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Introduction. The energy gained by an animal during a foraging bout 
typically increases the animal's expected future reproductive success (EFRS). 
The greater the energy gain the greater the increase, but the relationship 
between gain and EFRS need not be linear. To be specific, consider a foraging 
bout of fixed length. Let f(y) denote the EFRS of an animal that has gained y 
units of energy by the end of the bout. Then f will typically be an increasing 
function but may for example be concave, i.e. f"(y)~<0 for all y; or may be 
convex, i.e. f"(y) >~ 0 for all y; or may be concave for part of its range and convex 
on another. 

Suppose that an animal has a choice between a number of foraging options 
during the bout. The energy gained during the interval, Y, is a random variable 
whose distribution is determined by the choice of option. The EFRS of an 
animal at the beginning of the bout is s E{f(Y)} where s is the probability of 
surviving the bout. If we assume that s is the same for all available options then 
an animal maximizes its fitness by choosing any alternative which maximizes 
E{f( Y)}. When f is linear we have E{f(Y)} = f(E{ Y}) so that fitness is maximized 
by maximizing the mean gain over the interval, ~{ I1"}. When f is nonlinear this 
need no longer be true. 

In this paper we are primarily interested in a range of feeding options which 
yield the same mean gain, E{ Y}, but differ in their variability. In particular, 
suppose an animal can choose between an option which yields/~ = E{ Y} with 
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certainty and an alternative which yields a stochastic amount  of food with the 
same mean /~. When f is concave we have ~{f(Y)}~<f0z{Y})by Jensen's 
inequality, and fitness is maximized by choosing the deterministic option. Such 
a preference for an option over an alternative yielding the same mean gain but 
having higher variance in reward magnitude is called risk averse behaviour. 
When f is convex Jensen's inequality implies that n-{f(Y)}/> f(E{ I1}) and fitness 
is maximized by choosing the variable option. Preference for a variable option 
over a less variable alternative with the same mean is called risk prone 
behaviour. Risk sensitive behaviour has been analysed in a number of 
theoretical models. Here we review functional models which predict such 
behaviour. Risk sensitive behaviour has also been sought and found 
empirically. Observational evidence is reviewed by Real and Caraco (1986) and 
Ellner and Real (1989). 

Whether it is optional to be risk averse or risk prone depends on the shape of 
f, but an animal's EFRS and its dependence on the energy gain over an interval 
depend on circumstance. Our review of the risk-sensitive foraging theory 
concentrates on models that attempt to derive the shape of f from the animal's 
biology. As we demonstrate below, the shape of f depends on: 

(i) the energy reserves of the animal and time of day; 
(ii) the future foraging environment. In particular: 

(a) the quality of food, 
(b) whether there is fixed time such as dusk at which foraging must 

stop, 
(c) whether foraging is likely to be disturbed by interruptions such as 

s n o w  c o v e r ;  

(iii) the biological significance of the energy. For example: 
(a) whether energy is used to avoid starvation, 
(b) whether energy is put directly into reproduction, 
(c) whether energy is put directly into growth. 

One of the main messages of this review is that there is no universal model of 
risk-sensitive behaviour. There are, however, modelling methods and prin- 
ciples which can be used to predict risk-sensitive behaviour if the biological 
circumstances are identified. 

The next section presents two ways in which the detailed process of food 
intake can be formulated. Most of the risk-sensitive models we present use one 
of these formulations. Although the formulations are very different, it is 
reassuring that predictions of risk-sensitive behaviour do not seem to depend 
on which is used in a model. 

The models of risk-sensitive behaviour presented fall into three categories. 
We begin by analysing a range of models in which food is used solely to avoid 
starvation. Predictions of risk sensitivity then depend on the assumptions of 
the model and are summarized in Table 1. 
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To show that predictions can also depend crucially on the biological 
significance of energy obtained we modify a starvation model so that an animal 
is using energy both for survival and reproduction. Table 2 compares the 
predictions of this modified model with the original pure starvation model. 

In our third category of model we explicitly consider models in which there is 
variability in the delay until an item is found rather than variability in the 
amount  obtained. We demonstrate that changing the type of variability leads 
to very different predictions in some models, while giving similar predictions in 
others. 

Finally we consider the strength of selection pressure on risk-sensitive 
decision making. 

Models of Food Intake. Sutherland and Anderson (1987) discuss various 
ways in which differences in variance in energetic gain can arise. One possibility 
that has been given considerable attention is that an animal can reduce the 
variance in its intake rate by foraging in a group rather than foraging alone (e.g. 
Caraco, 1981; Pulliam and Millikan, 1982; Clark and Mangel, 1984, 1986; 
Clark, 1987; Ekman and Rosander, 1987). 

We focus on two rather different models of food intake. The first model is 
highly schematic in that both time and reserves are modelled as taking integer 
values. The model captures the essence of the risk sensitive element in foraging 
and is often amenable to easy computation and analytic analysis. The second 
model is based on the standard prey choice paradigm (e.g. Charnov, 1976; 
Stephens and Krebs, 1986), and while being a more realistic representation of 
an animal's actual foraging process is usually more difficult to analyse. 

Discrete time and state model. At each of the times t = 0, 1, 2 , . . .  an animal 
must choose one of two options labelled Option 1 and Option 2. If it chooses 
Option i at time t it finds 0, 1 or 2 food items between t and t +  1 with 
probabilities qi, 1 - ( q i + p i )  and p~, respectively. All items have energetic 
content of one unit. During each time one unit of energy is used in metabolic 
expenditure. Thus the transition law for the animal's energy reserves X(t)  at 
time t is given by: 

P(X( t  + 1 ) = x -  l l X ( t ) = x ,  Option i )=q ,  

P (X( t  + 1 ) = x [ X( t )  = x, Option i) = 1 - (p~ + q~) 

P ( X ( t +  1 ) = x +  l l X ( t ) = x  , Option i)=p~. (1) 

The mean net rate of energy gain and variance in gain per unit time under 
Option i are given by: 

#i = Pi - qi (2) 
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a ~ = p i + q i - p ~ .  (3) 

