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1. Introduction 

1.1. Lyashko-Looijenga mapping. Let M be a (complex) manifold and let F: M -. CP I be an 
analytic function. Assume that the set of critical points of F is finite and the multiplicity of each critical 
point is also finite. The second of these assumptions means that any function F1 : M --+ CI? I close to F also 
has a i~ite set of critical points. Then the Lya,shko-Looijenga (LL) mapping associates with F the unimodal 
polynomial (i.e., the one with leading coefficient i) in one variable t whose roots are the finite critical values 
of F ,  

LL: F ~ ( t -  tx) h . . -  (t - tk) Ik, 

and the multiplicity of each root is equal to the sum of the multiplicities of all its preimages. 
We study the LL mapping mainly for the case in which F is a polynomial or a family of polynomials 

in one variable. The LL mapping takes a polynomial P of degree n + 1 to a polynomial of degree n since 
the number of critical values of P (counting multiplicities) coincides with that  of the roots of its derivative, 
i.e., is equal to n. 

Our main goal is to study the LL mapping on the space ~ of polynomials 

P(x)  = x "+1 + p 2 x  n-1 + . . - + p n + l .  (1) 

This family is a universal unfolding of the An singularity (see [8]). It can also be treated as the family of 
rational mappings P :  CIF 1 --+ CIF 1 with a single pole of order n + 1 considered to within linear fractional 
transformations in the preimage. Indeed, under an appropriate transformation of coordinates, any such 
mapping takes the form (1). 

The LL mapping associates with a polynomial (1) the unimodal polynomial 

D(t) = t n + d l t  n-1 + . . . + d n ,  (2) 

whose roots are the critical values of P .  Hence, the LL mapping maps the space ~ c~ C n of polynomials P 
with coordinates P2, . . .  ,p,~+t to the space ~ ~ C n of polynomials D with coordinates d t , . . . ,  dn. 

1.2. D i s c r i m i n a n t  a n d  s t r a t i f i ca t ion  o f  t h e  s p a c e  of  p o l y n o m i a l s .  The LL mapping is polynomial 
and f ini te (see [1, 8]), i.e., the set of preimages of an arbitrary point in the target space is finite. The 
multiplicity of the LL mapping, i.e., the number of preimages of a generic point D E ~ ,  is equal to (n+  1) n-1 . 

A nongeneric point has fewer preimages than a generic one. All preimages of nongeneric points form the 
discr iminant  Z C ~ of the LL mapping in the source space ,~. The  discriminant consists of polynomials 
with multiple critical values. These polynomials form a hypersurface in the space ~ .  Below we describe 
a natural  stratification of the space ~ .  In this stratification, the discrimiuant is the union of all strata 
of codimension at least 1, and its complement consisting of generic polynomials is the only stratum of 
codimension zero. 
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It is shown in [8] that  the LL mapping is nondegenerate on the complement of the discriminant. We 
generalize this assertion and prove that the restriction of the LL mapping to each discriminant stratum is 
also nondegenerate. 

Associate with each critical value t - t of a polynomial P the following partition of its degeneracy. 
Suppose the equation P(x)  = t has ko simple roots, kl roots of multiplicity 2 , . . . ,  and kn roots of multiplicity 
n + 1, The partition associated with the critical value t is the partit ion X(t)  ---- l k 1 2  k2 . . .  n k "  , where k~ is 
the number of occurrences of i. In other words, the critical value t is attained at kl simple critical points, 
. . . ,  and kn critical points of multiplicity n. If, for example, ~ is a generic critical value ( P  takes the value 

at a single critical point, and the multiplicity of this point is one), then X(t-) = 11 . The degeneracy of ~ is 

A(X(t ) = 1.  kl  + 2 .  k2 + . . .  + n .  

The automorphism group Aut(X) of a partition X = 1 kl . - .  n k~ consists of permutations preserving 
the values of the parts of this partition. It contains 

# A u t ( X )  = kl{- ' -  kn{ 

elements. 
Following [7], we call the (unordered) finite set of partit ions associated with all critical values of a 

polynomial P the passport of this polynomial. The passport of a generic polynomial consists of n copies of 
the partition 11 . The Riemann-Hurwitz formula implies that  if a set X = {X1, . . . ,  Xc} of partitions is the 
passport of a polynomial, then A(X1) + . . .  + A(Xc)  = n. It can be shown (e.g., see [9]) that  the converse 
is also true. 

The automorphism group Aut(X) of a passport X = { X 1 , . . . ,  Xc} consists of all permutations a of the 
partitions X/preserving their type (i.e., such that  the partition a (Xi )  coincides with X/ fo r  all i = 1 , . . . ,  c). 
The number of elements in this group is denoted by # A u t ( X ) .  

