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The maximum principle of deterministic optimal control, which has proved to be a very useful 
tool in theoretical bioeconomics, is extended in this article to cover the optimal exploitation of a 
biological resource vulnerable to catastrophic collapse, the probability of which may depend in 
general on the state of the resource, the current control and time. A general formulation of the 
maximum principle for such stochastic problems is presented and a number of applications are 
outlined. These include: optimal harvesting of a fishery vulnerable to catastrophic collapse; 
optimal thinning of a forest vulnerable to fire; optimal expenditure and investment in forest fire 
protection and optimal consumption-pollution tradeoffs in an ecosystem vulnerable to 
pollution-related collapse. In addition an application of the method to a highly stylized 
behavioral ecology model is given. 

1. Introduction. Colin Clark's two major scientific contributions to date have 
been in the areas of Bioeconomics and Behavioral Ecology. Although these 
might at first sight appear as disparate areas, falling respectively within the 
disciplines of economics and biology, there is in fact a common mathematical 
thread running through almost all of this work, linking and unifying it. This 
common thread is the mathematics of dynamic optimization in one form or 
another. 

One of the key insights of Clark's path-breaking 1976 book Mathematical 
Bioeconomics is that the theory of conservation of renewable resources involves 
resource use over time, and thus that dynamic methods must be used in 
analysing models of resource management. Prior to the appearance of the 
book, biologists, and resource managers with a biological training, had tended 
to think largely in terms of equilibrium concepts such as maximum sustainable 
yield, thereby ignoring the temporal dimension of resource management. Some 
economists, more accustomed to dealing with questions of resource allocation 
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over time, had recognized the essentially dynamic nature of biological resource 
management and, as in many other areas of economics at the time, had begun 
to apply the powerful methods of optimal control theory. It was not, however, 
until the publication of Clark's book that a unified theory of bioeconomics or 
biological resource management could be said to exist. Running through this 
work, almost as a central unifying theme, is the analytic application of the 
methods of continuous-time, deterministic optimal control, i.e. of the 
Pontryagin maximum principle. For example, in the opening chapters Clark 
showed how the situation of open-access, rent-dissipating bionomic equilib- 
rium, and the situation of the maximization of sustainable biological or 
economic yield both emerge as special cases of the maximization of discounted 
present value, corresponding, respectively, to infinite and zero discount rates. 
He also showed how the preferred policy prescription of many economists to 
alleviate the distortions caused by open-access, namely the privatization of 
common-property resources, could lead, in the case of biological resources, to 
extinction if the discount rate employed by the sole owner was sufficiently high. 

For the most part Mathematical Bioeconomics dealt with continuous-time 
deterministic models. Since its publication the field of bioeconomics has grown 
rapidly, with much of the most interesting work involving stochastic models, 
mainly in discrete time. Although there is a stochastic version of the maximum 
principle, it has proved to be not very useful in practice. For stochastic 
problems dynamic programming has proved to be of much greater value. Colin 
Clark has been heavily involved in this work, and his 1985 book, Bioeconomic 
Modelling and Fisheries Management and the second edition of Mathematical 
Bioeconomics (1990) contain much interesting material utilizing stochastic 
models. Other books dealing with randomness and uncertainty in resource 
management are Mangel (1985) and Waiters (1986), and a review of some of 
the earlier work in stochastic bioeconomics is given by Anderson and Sutinen 
(1984). Dynamic optimization based on stochastic dynamic programming and 
Bayesian decision theory play a central role in much of this work. 

Colin Clark's other great scientific contribution has been in the area of 
behavioral ecology, in which methods of dynamic optimization are used to 
model and explain the behavior of biological organisms. Stochastic methods 
are of the essence here, and Clark's 1988 book (with Marc Mangel) Dynamic 
Modelling and Behavioral Ecology relies heavily on stochastic dynamic 
programming. In this respect the book can be seen as a natural outgrowth of 
Clark's earlier pioneering work in bioeconomics. However, whereas much of 
the earlier work in deterministic bioeconomics was characterized by elegant 
analytic results, the later work in stochastic bioeconomics and in behavioral 
ecology has relied much more heavily on the results of numerical optimization 
from which qualitative insights and conclusions have been drawn. Of course 
this does not imply any inferiority of dynamic programming with respect to 
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variational methods such as the maximum principle, but simply the fact that 
analytic solutions are usually impossible to obtain for stochastic optimization 
problems. 