Two prey model. Foraging takes place in continuous time. Food  items are 
of two types. Type i items have handling time h i, energetic value e i and are 
found as a Poisson process of rate 2i while searching. On finding an item an 
animal can either accept the item, in which case energy is gained but searching 
time is lost, or reject the item and immediately continue searching with no loss 
of time. One can think of there being three options available to an animal at a 
given time. Option 1: eat only Type 1 items; Option 2: eat both types of item; 
and Option 3: eat only Type 2 items. We assume that el/h I >e2h 2 so that 
Type i items are the more profitable. Under  this assumption it turns out that it 
is essentially never optimal to use Option 3 and the choice at any time is 
between Options 1 and 2. We assume that metabolic expenditure is d per unit 
time. The mean net rates of gain under Options 1 and 2 are then: 

)~lel d 
]gl - -  1 + 21h 1 

and 

~ 1 e l  -[- ~2e2 
I~e = l + 21hl + 2eh 2 d 

respectively. The variance in gain per unit time under Options 1 and 2 are, 
respectively: 

21el 
0-2 --  (1 + ~ 1 h l )  3 

and 

1 e2 

where ~ = 1 + 21h 1 + ,~2h2 and fl = 21e 1 + )~2e2 (McNamara,  unpublished manu- 
script). 

A remark on randomized policies. The options considered in the above 
models of an animal's intake are not randomized. We could also have allowed 
an animal to choose an option with some probability p. It is, however, easy to 
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show that an animal cannot improve its performance by inclusion of such 
randomized actions in its repertoire, and such actions are ignored. 

Pure Survival Models 
Overnight survival. Here we look at a single daytime period which ends at 

dusk (time T). We ignore the possibility that an animal could starve during the 
day and assume that it survives the following night if its reserves at dusk exceed 
a critical level x~. An optimal policy maximizes overnight survival and thus 
maximizes P(X(T) > xr 

We first consider a constrained problem analysed by Stephens (1981). In 
Stephens' z-scores model an animal is constrained to choose one of two 
available options at the beginning of the foraging period (time 0) and cannot 
later switch to the other option. (Stephens does not state his assumptions in this 
manner but Houston and McNamara,  1982, show that these are his implicit 
assumptions.) The gain per unit time under Option i has mean kt i and variance 
a{. Let x o be the reserves at time 0. Using a normal approximation the 
probability that an animal choosing Option i survives the night can be written 
a s :  

Ix  o + / A T -  x~] 
P(X(T)> x r 1 6 2  [ a i x /~  J 

where q) is the normal distribution function, i.e.: 

(4) 

fZ O(z) = 1 - x2/2 -~  x / ~ e  dx --o0 <Z<oo. 

The best choice of option maximizes (x 0 + # i T - x c ) / a  i . In the case #1 = ]22 =fi  
and a 1 < (72 it is thus optimal to choose Option 1 if and only if x 0 + # T > x c .  
This result is known as the daily energy budget rule and can be "rephrased as "if 
the mean net gain is sufficient for overnight survival choose the low variance 
option, if the mean net gain is not sufficient choose the high variance option". 

The unconstrained problem, in which an animal can switch freely between 
the options, can be analysed by modelling the energy reserves as a diffusion 
process. In technical tems this assumes that the change in energy reserves is 
given by the stochastic differential equation: 

dX(t)--#(u(X(t), t)) dt + a(u(X(t), t)) dB(t), 

where B(t) is Brownian motion. Here a policy u(x, t) specifies the option chosen 
in state x at time t. If the policy specifies that Option i is chosen then 
#(u(x, t))= kt i and a(u(x, t))= ai. McNamara (1983) derives the optimal policy 
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when ]21 = ]22 = ]2 and 0"1 < (72. This policy can be given in terms of the switching 
line: 

x + # ( T - t ) = x ~  

as follows. While above the line; i.e. for reserves x satisfying x > x~ - ]2(T-- t), it 
is opt imal  to choose the low variance option,  Opt ion  1. While below the line it 
is opt imal  to choose the high variance option,  Opt ion  2. Above the line 
overnight survival seems probable and it pays the animal to play safe. Below 
the line overnight  survival seems improbable  and it pays the animal to take 
risks. 

It can be seen that  this opt imal  sequential rule has some formal similarities to 
the daily energy budget  rule. In particular, under  both  rules Opt ion  1 is chosen 
at time 0 if and only if x o + p T >  xr But of course the rules are fundamental ly  
different in that  the constrained rule specifies one decision at time 0, whereas 
the optimal  sequential rule specifies which opt ion to choose as a function of 
how well the animal is doing during the foraging period. 

One can analyse the advantage of sequential rules over constrained rules by 
compar ing  payoffs at t ime 0. Suppose x o + ]2T= x c. Then the probabili ty of 
survival under  the optimal  constrained rule is 0.5. M c N a m a r a  (1983) shows 
that  the probability of survival under  the opt imal  sequential rule is 
(72/((71 +a2) .  This is greater than 0.5 and will be close to 1 if (75/(71 is large. 

M c N a m a r a  (1984) analyses the general case when #1 r and (71 <(75 by 
modell ing energy reserves as a diffusion process. In this case it is opt imal  for an 
animal with reserves x to choose Opt ion  1 at time t if and only if: 

x > xo + []2 (71-]210-2] ( r _ t )  
1_ (75 0" I _] 

(5) 

Thus it is again optimal  to choose Opt ion  1 when reserves are high and 
Opt ion  2 when reserves are low, but  the switching line depends on all four 
parameters  ]2t, (71, ]22 and 0" 2 . 

Clear analytic results seem possible only when reserves are model led as a 
diffusion process. Nevertheless, the exact diffusion results appear  to give good 
approximat ions  to the opt imal  policy in other circumstances. Hous ton  and 
M c N a m a r a  (1985) present a model  in which the food supply is described by the 
Two Prey Model.  As before a fixed amoun t  of energy x c is required to survive 
the night. This model  also includes the possibility of death f rom starvation 
during the foraging peiod, but  including this feature has an insignificant effect 
on the form of the opt imal  policy when reserves are high and dusk is 
approaching.  Hous ton  and M c N a m a r a  find the policy which maximizes 
survival probabil i ty by numerical  computat ions .  