We associate a stratum P.x C ~ with each set X = { X 1 , . . . ,  Xc} of partitions. This s tratum consists of 
all polynomials whose passport coincides with X.  Each s t ra tum is a cylinder with a one-dimensional element 
because a change in the free term does not affect the passport of the polynomial. Generic polynomials form 
the "improper stratum" in ~ .  

1.3. S t a t e m e n t  o f  t h e  ma in  t h e o r e m .  We associate with each passport X --- {X1 , . . . ,Xc}  the 
partition 

T = T(X) = ( A ( X 1 ) , . . . , A ( X c ) )  = 1 ' m - . . n  m" 

of n, where m / -  # { X j  E X, A(Xy) -- i}, i.e., the partition T(X)  is determined by the degeneracies of all 
critical values. The automorphism group of this partition contains 

#Au t (T)  = ml! , ' .  mn!  

elements. 

T h e o r e m  1.1. The multiplicity # x  of the restriction of the LL mapping to the stratum P.x determined 
by a passport X - { X 1 , . . . ,  Xc} is given by the formula 

#Aut (T(X) )  " ~ I  (n - A(Xi))! 
# x  = (n + 1) ~ # A u t ( X )  Y[i~l # A u t ( X / )  i=t s(Xi)! ' 

where s(Xi) is the number of noncritical preimages of a critical value with partition Xi .  

Note that the number s (X)  for a partition X is given by the  relation 

s (X)  = n + 1 - A ( X )  - l (X) ,  

where I(X) is the number of elements in X = 1 k* . . .  n k~ , i.e., I (X)  = kl + . . .  + kn. 
The passport of a generic polynomial consists of n copies of the partition 11 , and the theorem gives the 

value/z(LL) = (n + 1) r~-I for the multiplicity of the LL mapping at a generic point. 
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1.4. Br ie f  history. The Lyashko-Looijenga mapping was introduced by Lyashko in 1973 (unpub- 
lished) and, independently, by Looijenga [8]. They proved that for some families of functions this mapping 
is a ramified finite covering and calculated its multiplicity for the so-called universal unfoldings of s~mple 
singularities (the statement of the main theorem of Lyashko coinciding with that of Looijenga is presented 
in [2]). Moreover, Looijenga established a correspondence between generic polynomial coverings of the com- 
plex sphere and the trees with indexed edges and thus gave a new proof of the Cayley enumeration theorem 
for marked trees. 

Developing their approach, Arnold [1] suggested a way of enumerating some classes of graphs associated 
with rational rather than polynomial coverings of the complex sphere. Close enumeration formulas appear 
in a different context in the papers of Goulden and Jackson [5, 6]. D. Zvonkine [10] showed that numbers 
appearing in formulas in [6] can be interpreted as the multiplicities of the LL mapping restricted to the 
discriminant strata in the space of polynomial coverings. The proof of Theorem 1.1 below presents an 
independent derivation of the Goulden-Jackson formulas based on the ideas of Lyashko, Looijenga, and 
Arnold. 

The paper has the following structure. In Sec. 2, we briefly describe a relationship between the multiplic- 
ities of the restrictions of the LL mapping to the discriminant strata and the enumeration of cacti and sets 
of permutations possessing some specific properties. Section 3 is devoted to calculating the multiplicity of 
the LL mapping on some w strata using the quasihomogeneous mapping technique. Section 4 contains 
the proof of the main theorem based on studying the geometry of the strata. Here we lift the LL mapping 
to the space of ordered sets of the critical points of polynomials and prove that the restriction of the lifted 
mapping to the "standard" planes is nondegenerate. This assertion generalizes the nondegeneracy of the LL 
mapping in the complement of the discriminant to arbitrary strata. 

The paper was written during the second author's stay at the Laboratoire Bordaileuse de Rdchdrche en 
Informatique, Universitd Bordeaux I, France, in May-June 1997. The authors are grateful to V. I. Arnold 
for the statement of the problem and to the participants of Arnold's seminars in both Moscow and Paris 
for valuable discussions. We are especially indebted to A. G. Khovan.*ky, whose comment led to an essential 
clarification of the proofs, to A. Dimca for help in the proof of Lemma 4.4, and also to V. Goryunov, 
A. K. Zvonkin, D. Panov, and B. Shapiro. 

2. Mult ipl ic i t ies ,  Cacti ,  and P e r m u t a t i o n s  

Classification problems for ramified coverings of the complex sphere can usually be reduced to purely 
combinatorial problems of enumeration of embedded graphs. The principles of this reduction are well known. 
Below we present a brief description of such a reduction for the case of degenerate polynomial coverings. 
It consists in establishing the correspondence (first introduced in [9]) between these coverings and graphs 
of a special form called cacti and also sets of permutations satisfying some specific conditions. For a more 
detailed presentation, see [4]. 

