
Note that one can consider differential equations on the space (N)~ 1 that are adjoint to equations of 
the type (3), and an analog of Theorem 2 holds. 

The authors are grateful to Yu. M. Berezansky, Yu. L. Daletsky, and Yu. G. Kondratiev for useful 
remarks and attention to this work. 
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Basic  Funct ions  Assoc ia ted  with  a Two-Dimens iona l  Dirac  Sys tem* 

O. M. Kise lev  UDC 517.9 

In this paper, a special basis is constructed in the space of smooth integrable functions of two real 
variables. The basis functions are associated with the solution of the two-dimensional Dirac system o) ,) 

0 0 z  ~o= ~ -(1 0 ~o, E(-kz)~ollzl~oo = I .  (1) 

Here z, k E C, the bar stands for complex conjugation, E(kz) = diag (exp(kz), exp(Fzz)), and I is the 
identity matrix. 

We introduce the following notation for sesquilinear forms with weight functions f ( z )  and h(k): 

(~o(i), C U ) ) / =  f f c  dz A d~. (](z) ~oli(z, k)r  k) + f(z)~o2i(z, k)r k)), (2) 

= f f c  dk A dk (~--~(z, k)Cjt(z,  k)h(k) - ~-~(z, k)Cj2(z, k)h(k)). (~(,), r (3) 

Here and in what follows, f (z )  and h(k) are nonanalytic functions with respect to the complex variables 
z and k respectively. 

T h e o r e m  1. Let q, the partial derivatives of q with respect to z and 5 of order < 2, and Iql 2 be 
smooth integrable ]unctions, and let the following condition be satisfied: 

1 s u p  ffdxdy ]q(x+iy)] <1 
�9 e c  J J Iz - (~  + iy ) l  " 

Then each ]unction u(z) E C 1 N Lt can be represented in the form 

1 (~(2), r u ( z )  = -~ 

* Supported by RFBlq. grant No. 97-01-00459 and ISF grant No. MNB300. 
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where ft(k) is defined by the formula ~ = - (~(2), ~(2)),,/(47ri)" Here r is the solution of the problem 
adjoint to problem (1) with respect to the sesquilinearform (2) with weight ]unction q. 

The results on the basis property of the squared solutions of the one-dimensional Dirac system are well 
known [1-3]. Similar results on the basis property of functions associated with a nonstationary Schrbdinger 
equation with periodic potential were obtained in [4] for the two-dimensional case. 

Problem (1) is used for integration of the Davey-Stewartson-2 system (DS-2) [5, 6] 

iO, Q + (02 - O~)Q + (g + y)Q = o, O~g = OzIQI 2. (6) 

If the potential q in problem (1) is equal to Q, then, using formula (5), one can separate the dependence 
on the space and time variables in the solution of DS-2 linearized on the functions Q, g as a background: 

i O t U + 2 ( O 2 + O ~ ) U + ( g + ~ ) U + ( V + P ) Q = F ( z , t ) ,  O~V=Oz(QO+QU).  (7) 

T h e o r e m  2. Suppose that q = Q, the ]unction Q from the solution of system (6) satisfies the as- 
sumptions of Theorem 1 ]or 0 < t < To, and F(z, t)  e C1N LI .for any t e [0, T0]. Then the 
solution U of the initial boundary value problem ]or system (7) with the conditions U]t=o = Uo(z), 
Vllzl~oo = 0 such that U, OtU, O~U, O'~U, OzO~U E C 1 N L1, ~ = 1,2, for any t E [0, To], has the form 

U(z, t) = - i  (~o(2), r where U is the solution of the Cauchy problem 

o~0 - 2i (k  s + ~ )  0 = ~ (k ,  t) ,  01~=o - 1 4ri  (cp(2)' r176 ; (8) 

here _P(k, t) = - ( V  (2), r 

One can interpret the possibility of separating the variables in the solution of Eq. (7) as the result of 
the existence of the action-angle variables in the Hamiltonian approach to system DS-2 [7, 8]. Thus, the 
well-known approach to solving linearized integrable equations [1-4] can be applied to system (7). 

The boundary value problem for more general systems than (1) and for small potentials of the Schwartz 
class was considered in [9]. In this paper, problem (1) is studied for a more general class of potentials than 
in [% 

L e m m a  1. Let q satisfy condition (4); then the solution of problem (1) exists for any k E C. 

To prove the lemma, we pass from problem (1) to the equivalent system of integral equations [6] 

( I -G[q ,  k])~o = E(kz). (9) 

We shall solve system (9) in the space X'  of continuous bounded matrix functions ~o(z, ~,) with the 
norm 

I1~[I = max s u p ( I E j j ( - k z ) ~ j ~ ( z ,  k)l + I E ~ j ( - k z ) ~ 2 ( z ,  k)D . 
j = l , 2  z6C 

The operator G is a contraction operator in X'  if condition (4) is satisfied. The lemma is thereby proved. 
We need the asymptotics of the solution of (1). If q satisfies the assumptions of Theorem 1, then the 

solution of problem (1) as Ikl --+ cx~ has the form 

~ ( z ,  k) = 1 +  o-;~lql ~ + o ~ 
(10) 