When e l / h l > e 2 / h 2  the classical prey choice model  based on rate 
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maximization predicts that Type 2 prey items will not be included in the diet if 
21e1/(1 +21hl)>ezh 2 (Stephens and Krebs, 1986). But Houston and McNa- 
mara (1985) show in their model that when this condition is met, it can still be 
optimal to include Type 2 items in the diet. Their computations reveal a 
switching line. When reserves are above this line it is optimal to choose both 
prey types (i.e. Option 2). When reserves are below this line it is optimal to take 
only the more profitable Type 1 prey items (i.e. Option 1). This result can be 
qualitatively understood in terms of risk sensitive behaviour as follows. Above 
the switching line overnight survival seems probable and it pays the animal to 
play safe and reduce the variance in food intake by taking all items, even 
though this means reducing the mean rate. Below the switching line the animal 
is in danger of starvation and must take only Type 1 items in order to maximize 
both the mean and variance in food gain. The position of the switching line can 
be understood quantitatively by approximating reserves by a diffusion process. 
Let the mean gains under Options i and 2 be PI and P2, respectively, and let the 
corresponding variances in gain per unit time be a 2 and a 2, respectively. Then 
the switching line found numerically by Houston and McNamara (1985) is in 
close agreement with that given by equation (5). 

McNamara (unpublished) analyses overnight survival using the Discrete 
Time and State Model of the food supply. If the variance in reward magnitude 
is large (i.e. Pi + qi close to 1 for some option) it is possible to obtain solutions 
which manifest periodic effects even when the time to go till final time Tis large. 
These are artifacts due to the discrete grid on which computations are 
performed and disappear when the variance is reduced. One then obtains a 
switching line above which the lowest variance option is used and below which 
the highest variance option is used. Again the switching line agrees closely with 
the predictions of equation (5). The special case when there are two options 
giving the same mean gain is investigated by McNamara and Houston (1986). 
They consider the case where the terminal reward at dusk is not a step function 
in reserves but a smoothed step function. The switching line then has slope 
equal to the common mean. Thus equation (5) correctly predicts the optimal 
policy even when the terminal reward is not a simple step function. A modified 
version of the Discrete Time and State Model is investigated numerically by 
Houston and McNamara (1986). 

Lower lethal boundary. The previous model ignored death from starvation 
during foraging and concentrated on death overnight. Here we reverse the 
emphasis and assume that an animal can forage continually; death now occurs 
if the animal's reserves ever fall to zero during foraging. In this section we are 
interested in the policy which best allows an animal to escape from the lower 
lethal boundary.  To be more precise we assume that the animal's energy 
reserves are unbounded and concentrate on the case where all foraging options 
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yield the same mean net rate of gain/t.  If/~ ~< 0 then an animal is sure to starve. 
We thus assume # > 0. Then an animal will either starve or its reserves will tend 
to infinity as time tends to infinity. We find the policy which minimizes the 
probability of starvation. This model thus looks at a one-off escape from the 
lower lethal boundary.  Such a model would be appropriate for an animal with 
low reserves, which nevertheless has a large capacity to carry reserves, and is 
effectively safe from starvation if it can build up reserves to its full capacity. 
When an animal's capacity is small the criterion of a single escape is no longer 
appropriate and one must introduce a different optimality criterion. This is 
done in the section on long term survival. 

Uninterrupted foraging. We here assume that food sources are always 
available, although the amount  of food obtained from these sources is 
stochastic. We begin by looking at the Discrete State and Time Model. In this 
model if Option i is chosen at time t, reserves one time unit later have decreased 
by one unit with probability q~ and increased by one unit with probability p~. If 
this option is used at every level of energy reserves the probability of ever 
starving given initial reserves of x is: 

(9~(x)= { ~ / p y  if qi<pi 
if qi >~ Pi. 

The best fixed (i.e. state independent) policy is thus to choose the option 
minimizing qi/Pi. Merad (1991) shows that this fixed policy is also the optimal 
state dependent policy. If all options have the same mean net gain ~t = p i -  qi, 
then minimizing qjp~ is equivalent to minimizing the variance in the option 
chosen. Thus risk-averse behaviour is optimal at all levels of reserves. 

When the food suply is described by the Two Prey Model, Houston and 
McNamara  (1985) show that it is optimal to take every item for which the net 
energy gain e - d h  is positive. 

The rate at which food can be gained is unimportant  in both the models 
described here, all that is important  is that reserves increase rather than 
decrease. As we now describe, this conclusion need not hold if the foraging 
animal is uncertain to gain access to a food source. 

Interrupted foraging. Events such as bad weather or the presence of a 
predator  can mean that an animal is unable to forage for some time. To 
incorporate this feature in the Discrete Time and State Model we assume that 
periods of uninterrupted foraging have a geometric length and are interspersed 
by periods when the animal cannot  forage and loses one unit of energy per unit 
time. Merad (1991) has analysed this modified model. He considers the case 
where interruptions also last a geometric number  of time intervals, and shows 
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that it is still optimal to choose the option with the lowest variance at all levels 
of reserves. When interruptions do not have a geometric distribution, however, 
minimizing variance may not be optimal and the optimal choice of action may 
depend on reserves. 

Barnard et al. (1985) analyse a similar model to that considered by Merad.  
They present an example in which interruptions last a negative binomial 
number  of time units. Two feeding options are available. In one case these 
options yield the same mean net gain. The optimal policy in this example is to 
choose the lower variance option when reserves are very low, choose the higher 
variance option at intermediate reserves, and choose the lower variance option 
again at high reserves. This policy can be understood as follows. At low reserves 
the animal is in imminent danger of starvation even if there is no interruption 
and it pays to play safe. At slightly higher reserves the main danger is that an 
interruption will occur. The animal thus takes risks in order to get its reserves 
above the level at which an interruption is liable to kill it. For  high reserves the 
main concern is not to allow reserves to drift down and the lower variance 
option is optimal. 

Lon9 term survival. The model with no limit on energy reserves, in which an 
animal with sufficiently high reserves is almost sure to survive, is not 
appropriate for a small overwintering bird. This is because a small bird's 
maximum level of reserves is only sufficient for a few days survival. To analyse 
survival strategies of the bird we must include its limited ability to carry 
reserves in a model, and introduce a criterion for survival over an extended 
period. 