As usual, all plane embeddings of graphs are considered to within a plane isotopy. 

2.1. The  cactus of  a polynomial .  Let P:  CP 1 --* CP 1 be a polynomial of the form (1) and let 
t l , . . . ,  tc be its critical values. We choose an arbitrary noncritical value to E C and join the point to to  
all critical values by smooth nonintersecting and non-self-intersecting curve segments such that the cyclic 
order of the segments determined by the counterclockwise rotation at t0 coincides with that determined by 
the indexing of the critical values. The resulting pattern is called a c-star on the set t l , . . . ,  tc. The vertices 
t l , . . . ,  tc are referred to as black and the vertex t0 as white. 

The preimage of the star under the mapping P is a graph embedded in the source sphere CP 1. The 
vertices of the graph are the preimages of ti (0 ~< i ~< c) and its edges are those of the star rays. The 
preimages of to are white vertices of the graph. The preimages of the other points t~ are black vertices, and 
they are marked by the index i. This graph is composed of n + 1 stars glued over some of the black vertices. 
It can be proved that the resulting graph is always a tree. 
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Def in i t ion  2.1.  A c-cactus is a plane tree with black and white vertices that is obtained by gluing 
together a number of c-stars over black vertices with the same marks. 

Thus, every polynomial P determines a cactus. The theorem below states the converse. 

T h e o r e m  2.2.  Consider c points tl, . . .  ,to E C, a c-star on these points, and a c-cactus formed by 
n + 1 glued stars. Then there is an (n + 1)th degree polynomial P such that it is unique to within a linear 
change o] variable P(x )  ~-. P(ax  + b) (a,b E C, a ~ 0), t l , . . .  ,to are its critical values, and the preimage 
of the star with respect to P and the original cactus are isotopic. 

This theorem immediately follows from the Riemalm existence theorem. The number of distinct poly- 
nomials corresponding to the same cactus is equal to the ratio of n + 1 to the number of automorphisms 
of the cactus. This assertion follows from the fact that if P is a polynomial of the form (1), then the only 
polynomials of the  form (1) that can be obtained from P by transformations of the form P(x)  ,-* P(ax  + b) 
are P~ = P(s ix) ,  i = 0 , . . . ,  n, where s is an (n + 1)th primitive root of unity. 

For 1 <~ i ~< c, the set of the i th cactus black-vertex valences each of which is decreased by unity 
is a partition. The  ordered list of these partitions is called the passport of the cactus. The passport of 
a polynomial realizing a given cactus is obtained from that  of the cactus by forgetting the order of the 
partitions. 

Theorem 2.2 together with the main theorem implies the following assertion, first proved in [6]. 

C o r o l l a r y  2.3.  The number of different cacti with a picked star that have a passport X = [X1, . . . ,  Xc] 
is equal to 

1 ~ ( n -  A(Xi))! (~ 1) c-1 + 
HiLl #Aut (Xi )  11  s ( ~  " i=1 

For a Morse polynomial P ,  the valences of all black vertices of the cactus corresponding to P are equal 
to 1 or 2. In this case, the enumeration of the cacti reduces to that of the trees with indexed edges (see [8, 1]). 

2.2. P e r m u t a t i o n s  a s soc ia ted  wi th  cact i .  Consider a cactus and pick up a star in it. Suppose that 
the white vertices of the cactus are indexed by the numbers from 1 to n + 1. Let P be a polynomial realizing 
this cactus. We take a star on its critical values t l , . . . ,  to. 

On the image sphere, consider a closed path starting at the noncritical value to E CIP 1 , going along the 
i th  ray of the star, passing around the i th critical value ti in the positive direction, and then returning to 
to along the same ray. This path induces a permutation as on the (n + 1)-element set of white vertices of 
the cactus. 

This permutat ion is defined as follows. Take one of the white vertices. It belongs to the preimage of 
the noncritical value to. As the point moves along the chosen path in the image sphere, its preimage moves 
continuously along a path in the preimage sphere and returns to a white vertex (which is generally distinct 
from the original one). The index of the new white vertex is the image of the index of the original vertex 
under the mapping a~. The mapping as is in fact a permutation since it is reversible. 

The permutat ion as can also be described as the "rotation in the cactus around the black vertices marked 
by i," namely, it realizes a cyclic permutation of white vertices joined to the i th  black vertex according to 
the cyclic order on these vertices. In particular, the permutati6n ai depends only on the cactus (and on the 
indexing of its white vertices) rather than on the polynomial realizing the cactus. 