Nevertheless, while in general terms it is true that stochastic optimization 
problems are better handled by means of dynamic programming than by 
variational methods, and that analytic solutions are not usually forthcoming 
for such problems, there is one class of stochastic problems where this does not 
hold, and it is this class of problems which is the subject of this paper. This class 
contains optimization models which are essentially deterministic in all aspects 
save one, viz. the presence of the risk of random catastrophic collapse. It turns 
out that problems of this sort can be addressed in a deterministic framework, 
provided that the survival probability is carried along as a state variable. Thus 
the deterministic maximum principle can be used and frequently analytic 
results can be obtained. In this article we shall discuss a number of applications 
of the technique in the resource management field. These include the 
management of a fishery vulnerable to catastrophic collapse, where the 
probability of collapse at any time depends on the size of the fish stock; the 
optimal thinning and rotation of a forest stand vulnerable to destruction by fire 
where the fire hazard depends on the age of the stand along with the thinning 
activity; the optimal patterns of expenditure and investment in protecting a 
forest stand against fire; and finally the optimal tradeoffbetween consumption 
and pollution in an economy vulnerable to catastrophic collapse due to the 
destruction of an ecosystem with the probability of collapse dependent on the 
current level of pollution. Also included is a highly stylized version of a 
behavioral ecology model. 

All of the applications discussed have appeared or will appear elsewhere and 
the details are omitted in this article. Its purpose is to illustrate how 
deterministic formulations of some resource management problems, many of 
which appeared in Clark's 1976 book, can be extended in a fairly straightfor- 
ward way to take into account the possibility of random catastrophic collapse. 

The method used appears to have been first introduced in the management 
science literature by Kamien and Schwartz (1971) to deal with problems of 
machine maintenance and replacement. It has been used by these authors to 
deal with other problems such as limit pricing and investment in research and 
development [-see Kamien and Schwartz (1981) for reference], and by Sethi 
(1979) to describe the behavior of a thief. Its use in resource management 
problems dates from Reed (1987). 

2. Infinite Time Horizon Model. Consider a resource under management 
which is vulnerable at any time to random catastrophic collapse. The 
probability of collapse at any time can be characterized by a hazard rate 
function (see, for example, Thompson, 1988): 
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h(t) = lim {P(resource collapses in (t, t+At}  I alive at O/At}. (1) 
At--} 0 

The probabili ty that  the resource survives to time t is given by the survivor 
function which is related to the hazard rate by: 

S(t)=exp{-  f]  h(z)dz}. (2) 

Now suppose that  up until a collapse (if ever one occurs), the resource is 
producing a flow of revenues 9(x, u, t) where x(t) is the size of the resource stock 
and u(t) is the control  (e.g. harvest) at time t. 

We shall assume that  the stock dynamics are given by a differential equation:  

=f(x, u, t). (3) 

Let us further suppose that  if the stock collapses at t ime ~ a benefit of 
magni tude  G(x(z)) is earned (usually this will be a negative quanti ty denot ing a 
cost). If the instantaneous discount  rate is 6 then the expected net present value 
of the revenues earned up until the time of collapse is: 

J=E e-Otg(x, u, t) dt+e-a*G(x(z)) (4) 

where the expectation is taken with respect to the r a n d o m  variable z. Note  that  
a collapse is not  certain. The resource may survive forever if the improper  
integral S~h(z) dz converges to a finite quant i ty  [-see (2)]. 

To maximize expected present-value we seek to maximize (4) subject to the 
dynamic constraint  (3), and any other constraints on the control  u [-e.g. in a 
harvest problem we might  have u(t)>/0]. 

It is shown in the Appendix how the above stochastic opt imizat ion problem 
can be expressed as a problem in deterministic opt imal  control,  by introducing 
a new state variable: 

y(t) = - l o g  S(t). (5) 

If the hazard at t ime t depends on the stock x(t) and control  u(t) as well as time, 
say according to: 

h(t) = go(x, u, t), (6) 

then the dynamics of the variable y are given by: 

))=g0(x, u, t): y ( 0 ) - 0 .  (7) 

Also the expectation in (4) can be evaluated in terms of y(t) to give 
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J ~ j~ o~3 

o 
e-6t-y~t)[g(x, u, t ) - -6G(x)+G'(x) f (x ,  u, t)] dt+G(x(O)). (8) 

We seek to maximize (8) subject to the dynamic constraints (3) and (7). This is a 
standard problem in deterministic optimal control similar to the one that arises 
if there is no possibility of collapse, except for the inclusion of a new state 
variable y(t) related to the survival function, and an adjustment to the benefit 
flow function. The term G(x(O)) is constant and can be dropped from the 
optimization problem. Note that the variable y(t) operates like a premium 
added to the discount rate 6. 