We assume that the foraging process is time homogeneous,  so that there is no 
day/night cycle. An animal starves if its reserves fall to zero. There is a fixed 
upper limit L on reserves, and food which would have carried reserves above L 
is lost. The food supply is described by the Discrete State and Time Model and 
is not interrupted. By taking L to be an integer we can restrict attention to 
integer levels of energy reserves x in the range x -- 0, 1 , . . . ,  L. 

We consider two seemingly different ways to look at survival. Although the 
approaches differ it turns out that both lead to the same optimality criteria for 
long term survival. Here we present the ideas behind the two approaches using 
a purely verbal argument.  Precise mathematical  formulations of the 
approaches and resulting theorems are deferred to Appendix 1. 

Approach 1. Equilibrium mortali ty rates. A stationary behavioural policy 
rc is a rule specifying which action to choose as a function of energy reserves but 
not as a function of time. We wish to introduce the idea of an equilibrium rate of 
mortali ty for an animal that follows this policy. We motivate this by 
considering a large group of animals independently following the same policy 
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7r. Over time, numbers  in the group will decline as animals die of starvation. At 
first the numbers  starving in each time interval depend strongly on the initial 
reserves of group members.  But eventually an equilibrium will be reached in 
which the propor t ion  of animals alive at time t which are still alive at time t + 1 
is a constant ,  2~, which depends only on the policy rc used. For  large t, a 
part icular animal in this group is alive at time t with probabil i ty C~2t~, where 
the constant  C~ depends on the policy rc and the animal's initial level of reserves. 
We can compare  the animal's probabili ty of survival under  two different 
policies 7r t and ~2, where 2~ < 2~2. It can be seen that  if t is sufficiently large: 

C/~2  /g2 " 

Thus in the long term, policy 7~ 2 will be better, even though it may  be 
disadvantageous in the short  term. Motivated by these considerations,  we 
define a policy to be optimal  in the long term if it maximizes 2~, or equivalently 
minimizes the equilibrium mortal i ty  rate 1 -  2~. 

Approach  2. Survival till a fixed time. The time dependent  policy which 
maximizes the probabili ty of survival until some fixed time T can be found by 
dynamic  programming.  This policy specifies the action taken at each level of 
energy reserves and time. When the t ime-to-go till final time Tis  small the best 
choice of action may  depend strongly on time-to-go as well as energy reserves. 
As the time-to-go increases the best choice of action tends to a limiting value 
which depends only on energy reserves. Thus in the limit we obtain a stat ionary 
policy re*. We can think of re* as the policy maximizing "long term" survival 
and regard it as an opt imal  policy. 

For tunate ly  these two approaches lead to the same optimali ty criterion since 
it can be shown that  2~ is maximized when rr = re*. Fur thermore ,  as is explained 
in Appendix 1, the policy re* can be further characterized by an eigenvalue 
equat ion for the optimali ty or dynamic  p rogramming  operator .  

M c N a m a r a  (1990) discusses these characterizations and proves their 
equivalence. In his model  the food supply is described by the Discrete State and 
Time Model,  but  there may  be any finite number  of feeding options rather than 
just two. These options may  differ from one another  in mean  gain as well as 
variance. He gives an analytic proof  of a number  of qualitative results 
describing the form of the optimal  policy. The main results are: 

(i) If one of the feeding options gives a positive mean  net gain (i.e. #i > 0 for 
some opt ion i), then an animal's expected future reproductive success 
(EFRS) is a concave function of reserves at all reserves. Thus  it is always 
optimal  to be risk-averse. 

(ii) If all opt ions yield a negative mean net gain (i.e. #i < 0 for all opt ions i), 
then the EFRS is concave for high reserves, but  may  be convex for low 
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reserves. Consequently it is optimal to be risk averse at high reserves, but 
may be optimal to be risk-prone at low reserves. 

These results are discussed and illustrated by McNamara and Houston 
(1990a). Further illustrations can be found in McNamara and Houston 
(1990b). 

Daytime and night-time starvation. We now consider models which allow 
both starvation during foraging, and have a day/night cycle, so that starvation 
can occur overnight. The policy which maximizes overnight survival 
probability does not maximize daytime survival probability and vice versa. As 
we shall see, the policy that maximizes overall survival probability is a 
compromise between these two simple objectives. 

Houston and McNamara (1985) consider a single day during which the food 
supply is described by the Two Prey Model, followed by night during which an 
animal rests, decreasing its reserves by x c . The animal dies if reserves reach zero 
during the day or are below xc at dusk. Houston and McNamara compute the 
policy which maximizes the probability of survival till the following dawn. 
They present an example for which the classical rate maximization model 
predicts exclusive choice of the more profitable Type I prey items. When there 
is a lot of time left till dusk the policy which maximizes survival probability 
prescribes that both prey types should be taken at all levels of energy reserves. 
This can be understood in terms of the model of escaping the lower lethal 
boundary: when there is a lot of time left an animal can concentrate on not 
starving now. As dusk approaches the optimal policy depends on reserves. For 
very low reserves it is always optimal to take any prey item in order to avoid 
immediate starvation. As reserves increase it becomes optimal to take Type 1 
items alone and then becomes optimal to take both types for large reserves. 
These effects can be understood in terms of surviving the night, and have 
already been explained. 

The above model desscribes survival over a 1 day period. One can also 
analyse long term survival when there is a day/night cycle and reserves are 
bounded by an upper limit L. Suppose that foraging starts at dawn (time 0) and 
ends at dusk (time T) on each day. Overnight a possibly random amount  of 
energy reserves are used up. We now require an optimality criterion which is 
appropriate for long term survival when there is a day/night cycle. As before we 
give a purely verbal description, deferring mathematical proofs to an appendix 
(Appendix 2). We consider survival over an extended period of many days such 
as winter. This involves using the optimal policy on one day to find the optimal 
policy on the preceding day; a procedure which Mangel and Clark (1988) refer 
to as sequential coupling. Working backwards from final time in this way one 
can find the policy which maximizes survival till the end of winter. On a given 
day the best choice of action will depend on reserves, time of day and the 
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number of days-to-go till the end of the period. As the number of days-to-go 
increases, the policy over a day settles down to a limiting policy which depends 
only on reserves and time of day. We can regard this daily policy as the 
optimum policy which maximizes long-term survival. 