The set of lengths of cycles of the permutation ~ each of which is decreased by one determines a 
partition called the type of the permutation. The previous remark implies that the list of such partitions for 
I ~ i ~< c coincides with the passport of the cactus. 

The product ac o ... o al of permutations ai taken in the indicated order is a cyclic permutation. 
Indeed, the path in the image sphere corresponding to this product passes around all critical values. In 
other words, this is a path around the ramification point at infinity. The polynomial P has a ramification 
point of order n + 1 at infinity, and therefore the corresponding permutation is simply a cyclic permutation. 

For definiteness, assume that the white vertex of the selected star is marked by 1 and that the permu- 
tation ac o ... o ql is the cycle (1,..., n + 1). 

Then the following theorem takes place (see [6]). 
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T h e o r e m  2.4. There is a natural one-to-one correspondence between the set of c-cacti with a selected 
star that are formed of n + 1 glued stars and have the passport [X1, . . . ,  Xc] and the set of tuples of c 
permutations a l , . . . ,  ae on an (n + 1)-element set such that the type of the permutation ai coincides with 
Xi  for all i and ac o --- o a l  = (1 , . . . ,  n + 1). 

Hence, the enumeration of cacti is equivalent to that  of c-tuples of permutations satisfying the conditions 
of the theorem. 

3. Q u a s i h o m o g e n e o u s  M a p p i n g s  

3.1. Q u a s i h o m o g e n e o u s  B e z o u t  t h e o r e m .  The notion of a quasihomogeneous mapping generalizes 
that  of a homogeneous one. Let xz , . . .  ,xn be coordinates in C n. Suppose a positive integer w(xi) = wi 
called the weight is associated with each coordinate x~. 

A function f :  C n --* C is said to be quasihomogeneous of weight W E N (with respect to the set of 
weights w~) if 

. . . ,  = z n )  

for any ), E C. 
The main example of a quasihomogeneous function is a monomial. The weight of a monomial x~ 1 . . .  x~ - 

is a lwl  + . "  + anWn. A sum of monomials of weight W is a polynomial of weight W.  
As a simple illustration of the notion of a quasihomogeneous function, we present an explicit formula for 

the LL mapping on family (1). The discriminant of a polynomial P(x)  E ~ (i.e., the product l 'L#j(xl - x j )  
of the pairwise differences of its roots) is a polynomial in  the coefficients P2, . . .  ,pn+l of P(x).  Let t be 
a parameter. Consider the discriminant of the polynomial P(x)  - t as a polynomial in t with coefficients 
depending on the parameters p2 , . . . ,  pn. 

L e m m a  3.1. The LL mapping takes a polynomial P = P(x)  to the discriminant of the polynomial 
P(x)  - t  to within a constant factor. 

Proof .  A value t = t is a root of the discriminant of the polynomial P(x)  - t if and only if the 
polynomial P(x)  - t has multiple roots, i.e., if and only if t is a critical value of P .  A generic polynomial in 
family (1) has n distinct critical values. Therefore, the degree with respect to t of the discriminant of the 
polynomial P(x)  - t is at least n. Let us set the weight of x equal to 1. If we take w(pi) = i, then P is a 
quasihomogeneous polynomial of weight n + 1. For the polynomial P(x)  - t to be also quasihomogeneous 
we must set w(t) = n + 1. The weight of the discriminant is equal to n(n + 1) since the discriminant is 
the product of n(n + 1) terms of weight 1. On the other hand, the weight of the monomial t n is n(n + 1), 
whence the weight of the coefficient before t n in the discriminant must be zero, i.e., it is a constant. The 
lemma is proved. 

Suppose now that  the i th  component fi of a mapping F :  C a - ,  C n, F = ( f l , . . . ,  f,~), is a polynomial 
of weight Wi and that  F is finite. It is well known that  a quasihomogeneous mapping is finite if and only if 
the only preimage of the origin is the origin (for example, see [3]). 

The following statement generalizes the Bezout theorem. 

T h e o r e m  3.2 (see [3]). The multiplicity of a finite quasihomogeneous mapping F is given by the for- 
mula 

= : . 

W l  " " " W n  

Lemma 3.1 implies that the mapping LL: ~ --~ ~ is polynomial and finite. If we set w(d~) -- i(n + 1), 
then it becomes quasihomogeneous. The Bezout theorem now permits easily calculating its multiplicity at 
a generic point: 

w ( d z ) " ' w ( d n )  l ( n +  1 ) . . . n ( n +  1) _- ( n +  1) n-1. 
p(LL) = w(p2) ' "w(pn+l)  = ...... 2 . . . ( n  + i )  
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3.2. P r i m i t i v e  s t r a t a .  We start by calculating the multiplicity of the LL mapping restricted to a 
stratum in which all critical values except one are nondegenerate. These strata are termed primitive. The 
simplest primitive stratum is called the Maxwell stratum. It corresponds to the case of two distinct critical 
points with a common critical value. The passport X = { X z , . . . ,  X n - i }  of the Maxwell stratum consists 
of n -  1 partitions, where the first partition is Xi  = 12 and the others are Morse partitions, Xi = 11, 
i - -  2 , . . . , n - 1 .  