~ ( z ,  k) = - ~ ~ + O e~p(kz) ,  

where 

The asymptotics of ~ was used in [6] for expressing q via the scattering data of problem (1). 
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The matrix qo is simultaneously a solution of the so-called D-problem [5] 

(o 
0~021 0k~022 : (p --b ' ~oE(-kz)]l~l_+oo = I .  (11) 

The formula for q(z) has the form [5, 6] 

1 / f c  dk h d[~b(k)~O~l(Z, k) exp(-kz),  q(z) = ,~N (12) 

where b(k) is the scattering data for problem (1). It is given by the formula 

b(k) = ~ dz A d~. q(z) ~o22(z, k) exp( -kz ) .  (la) 

One can obtain formula (5) by computing the formal variation of the expression (12) with respect to 
5b and the expression (13) with respect to 5q. A rigorous proof of formula (5) is given below. 

P r o o f  of  T h e o r e m  1. The right-hand side of (5) has the form 

1 / s  [ 4 ~ / / f  c h =  --= dkAd~: dz' AdY . ' ( (u ( z ' )~ -~( z ' , k ) r  
7rz 

k + ~ ( z ' ) ~ ( z ' ,  ) r  k))-~(z ,  k)r k)) 

1 / s  az' ̂ e~'((rg~')~o~(z',klr 
4~ri 

+ ~(z')r k)r k))~(,,  k)r k))]. 

The integrals with respect to z', converge, since the flmction f is integrable; one can rewrite the 
double integral with respect to k and k as an integral over the circle Cn of radius R --~ 00. Let us 
interchange the order of integration with respect to z', ~' and k,  k .  In the integrands, we replace the 
complex-conjugate entries of the matrices ~0 and r by formulas ~ n  = ~0~2, ~21 = -~012, Cu = r and 

Set 

021 ----- ~022(Z' , k ) r  , k ) d k  - ~021(z' , k)~221(z , k)d/z,  

w, = ~11(z, k) r k) d~ - ~ ( z ,  k)r k) &, 
W3 = --~011(Z', k ) r  k) dk + ~o12(z', k)r  k )  dk, 

w4 = -~ot2(z, k) r k) dk + ~on(z, k)r k) dk. 

In this notation, we obtain 

R R 

The forms wj,  j = 1, . . . ,  4, are closed; this follows from system (11) and the adjoint system for r (with 
respect to the sesquilinear form (3) with weight function b(k)). Using the Stokes formula, we pass from 
the integral over the large disk to the integral over the large circle. After substituting the asymptotics of 
the integrand as ]k[ -+ oo and passing to the limit as k -+ co, we obtain 

h -  1 lira f f d z ' A d ~ . ' u ( z ' )  e x p ( k ( z ' - z ) + k ( z - z ' ) )  ~ U I Z  ) - 
47r 2 R+oo J Jc (z' - z)(z  - z') 

The proof of Theorem 2 is reduced to justifying formula (8): 

0,5  = (0,~ (2), r + (~(2), 0,r + (~(2), r (141 
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If q = Q, then the matrix ~ satisfies the following evolution system with respect to t [5, 6]: 

( - 2 i k  0 ) ( 2iO~ + ig iO~Q- iQO~ ) 
Ot~ = ~ 0 2if~ + iOzQ. - iQOz -2i0~ - i~ ~o. (15) 

We use this system and the evolution system for r to evaluate the derivative (14). We express the 
derivative 0t~ (2) via system (15), the derivative 0re (2) via the evolution system for r and the derivative 
OtU via system (7). As a result, we get an expression that does not contain derivatives with respect to t. 
After some transformations, we obtain (8). 
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We denote by g;  (p > 1) the space R '~ equipped with the norm 

IIxEI = p , 

where the ~k are the canonical coordinates of x. The question on the existence of Euclidean subspaces 
in t~' is natural from the geometric point of view and is related to various problems arising in spectral 
theory, numerical analysis, representation theory of groups, etc. (see [3, 4, 6, 7]). In this note, only 
2-dimensional subspaces (planes) are considered. 

T h e o r e m  1 [3]. /f g ;  contains a Euclidean plane, then p e 2N -- {2, 4, 6 , . . .  }. 

The converse is true if n is large enough. 

T h e o r e m  2 [4, 6]. For p e 2N, the space ~ contains a Euclidean plane if and only if n > p/2 + 1. 

In the case n < p/2,  it is natural to consider e-Eticlidean planes, where e is as small as possible. Now 
no constraint on p is needed, and the problem is related to the classical Dvoretzky theorem [2]. According 
to this theorem, for every e > 0 there exists an n(e, p) such that for n _> n(e, p) the space gp contains an 
e-Euclidean plane. In other words, for n _> n(e, p) there exists a linear embedding f :  ~2 __+ s satisfying 
the inequality Ill[I" [If-l[[ -~ 1 + e, where f - z :  I m f  --+ t 2 is the left inverse of f .  If p • 2N, then the 
two-sided estimate 

a(p) e -I/(p+1) < n(e, p) ~ b(p)~-1/(p+i)in 4 e 
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