Results from models of long term survival when there is a day/night cycle 
(e.g. McNamara and Houston, 1986; Houston and McNamara, 1986) show 
the same general features as were found by Houston and McNamara (1985) 
when analysing survival over a single night: there is a wedge-shaped region 
near dusk in which the animal should be risk-prone. 

A comparison of the predictions of the various survival models is given in 
Table 1. 

Table 1. A summary of the predictions of the survival models presented 

Model Reserves Risk-averse Risk-prone 

(a) Overnight survival Low x/ 
(z-scores and sequential)High x/ 

(b) Escape from lower lethal boundary (# > 0) 
(i) No interruptions All reserves ~/ 

(ii) Interruptions Very low 4 
Low 
High ~/ 

(c) Long term survival (no interruptions or day/night) 

(d) 

(i) # > 0 All reserves x/ 
(ii) # < 0 Low 

High x/ 
Long term survival with day/night (# > 0) 
(i) Near dusk Very low x/ 

Low 
High 

(ii) Near dawn All reserves 

4 

Starvation and Reproduction. In the models discussed so far the optimality 
criterion has been maximization of survival probability. This is an appropriate 
criterion for, say, a small bird in winter. The bird must survive if it is to 
reproduce in the future, and food items obtained enhance future reproduction 
through their effect on survival probability (McNamara and Houston, 1982). 
Food items may, however, enhance reproduction directly. In such cases we 
must seek new optimality criteria. In this section we analyse a model in which 
an animal uses food energy both for immediate survival and reproduction. 
There is then a conflict between avoiding starvation, and hence increasing 
future reproductive success, and increasing immediate reproductive success. 
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Food  is described by the Discrete Time and State Model. The foraging 
process is time homogeneous,  so that there is no day/night cycle, and is not 
interrupted. An animal starves if its energy reserves fall to zero. There is an 
upper limit L on reserves as in the long term survival model, but we now 
suppose that food which would have taken reserves above L is converted 
directly into immediate reproductive output.  We introduce a background 
mortali ty due to predation, accident or simply death from natural  causes which 
kills an animal with probability 1 - 0 in each time interval (0 < 0 ~< 1). Death 
from the background mortali ty is independent of the animal's energy reserves 
and the option chosen. The level of background mortali ty has no effect on the 
optimal policy when the optimality criterion is pure survival. As we will 
demonstrate below it can have a strong effect when an animal is also 
reproducing. The animal continues to forage and reproduce until it dies either 
from starvation or the background mortality. We look at the policy which 
maximizes an animal's lifetime reproductive success. 

This problem is an example of an infinite horizon positive programming 
problem of Markov decision theory (e.g. Whittle, 1983), and has been analysed 
by Merad (1991 ). Let # 1 =/A2 =/A. M erad shows that when # < 0 it is optimal to 
be risk-prone at all levels of reserves for all values of 0. This can be compared 
with the policy which maximizes long term survival, in which it is optimal to be 
risk-prone at low reserves and risk-averse at high reserves. When p > 0 and 
there is no background mortali ty (0= 1) in the reproduction model, it is 
optimal to be risk-averse at all levels of reserves. When # > 0 and 0 < 1 it is 
optimal to be risk-averse at low reserves and risk-prone at high reserves. In 
contrast  the long term survival model predicts risk-averse behaviour at all 
levels of reserves. As 0 decreases, the range of reserves over which it is optimal 
to be risk-prone in the reproduction model increases. McNamara  et al. (1991) 
give numerical examples comparing the prediction of the long-term survival 
model and the above reproduction model. 

Table 2 compares the predictions of the survival model with those of the 
reproduction model. Figure lb shows examples of the relative fitness function 
for the reproduction model. 

Table 2. A comparison of the model based on long term survival with the model based on 
lifetime reproductive success 

Positive mean Negative mean 
Low reserves High reserves Low reserves High reserves 

(a) Survival model Averse Averse Prone Averse 
(b) Reproduction model (0 = 1) Averse Averse Prone Prone 
(c) Reproduction model (0 < 1) Averse Prone Prone Prone 
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Figure 1. (a) The starvation model. Let ~*(x) be the maximum probability an 
animal with reserves x survives to some given time in the distant future. Then the 
figure shows the relative fitness ~*(x)/~9*(L-- 1) for:  (i)/~ = 0 . 0 1 ;  a n d  (ii)/~ = - 0 . 0 2 .  
(b)  The reproduction model. Let ~*(x) be the maximum expected lifetime 
reproductive success for an animal with reserves x. Then the figure shows the 
relative fitness ~*(x)/~*(L- 1) for:  (i)/~ = 0.025,  m = 0; (ii)/~ = 0.025,  m = 0.013;  and 

(iii) p = - 0,015,  m = 0. a 2 = 0.3, a 2 = 0.4, L = 51 throughout. 

Variability in Delay. So far, we have only discussed variability in the amount 
of energy associated with a foraging option. In general, foraging options will 
also involve delays before food is obtained. McNamara and Houston (1987) 
present a general model in which both the energetic gain and the associated 
delay are random variables. The model is based on a single choice between 
options, after which the animal follows a background foraging process that has 
a mean net rate of energetic gain 7, with variance 0 -2. When there is no variance 
in delay then (as we have already seen) the optimal action is to maximize the 
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variance in gain if O2f/(~X2>0 and to minimize the variance in gain if 
(~2f/~x2 < 0. When there is no variance in gain, then the optimal action is to 
maximize variance in delay if 02f/Ot 2 > 0 and to minimize the variance in delay if 
O2f/~t 2 < 0. McNamara and Houston illustrate these conditions by considering 
behaviour over a single day, at the end of which the bird survives the night if its 
reserves are above the critical level xc. Risk-sensitivity in terms of reserves is 
given by the expected daily energy budget rule, i.e. prefer variability in gain if 
and only if the mean rate of gain is not sufficient to get reserves above x~ at the 
end of the day. In a space with axes reserves when choice is made and time left 
until the end of the day, this condition gives us two regions separated by a 
straight line with slope equal to the mean gain ~. Below the line it is optimal to 
be risk-prone in terms of reserves, above the line it is optimal to be risk-averse 
in terms of reserves. Risk-sensitivity in terms of time has a different pattern. 
There are typically four regions in the space of reserves versus time: in two of 
these regions it is optimal to be risk-prone in time, in the other two it is optimal 
to be risk-averse in time. In some regions it is optimal to be risk-prone in time 
but risk-averse in reserves, while in other regions it is optimal to be risk-averse 
in time and risk-prone in reserves. 