A generic polynomial in the Maxwell stratum has the form 
/ n - - 2  - -  ! P(x )  = (x  2 + p l x  +p2)2(x '~-3 + p i  x - r - . .  + Pn-3) +Pn+i ,  

where p~ § 2pi - 0. Setting 

w(p ) = i ,  i =  i , . . . , n - 3 ,  

for the weights of the coordinates in the preimage we conclude that  the total weight of coordinates in the 
preimage is equal to 

2 ( n §  1 ) ( n -  3)!. 

On the other hand, we have T(X) = 1~-22 x , and a generic polynomial in the image has the form 

D ( t ) - - ( t - t i ) 2 D l ( t ) ,  

where ti = P,~+i is a multiple critical value and 

= d t n -2  Dl(t) t " -2  Jr d l t  n -1  Jr 2 + " "  Jr d n - 2  

is a polynomial of the (n - 2) th degree. This representation dictates the following choice of weights of 
coordinates in the image: w ( t i )  = n + 1, w ( d i ) =  i (n  + 1), i = 1 , . . . , n -  2, and the total weight of 
coordinates in the image equals (n - 2)] (n + 1) n-1 . 

We can now calculate the multiplicity of the restriction of the LL mapping to the Maxwell stratum, 

(n - 2)[ (n + 1) n - i  (n - 2)(n + 1) n-2 

" =  2(n  + 3)! = 2 ' 

which coincides with Arnold's results [1]. 
The above calculation can easily be generalized to an arbitrary primitive stratum. Namely, suppose that 

the partition corresponding to the first critical value has the form Xi  - I al - . -n  k" and that the others 
are Morse critical values, X j  = 11 , j = 2 , . . .  ,c. Then c = n + 1 - A ( X i ) .  A generic polynomial with the 
degenerate critical level Pn+l of the above type can be represented in the form 

P(x )  = P o ( x ) P } ( x ) . . .  P2+i (x )  -t-pn+i, 

where 
Pi(x) = x k' + p~,ix k~-i + " "  + pi,k~ 

is a polynomial of degree ki, ko = s (X i )  is the number of simple roots of the polynomial P ,  ko + 2kl + 
�9 .- + (n + 1)kn = n + 1, and Po,i + 2pi,i + ' - "  + (n + 1)pn,i - 0 .  In other  words, we have parametrized the 
closure of the primitive s t ra tum by the space of coefficients pij of the polynomials Po , . . .  , pn .  

After the weights w ( p i j )  - i and w(pn+i) = n + 1 are chosen, the total weight of coordinates in the 
preimage becomes 

(n + 1) s(X1)!ki !  . . .  kn[ = (n + 1)#Aut (Xl )  s ( X i ) ! .  

On the other hand, we have T(X) = I " - A ( X l ) A ( X 1 )  i , and a generic polynomial in the image has the 
form 

D(t) = (t - ti)A(X~) Di  (t), 

where ti = Pn+i is the multiple critical value and Di  is a generic polynomial of degree n - A ( X i ) .  Hence, 
the total weight of the coordinates in the image is equal to 

+ 
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and the multiplicity takes the form 

#x(LL)  - (n + 1) c-1 1 (n - A(X1))! 
#Aut (XI )  " s(X1)! 

Note that  this formula is in complete agreement with the predictions of the main theorem because, for 
a primitive s tratum, we have # A u t ( X )  = #Aut (T(X) )  = ( n -  A(X1))!, # t u t ( X 0  = 1 for i = 2 , . . . ,  c, and 
A(Xi)  = s(Xi)  = n - 1 for a nondegenerate partition X~ = 11 . 

This result will be used below in the proof of the main theorem in the general case. 

