'(k)  on any interval 0 < k0 < k < 1). The proof 
of Proposition 3 is complete. 

The author  is grateful to V. I. Arnold, A. D. Bryuno, V. V. Kozlov, A. I. Neishtadt, and A. I. Ovseevich 
for useful discussions. 

We use this occasion to correct some inaccuracies in [1, 15]. 

In [1], the first term in the integrand in (13) must contain sin2(x0 + wx) and not sin(2x0 + w x ) .  
In the equation Xl(Trq, X0) = 0 after Eq. (19) the expression in the parentheses must  be - 1 / 4  + w 2 

instead of - 1 / 4  + 1/w 2 ; hence, it vanishes at w = 1/2 and not at w = 2. 

The additional first integral for the Goryachev-Chaplygin case must have the form F = M3(M~ + 
M22) - M17a, as in the present paper, and not F = M 3 ( M  2 + M)  2 - M173. 

Due to a proposition in [15, Sec. 1.2] (the proposition in Sec. 2 of the present paper), the proof in [1] of 
the absence of a particular additional meromorphic first integral in the problem on the motion of a heavy 
rigid body about a fixed point for all cases except for the known integrable cases is simultaneously a proof 
of the absence, in these cases, of a general additional meromorphic integral; hence, the separate proof of 
the latter assertion in [1], as well as the remark to the Kozlov theorem in [15], can be omitted. 

In the algebraic lemma in [15, Sec. 1.2], the condition of commensurability for the weights s l , . . . ,  sm 
is missed (that is, one must  have si = his ,  ni E Z ,  i = 1, . . .  , m ,  s E R); this condition is needed to 
ensure that  the process of reducing the dependence index/~(~1, �9 �9 �9 Or) of the original system of functions 
~1, . . . ,  Or is finite. 

At the same time, the condition that the weights Sl, . . . ,  s,,, are nonnegative is unnecessary in the case 
of the field of rational functions and is not used in the proof. Hence, the algebraic lemma in [18] is also 
unnecessary. 
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