Zabludoff et al. (1988) present a model in which one option has a constant 
delay of magnitude d and the other has a variable delay which has magnitude 
d -  6 with probability �89 or d + 6 with probability �89 The animal can forage for a 
total of Ttime units and must get its reserves above x~ by the end of this time if it 
is to survive. Let the initial level of reserves be x 0 and all items have unit value. 
On the assumption that all the time is devoted either to the constant option or 
to the variable option, Zabludoff et al. find the decision that maximizes survival 
probability. One can analyse their model as follows. Let: 

(x c -  Xo)/T> 1/d. 

Then an animal using the constant option is sure to starve and it is optimal to 
choose the variable option. Let: 

(xo-  Xo)/T< 1/d. 

Then an animal using the constant option is sure to survive and it is optimal to 
use this option. 

This is a temporal version of the daily energy budget rule. 
It is not clear that this result will hold when both options are variable in time. 

We have carried out calculations of the optimal sequential policy using 
dynamic programming. Our results suggest that the rule: "take the low 
variance option if and only if the mean gain is suff• for survival", gives a 
very good approximation to the optimal policy. We have also considered cases 
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in which the amount  of food obtained is a random variable that has the same 
distribution for both options. When the amount  obtained is always non- 
negative, the above sequential policy gain appears to be approximately 
optimal. When there is the possibility that the net effect of obtaining an item is 
to decrease reserves then our computations reveal that the optimal policy has a 
totally different form. At a given time, there are now four regions of reserves. As 
reserves increase the pattern is "choose high variance, choose low variance, 
choose high variance, choose low variance". McNamara and Houston (1987) 
looked at the best single choice given a background foraging process and found 
a similar decomposition in the space of reserves and time. 

There is another, totally different, reason why it can be advantageous to 
prefer variability in delays. Future food items may not be obtained, either 
because they are taken by other animals or because the foraging process is 
interrupted. McNamara and Houston (1987) analyse the consequences of this 
source of uncertainty. Suppose that items become unobtainable at a rate e per 
unit time. If there is a delay, h, before an item can be taken, then the item will be 
available with probability e -,h. If the delay H is a random variable, then the 
probability that the item is available is ~(e -~t~). We compare an option with a 
fixed delay h with an option with a variable delay H whose mean is equal to h. 
By Jensen's inequality: 

Thus the variable delay gives the greater probability of obtaining the item. 

Selection Pressure. McNamara and Houston (1986) introduce the canonical 
cost as a measure of the cost of deviating from an optimal policy. Let an animal 
in state x at time t perform action a and then follow the optimal policy. Then 
c(x, a, t) is the loss in expected future reproductive success that results from 
performing action a rather than the optimal action. It follows that if a is the 
optimal action then c(x, a, t )=0 .  The canonical costs provide a common 
currency for comparing actions. They also give some indication of the 
robustness of an optimal policy, in the sense that if canonical costs are small 
then deviations are not costly. They do not, however, supply us with sufficient 
information to evaluate the strength of selection on behaviour. The cost of a 
suboptimal action in a given state at a given time may be very high, but if the 
animal is very unlikely to be in this state at the relevant time then the selection 
pressure in favour of the optimal decision will be small. Houston and 
McNamara (1986) represent this idea by defining the selection pressure 
s(x, a, t) to be the product of the canonical cost c(x, a, t) and the probability 
p(x, t) of being in state x at time t. Houston and McNamara consider a model 
in which there is a day/night cycle and an upper limit to an animal's energy 
reserves, using maximization of long term survival probability as the 
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optimality criterion. They illustrate c(x, a, t) and s(x, a, t) in the case where all 
options give the same mean net energy gain while foraging and the mean net 
gain over a 24 hr period is positive. Within the wedge-shaped region in which it 
is optimal to prefer the high variance option, the canonical cost of taking the 
low variance option can be high. It is unlikely, however, that the animal will be 
in this region because an animal in the region would be very likely to die 
overnight. Thus p(x, t) is small and the selection pressure is relatively low. In 
general, the canonical cost of taking the low variance option when it is optimal 
to take the high variance option can be comparable in magnitude to the 
canonical cost of taking the high variance option when it is optimal to take the 
low variance option, whereas the selective pressure in favour of risk-prone 
behaviour tends to be much less than the selective pressure in favour of risk- 
averse behaviour. 

As well as looking at the selective pressure, Houston and McNamara (1986) 
present an analysis of the advantage of the optimal policy that is based directly 
on the resulting mortality. Imagine that the animal can choose between two 
actions a 1 and a 2 . Each has the same mean net energy gain but al has the lower 
variance. The mortality m* under the optimal state-dependent policy can be 
compared with the mortality m i that results when the animal can only adopt 
action i. Houston and McNamara find that m 1 is only slightly greater than m*, 
but m 2 is much greater than ma. Thus an animal which uses only action aa can 
slightly reduce its rate of mortality by choosing the higher variance action a 2 
when it is in imminent danger of starving during the coming night (i.e. in the 
wedge shaped region). An animal which uses action a 2 can drastically reduce its 
rate of mortality by choosing the lower variance action a~ on all occasions, and 
can reduce mortality slightly further by choosing al on all occasions except in 
the wedge shaped region near dusk. 

The above results were obtained for an environment that has a day/night 
cycle. We have seen that when there is no day/night cycle or interruptions to the 
foraging process, the qualitative form of the optimal policy is different. When 
all options have the same positive mean net gain #, it is always optimal to take 
the option with the lowest variance. In this case there is never a selective 
advantage to taking the high variance option, and, as Fig. 2a illustrates, doing 
so may result in a significant increase in mortality. As described above, when 
the common mean # is negative it is always optimal to choose the low variance 
option at high reserves, and it may be optimal to choose the high variance 
option at low reserves. McNamara and Houston (1990a) give some examples 
of selection pressure in this case. We now look at this topic in more detail using 
the Discrete State and Time Model of the food supply. 