4. Proof of the Main Theorem 

4.1. A u x i l i a r y  m a p p i n g s .  To prove Theorem 1.1 we replace the LL mapping by its analog that 
associates with the (ordered) set of critical points of a polynomial the (ordered) set of its critical values. 
Namely, consider the commutative square diagram 

~ , LL ) 9 

oT I- 
N 

(3) 

Here ~ denotes the space C n, which is identified with the Cartesian product C n - l •  C 1 in which the 
first factor is the hyperplane 

al + . . .  +an = 0 (4) 

in the n-dimensional space of ordered sets of critical points of polynomials P and the other factor is the 
line of (n + 1)th roots of the free te rm pn+l of the polynomial P .  Accordingly, the mapping a has the form 

( a l , . . . ,  an; (n + -- an) + a "+1 (5) 

The space ~ is the space of ordered n-tuples of critical values of P .  The mapping r is simply the Vieta 
mapping 

r :  ( t l , . . . , t n ) ~ ' * ( t - t l ) ' " ( t - t n ) ,  (8) 

associatingwith an n-tuple of numbers the unimodal polynomial whose roots are these numbers. 
The LL mapping takes a point A = (al, . . .  ,an,a) E ~ t o  the point ( t l , . . .  ,tn) E ~ ,  where ti = P(ai) 

is the value of P = a(A)  at the point ai .  The mappings a,  r ,  and LL are obviously polynomial. 

L e m m a  4.1.  /;he mappings a,  ~, and LL are quasihomogeneous and finite. The mapping L~'L is ho- 
mogeneous of degree n +  1 in each coordinate and finite. 

Proof .  The (quasi)homogeneity of the mappings under consideration means the following. Consider 

the action of the multiplicative group C* - C \ {0} on the space ~ by dilations, A: (al,.. .  ,an;a)  ~-~ 
(Aa l , . . . ,Aa , ;Aa ) ,  A E C*. This action induces the action of the group C* on the spaces 2 ,  ~ ,  and ~,  
which commutes with the mappings of the square diagram (3). In particular, the corresponding action on 
is the dilation A: ( t l , . . . ,  tn) ~-* (An+I t1 , . . . ,  An+ltn) since the A-fold dilation of the critical points of the 
polynomial and the A n+l-fold dilation of its free term induce the A n+l-fold dilation of the critical values. 

The mappings are finite since for each of them the preimage of the origin consists only of the origin. 
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4.2. Ca lcu la t ing  mul t ip l ic i t ies .  The stratification of the space ~ described in Sec. 1.2 induces 
stratifications of the other spaces at the vertices of the square diagram (3). To calculate the multiplicities 
of the LL mapping restricted to the discriminant strata it suffices to calculate the multiplicities of the 
restriction of the mappings c~, LL, and 7" to the corresponding strata. 

We start by describing the induced stratifications. 
The strata in the space ~ are numbered by the partitions T = 1TM .-. n mn of the number n, n = 

1 �9 m l  - t - . . .  + n .  r a n .  The stratum A T C ~ consists of polynomials having ml  roots of multiplicity 1 , . . . ,  
a n d  rnn  roots of multiplicity n. 

For a partition T of n, let us fix a partition of the set of indices {1 , . . . ,  n} into disjoint subsets such that 
there are precisely ml  1-element subsets, . . . ,  a n d m  n n-element subsets. Associate with such a partition 
the stratum ~T C ~ of ~ consisting of the points (Q, . . .  , tn) e ~ such that t~ = tj if and only if the 
indices i and j belong to the same subset of the partition. (For simplicity, we omit the indication of the 
chosen partition of the set of indices in the notation of a stratum.) 

Similarly, we fix for a passport X = { X 1 , . . . , X c }  a partition I = { I 1 , . . . , I c }  of the set of indices 
{1,. . .  ,n} into c tuples I1 , . . .  ,Ic of pairwise disjoint subsets such that the ith tuple Ii of this partition 
contains precisely._, kil 1-element subsets, . . . ,  and kin n-element~, subsets, where Xi = 1 k~l.. . n  k''~ . The 
stratum ~I C ~ consists of all points A = ( a l , . . .  , a n ; a )  E , .~  such that  ai -- aj if and only if the indices i 
and j belong to the same subset of the partition and the values of the polynomial c~(A) at the points ai 
a n d  a j  coincide if and only if the indices i and j belong to subsets of the same tuple of the partition. 

Given a partition I of the set of indices for a passport X,  one can construct in a unique manner a 
partition T(I) compatible with the former, which is obtained by taking the union of all subsets of indices 
inside each tuple. 

The restrictions of the mappings of the square diagram (3) to the corresponding strata form the com- 
mutative square diagram 

)~.x LL AT(X) 

~'I LL ~ AT(I ) 

(7) 

where the strata ~I and /~T(X) correspond to the compatible partitions of the set of indices {1, . . . ,  n}. 
The multiplicities of all mappings in this square diagram are constant, and they do not depend on the 

choice of either a point in the image or a partition I. Accordingly, denote these multiplicities by ~x(LL), 
#x((~), #x(LL), and ~T(X)(r). The commutativity of the square diagram (7) implies 

#x(LL) �9 # r (x ) ( r )  
#x(LL) = /zx(a) ' (8) 

and to prove the theorem it suffices to calculate all the multiplicities entering the right-hand side. 