To start with, we assume that an animal has a range of foraging 
environments that differ in their variability. Once the animal chooses an 
environment, it cannot later switch to another environment. To investigate 
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Figure 2. The equilibrium rate of mortality as a function of the variance in the food 
supply when an animal cannot switch between options. I n  (a) (i) / ~ = 0 . 0 2 ;  
(ii)/~ = 0.01; (iii)/~ = 0.001.  I n  (b)  (i)/~ = - 0.02; (ii) # = - 0.03;  (iii) F~ = - 0.04; L = 20 

throughout. 

selection pressure on choice, we find how the rate of mortality depends on the 
variance of the environment that is chosen. Figure 2b illustrates this 
dependence for three values of the mean #. For each value of/~, mortality is 
minimized at some intermediate level of variance. This best level of variance 
increases as/~ decreases. It can be seen that in all cases the mortality rate 
depends strongly on the variance of the environment that is chosen. 

To look at the advantage of state-dependent decision, we now assume that 
the animal can switch freely between two options. Table 3 gives the rate of 
mortality under an optimal state-dependent policy as a function of the options 
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available.  It  can  be seen tha t  it is always advan tageous  to have a choice  of  
opt ions  r a the r  t han  a single op t ion ,  and  the advan tage  of choice increases as the 
op t ions  become  more  diverse in their  var iance.  

Table 3. Mortality rates under different combinations of 
foraging options. There is no day/night cycle or interruptions 

to the foraging processes. Food intake is described by the 
Discrete Time and State Model with the two feeding options 

giving the same mean net energy gain 

(a) cr22 0.1 0.3 0.5 0.7 0.9 
0.1 27.9 
0.3 17.7 23.0 
0.5 16.0 21.5 27.0 
0.7 15.2 20.9 26.5 32.1 
0.9 14.8 20.6 26.2 31.8 37.5 

(b) cr 2 0.1 0.3 0.5 0.7 0.9 
0.1 90.9 
0.3 42.7 47.4 
0.5 34.5 39.9 45.0 
0.7 31.2 36.9 42.2 47.5 
0.9 29.4 35.3 40.8 46.2 51.6 

Table entries show equilibrium rates of mortality x 10 4 [i.e. 
(1 - 2,.) x 104] for various combinations of variances in food 
intake under the two options. In (a) the common mean is 
#= -0.02, in (b) #= -0.04. L=20 throughout. 

We can summar ize  the results shown in Fig. 2 and  Table  3 as follows. If  an 
animal  c a n n o t  switch be tween opt ions ,  then  the selective advan tage  associated 
with ma k ing  the cor rec t  choice is s t rong.  In the negat ive m e a n  case, the an imal  
can  get an addi t iona l  advan tage  by  being able to  switch be tween  opt ions  tha t  
are significantly different.  

Discussion. O u r  discussion of  var iabi l i ty  in the a m o u n t  of  food  tha t  an 
animal  obta ins  f rom a given foraging op t ion  has been based  on  the second 
m o m e n t ,  i.e. the var iance.  It  is also possible to  consider  the th i rd  m o m e n t ,  i.e. 
the skew. Ca raco  and  Chas in  (1984) p rov ide  a general  accoun t  of  the effect of  
skew based on  a T a y l o r  series expans ion  of the fitness funct ion.  T h e y  also 
present  a mode l  based  on  a single choice be tween two dis t r ibut ions  with the 
same m e a n  and  var iance,  bu t  one  has posi t ive skew and  the o ther  has negat ive 
skew. If  the animal  has  to get its reserves to some critical level x c in o rde r  to  
survive, then  it can  be op t ima l  to  prefer  posi t ive skew when  reserves are low or  
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high and to prefer negative skew when reserves are intermediate. Houston and 
McNamara (1986) show that this form of policy is also found in a dynamic 
model. Houston and McNamara (1986) also give an analytic treatment of the 
effect of skew when foraging is not interrupted and there is no upper limit on the 
animal's energy reserves. 

Although the model that includes reproduction can capture some aspects of 
growth (see McNamara et al., 1991, for discussion) the remainder of our 
models ignore this possible benefit of energy. Houston and McNamara (1990) 
investigate some effects of environmental variability on the fitness of an 
organism that grows for a period of time in a given habitat. In contrast to most 
of the models that we have discussed, there is only one decision. This is made by 
a mother in choosing the site in which her offspring grows. The quality of the 
site in terms of growth is characterized by a parameter w that is unknown to the 
mother, and so is considered to be a random variable W. Given a range of 
habitats with the same expected value of W, we find how the variance in W 
should determine choice of habitat. When there is no predation, then 
maximizing expected size at a fixed time can result in either choosing the site 
with the highest variance or the site with the lowest variance, depending on the 
function that determines growth. Minimizing the expected time to reach a 
given size always makes it advantageous to choose the site with the lowest 
variance. When there is size-dependent predation, the results are not quite so 
clear-cut. 

There is scope for further work on the implications of growth for risk- 
sensitivity. The behaviour of a single growing animal could be analysed as a 
series of size-dependent decisions. In a model of a parent feeding dependent 
offspring, energy would be important  both in terms of growth and in terms of 
avoiding starvation. 

A different concept of growth is relevant when we model the foraging 
behaviour of members of a colony of social insects. For an annual colony (e.g. 
bumble bees) fitness can be evaluated in terms of the number of reproductives 
produced at the end of the season. Oster and Wilson (1978) argue that there 
should be risk-sensitive effects in the context of colony growth, but this idea has 
not been followed up to produce a model that relates risk sensitive foraging 
decisions to the number of reproductives produced. 

We have consistently talked about animals in this paper, but one can apply 
the theory of risk sensitive behaviour to analyse plant strategies. For further 
discussion see Caraco and Kelly (1991). 

We have tried to emphasize the variety of possible models of risk sensitive 
foraging. The common feature of the models is an attempt to relate food gain to 
reproductive success. We have not reviewed models that do not have a direct 
interpretation in terms of fitness (e.g. models of variance discounting, Real, 
1980). Our summary of the predictions of the models (see Tables 1 and 2) 
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makes it clear that there is not a single simple and universal prediction about 
risk-sensitive foraging. We hope that this summary will encourage people to 
test a model of risk-sensitive foraging that is appropriate for the animal under 
study. 

We thank John Hutchinson and Marc Mangel for their comments on earlier 
versions of this paper. A.I.H. was supported by the Natural Environment 
Research Council. 

A P P E N D I X  1 

The Criterion for Long Term Survival. A stationary policy is a rule specifying which option to 
choose as a function of energy reserves. We adopt the notat ion that under policy 7~ the animal 
chooses Opt ion ~z(x) when its reserves are x. For  x, y lying between 1 and L we can define axy(i ) to 
be the probability that an animal with reserves x at time t has reserves y at time t + 1 if it chooses 
Option i at time t. A stationary policy g then defines an L • L matrix A~ whose (x,y)th 
component  is axr(~z(x)). The matrix A s determines the time evolution of reserves as follows. 
Suppose that an animal has reserves x at time 0 with probability ~x- Then the probability it has 
reserves y at time t is (atA ~)y, where ~ = (ca . . . .  , eL). Let 2~ be the Per ron-Frobenius  eigenvalue 
of A~ (see, for example, Gantmacher ,  1959) and let ~ be the corresponding left eigenvector, so 
that a~A, = 2~a~. We normalize the eigenvector a~ so that its components sum to 1. Then for any 

we have: 

lim 2~ taA t = Kot,~ (A 1) 

where K is a constant depending on a. Thus for large t the distribution of reserves conditional on 
the animal being alive is given by e~ and the probability that an animal alive at t is still alive at 
t + 1 is 2~. We may interpret 1 - 2~ as the equilibrium mortali ty rate under policy g, and define a 
policy to be optimal if it maximizes 2~. 

The above criterion characterizes an optimal policy by following reserves forward in time. 
Another  natural optimality criterion is based on working backwards from some final time using 
dynamic programming.  We now describe this second approach and show how the two criteria 
are related. 

The optimality operator  A* is defined as follows. Let f be a non-negative real-valued function 
on the set of energy levels { 1 . . . . .  L}. Then A ' f  is defined to be the function on { 1 . . . . .  L} whose 
value at x is given by: 

L 

(A'f)  (x) = maximum ~ axy(i)f(y), (A2) 
i 

y = l  

where the maximum is taken over all options i. It can be seen that this is the one step dynamic 
programming equation. Let R be a non-negative valued function on { 1 . . . .  , L}, and consider 
the problem of maximizing the expected value of R at some final time T. Let n = T--  t be the 
number of time units to go until T. Then the maximum expected value of R for an animal which 
has reserves x at time t is (A*"R)(x). An important  special case is when R(x)=  1 for all 
x = 1 . . . . .  L. In this case (A*"R) (x) is the maximum probability of survival until time T. 

Now consider the eigenvalue equation: 

A*q~ =2*q~ (A3) 
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where 2*/> 0 and 4) is a non-negative and non-zero function on { 1 , . . . ,  L}. It can be shown that 
this equation always has a solution (Kennedy, 1978). Furthermore, given our assumptions that 
Pl, qi > 0, 2" is unique and r is unique up to multiplication by a positive constant (McNamara, 
1990). For any terminal reward function R it can be shown that there is a constant C depending 
on R such that: 

limit 2* -"A*"R = Cr  (A4) 

(McNamara, 1990). Thus the components of r give the asymptotic relative value of the various 
energy levels since 

r (A*"R)(y) 
m 

r (A*"R) (x) 
(A5) 

for large n and for any R. 
The optimal option to choose when reserves are x with n steps to go maximizes: 

L 

axy(i) (A *1"- a)R) (y) (A6) 
y = l  

as a function of i. Motivated by this we define a stationary policy n* whose choice of option n* (x) 
for reserves x is given by: 

L L 

axy(n*(x))d?(y)=maximum ~ axy(i)O(y ). (A7) 
y = l  i y = l  

It follows from equations (A4) and (A7) that whatever the terminal reward R, n*(x) is 
asymptotically optimal choice of option for reserves x, and is the optimal choice for all 
sufficiently large n provided equation (A7) defines n* uniquely. We may thus think of n* as 
defining an optimal stationary policy for long term survival. 

To link the backward and forward approaches we note that: 

2* = 2.,  = max imum 2. ,  (A8) 

where the maximum is taken over all stationary policies n (McNamara, 1990). Thus both 
optimality criteria lead to the same optimal stationary policy n*. 

A P P E N D I X  2 

Long Term Survival when there is a Day/Night  Cycle. We introduce an operator A* which 
maps functions of state at dusk to function of the state 24 hr before as follows. Let R be a terminal 
reward function defined on states at dusk on some day. By dynamic programming back through 
the day one can find the maximum expected reward for all possible states at dawn on that day. 
The maximum expected reward for an animal with reserves x the preceding dusk can then be 
found from the overnight energy loss. We define (A'R) (x) to be this expectation. 

Now consider an extended period of many days, such as a winter. Define a terminal reward R o 
on states at dusk on the last day in this period. Set Rn=A*"R o. Then R,(x) is the maximum 
expected reward for an animal which has reserves x with n days to go. We can regard the policy 
adopted while foraging over a daytime period as a single option, and regard options as being 
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chosen for the next day at each dusk. The results applied previously to long-term survival can 
then be applied to A* to deduce that: 

limit 2* -"R, = C~b 
n ~ a o  

where C is a constant and 

A'q5 = )~*qS. 

Without loss of generality we can rescale q5 so that qS(L) = 1. Setting R,(x) = R,(x)/R,(L) we have 
then: 

limit/~, :- q~. 
n ~ o o  

R, is defined on states at dusk with n days to go and determines the optimal foraging policy 
during the daytime period preceding this dusk. Replacing R, with a positive multiple of it will not 
alter the optimal policy. Since R, converges to q~, the optimal policy over one day converges to a 
limiting policy ~*(x, t) determined by the dusk terminal reward 4). rt*(x, t) is now a function of 
both reserves x and time of day t. 
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