L e m m a  4.2. L e t  T ---- 1 m l  . . .  n m'~ . T h e n  

~ T ( T )  "-" m l  ! " " m,~! - -  ~Aut(T) .  

Indeed, a polynomial in the stratum ~T determines the (multi)set of its roots. If we also fix a partition 
of the set of indices {1 , . . . ,  n} corresponding to T, then there remain ml!  ways to index the roots of 
multiplicity 1 , . . . ,  and r a n !  ways to index the roots of multiplicity n. 

The following assertion is also obvious. 
C 

L e m m a  4 .3 .  #x (a )  -- (n + 1)#Aut(X)  H #Aut(X~). 
/-~.1 
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It is proved by analogy with the previous case; namely, there are #Aut(X) ways to permute the tuples 
of sets of indices corresponding to equal partitions X~ and #Aut(Xi)  ways to permute sets of indices inside 
the i th tuple. The factor n + 1 is due to the fact that there are n + 1 (n + 1)th roots of the free term. 

The multiplicity of the mapping LL is calculated in the two concluding sections. 

4.3. Mult ipl ic i ty  o f  the  restriction of a projective mapping.  Let f :  C n --, C ~, f = ( f l , . . . ,  fn); 
be a homogeneous mapping of a coordinatewise constant degree W .  We also suppose that it is finite. 

L e m m a  4.4. Let V C C n be a homogeneous a~ne variety of pure dimension k in the preimage, and 
let the image f ( V )  be irreducible. Then 

deg V- W k = deg f ( V ) .  #v ( f ) .  (9) 

In this case, i f  f is nondegenerate at a generic point of V,  then a generic point of the image f (V )  has 
precisely I~v ( f ) geometrically distinct preimages. 

Here deg V and deg f ( V )  are the degrees of these varieties and Pv (f) is the multiplicity of the restriction 
of / to the variety V. 

Proof.  Consider the projectivizationj..~ CP n-1 --* CP n-1 of the mapping f and the corresponding 
projective varieties V C CP n-1 , ](1/) - f (V)  C CP n-1 �9 We are first going to prove that 

deg l / .  W k-1 = deg f ( V ) .  PV/(f)" (10) 

Relation (9) follows from (10) because, by definition of the degree, deg V = deg V and deg f (V)  = 
deg](V) and we have P v ( f )  = W#f/( f ) .  

Let CP n-k be a generic (n-k)-dimensional plane in the image. Then, by definition, #(CP n-k ~] (V))  = 
degj(V) ,  Now let us calculate in two different ways the number of preimages f -1  (Cpn-k N ](V)) belonging 
to V. 

Firstly, this number is equal to deg ] (V) .  p~(])  since each point of transversal intersection has #7( ] )  

preimages in ~'. 
On the other hand, the preimage f-1 (Cpn-k) of an (n--k)-dimensional plane is a variety of degree W k- 1 

in the preimage. Indeed, such a plane is determined by k -  I linear equations in coordinates y l , . . . ,  Yn in 
the target space, and the substitution Yl = fi results in k - 1 equations of degree W for f - l (Cpn-k ) .  
Therefore, the number of intersection points is equal to 

deg f-1 (Cpn-~). deg V = W k-1 deg V, 

and relation (10) is thus proved. It is possible to choose an (n - k)-dimensional plane in the target space 
such that it does not pass through the images of degeneration points in V for the mapping f .  All preimages 
of intersection points of such a plane with ](V) have multiplicity 1, and therefore their number is precisely 
the multiplicity of the mapping. 

We can now calculate the degree of the closure of a prirditive stratum in ~ knowing the multiplicity 
of the restriction of the LL mapping to a primitive stratum in ~ (see Sec. 3.2). Let usfix a partition I of 
the subset of the set of indices corresponding to the degenerate partition X and denote the corresponding 
primitive stratum by ~.~. The symbols T(I) and ~x (where the index is a partition instead of a passport) 
have the same meaning. The closure of a stratum EI C ~ will be denoted by cl(EI). 

Now the commutativity of the square diagram (7) for a primitive stratnm ]El C ~ gives 

_ ~ux (c~) ~x (LL) ( n + l ) ( n - A ( X ) ) ! # A u t ( X ) ' ( n + l )  c - I J L - - ( n - A ( X ) ) t "  --- #Aut(X) ,(X)! 
Zx(LL) -- /~T<xi (7.) .... = ( n -  A(X))! 

(n ' , , c  ( n -  A(X))! 
= * . . . . .  ; ( x ) !  ' 

186 



whence, by Lemma 4.4, 

degcl(E~) = ( n -  A(X))! 
s(x)! 

4.4. D e g r e e s  o f  s t r a t a .  Let I be an arbitrary tuple of disjoint subsets of the set of indices { 1 , . . . ,  n}. 
The standard plane HI C ~ associated with the tuple I is defined by the set of equations ai = aj for all 
pairs i, j belonging to the same subset of the tuple I .  

T h e o r e m  4.5. The restriction of L'-L to the plane HI is nondegenerate in the complement of the in- 
tersection of this plane by other standard planes not containing f i t  and by the plane a = O. 

Proof .  Denote the critical points coinciding on the plane H~ by bo, b l , . . . ,  bin, and le t /3 /be  the number 
of critical points merging at bi, i.e., flobo + . ' .  + ~mbm = O. We set 

~ ( x )  = (~ + 1 ) ( z -  b0) ~~ (z - b~) ~ 

Then the restriction of LL to the plane HI has the coordinatewise form 

fob' c~i :  (5o,51,. . . ,  b~;a) ~ ~,z(~) c~ + a '~§ 

For i = 0, 1 , . . . ,  m, we now fix polynomial I-forms on the line 

~1(z) dz 
~ i  = - A  ( z -  bi) " 

The cohomology classes of these forms in the relative cohomology space HI (C  1, {b0,... ,  bin}) satisfy t he  
linear equation wo + . . .  +wm = d,~,(x) -- 0. If all bi are pairwise distinct, then there are no other relations 
between the 1-forms. Indeed, if a 1-form w = Xowo + " .  + Amw,~ represents the zero relative cohomology 
class, then the degree and the multiplicities of zeros of the polynomial fb: w at the points bi coincide with 
those of the polynomial ~z (x), whence these polynomials are proportional. Therefore, the cohomology classes 
of the 1-forms wi span the entire relative cohomology space:... 

Subtracting the row corresponding to the component LL0 from all other rows in the Jacobi matrix 
(OLLj/Obi) results in the (m + 1) x (m + 2)-matrix 

... s ~ (n )a" 

| fb~ w0 fb~ ~ Um 
J b o  . . 

o 

bm bm f;o = 
Since the classes of the 1-forms wj span the entire cohomology space, the rank of the latter matrix is m + 1 
at the points at which all bi are palrwise distinct and a p 0. The theorem is proved. 

Now let us fix a passport X = {X1, . . . ,  Xc} and one of the corresponding partition I -- { /1 , . . . ,  Ic} of 
the set of indices. We say that an index i is essential (for the partition I) if the number of subsets i n the  
tuple of indices irk E"I containing i is greater than one. The critical point and the critical value corresponding 
to this index are also termed essential. Theorem 4.5 implies the following assertion completing the proof of 
Theorem 1.1. 

C o r o l l a r y  4.6.  The closure cl(~i) of a stratum P.! is the intersection of the closures cl(~, A) of the 
primitive strata ~ , .  The intersection is transversal at almost all points in cl(~i),  i.e., everywhere except 
possibly the subvariety of codimension 1 consisting of points at which an essential critical point merges with 
another critical point. In particular, c1(~i) /s smooth outside this subvariety, and we have 

~ ^ fl (~ - A(X~))! 
degcl(~i) = H degcl(~1,) = "*" s(X,)! 

i = l  i = 1  

1 8 7  



Proof. Associate with the partition I of the set of indices into tuples of subsets the partition I = I(I), 
I = I 1 0  . . .  U Ik, of the set of indices into subsets by omission of the intermediate hierarchy level. As 
above, let bi denote the sets of pairwise coincident critical points on the standard plane Hz. The stratum 
ZI is a subvariety in the plane Hz. The restriction of L~'L to this plane is nondegenerate almost everywilere. 
Therefore the stratum ~I, which is locally the preimage of a plane, is smooth at each of its points at which 
bi ~ bj. As two unessential critical points merge, the smoothness of the stratum closure is preserved. 

The transversality of the intersection of primitive strata at a generic point also follows from the previous 
theorem. Indeed, the above argument shows that each of the primitive strata E~ is smooth at its points 
of intersection with the plane rlz, at which its essential critical points do not coincide with other critical 
points. The images of the strata Hz, under the mapping LL are transversally intersecting planes, and since 
the mapping is nondegenerate, the strata themselves also intersect trausversally. 

According to the complex analog of the Rolle lemma, if two critical points with the same critical values 
merge, then at least one more critical point with a different critical value merges with them. Hence, the 
image of the set of points in the closure of the stratum ~I corresponding tAo the merging critical points 
has codimeusion 1 in the image of the entire closure. Since the mapping LL is proper, this set also has 
codimeusion 1 in the closure of the stratum. 

Corollary 4.6 and hence the main theorem are proved. 
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