This problem can be solved using the standard maximum principle. 
However from the point of view of interpreting the results it is perhaps better to 
introduce a conditional current value Hamiltonian: 

where 

/-t= O(x, u, t)+ p l f ( x  , u, t)+ p2qo(x , u, t) (9) 

O(X, u, t )=g(x ,  u, t ) - -6G(x)+G'(x) f (x ,  u, t) (10) 

is the term in square brackets of the integrand in (8). 
The conditional current-value Hamiltonian is actually the standard current- 

value Hamiltonian [see e.g. Clark (1976, p. 105)] divided by the survival 
probability e-ytt). Likewise the co-state variables Pl and P2 are current shadow 
prices divided by the survival probability. These variables satisfy the co-state 
equations: 

P l = [6 + qo(x, u, t ) - fx (x ,  u, t ) ] p l -  qOx(X, u, t)p 2 -Ox(X, u, t) (11) 

(where subscripts denote partial derivatives), and: 

/52 = [ b +  (p(X , u, t)]P2 +O(X , U, t). (12) 

The optimal control u*(t) maximizes/7 at all t, and in principle can be found by 
solving the system given by this condition, and equations (3), (7), (11) and (12). 

The co-state variable Pl can be interpreted in the usual way as the shadow 
value of an additional unit of stock at time t, only now it is conditional on the 
resource still being alive (i.e. not having yet collapsed) at this time. The second 
co-state variable P2 associated with the new variable y(t) has an interesting 
interpretation. It can be shown (see Appendix) that: 

-- P2(t) = W ( t ) -  G(x(t)) (13) 

where W(t) of t is the value of the resource at time t conditional on it being alive 
at that time, i.e. W(t) is the expected present value of the flow of benefits plus 
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rewards (penalties) earned from any subsequent collapse, conditional on it 
being alive at time t, and under optimal exploitation. 

In particular: 

-p2(0) = maxu(t) J - G ( x ~  = max,,) f )  e-a'-Y")0(x, u, t) dr-. 

In the case when there are no rewards or penalties associated with a collapse 
(G(x) - 0) the co-state variable P2 represents simply the negative of the value of 
the resource, W(t), at time t, given that it is alive; or in the behavioral ecology 
context [-see Section 3 (c)] P2 represents the negative of the lifetime fitness of an 
organism at time t. The co-state equation (12) is nothing more than the 
Bellman equation of dynamic programming for this problem. In the more 
general case (G(x)~O) the co-state equation (12) can be derived from the 
Bellman equation for W(t) and vice versa. 

We now illustrate the technique in two particular applications. 

Management of a fishery vulnerable to collapse. Many fisheries (especially 
of schooling clupeid species) have been known to experience sudden 
catastrophic collapse. Some examples are the North Sea herring, the Southwest 
African pilchard, the California sardine, and most spectacular of all the 
Peruvian anchoveta [see Reed (1988) for references]. It seems reasonable to 
assume that the probability of collapse depends inversely upon the stock 
density. Thus, let us suppose that the hazard-rate function q) depends only 
upon stock density x: 

h(t) = qo(x, u, t)= tp(x), (14) 

where ~ is a decreasing function. Following Clark (1976, Chap. 2) assume that 
the revenue flow function is: 

g(x, u, t)= [ p - c ( x ) ] u  (15) 

where p is the (constant) price offish, c(x) is the unit cost of harvesting when the 
population is at size x and u is the rate of harvesting; assume also the stock 
dynamics are given by: 

= f i x ,  u, t) = F ( x ) -  u (16) 

where F(x) is the familiar population growth function. For the moment we shall 
assume that there is no penalty associated with a collapse (G-0) .  

The conditional current-value Hamiltonian is: 

i q =  [p -- C(X)]U + P l [ - f (x)  - -  u]  + p 2 0 ( x ) .  (17) 
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This is linear in u and so the optimal control can only involve components of 
bang-bang or singular control. In fact it can be shown fairly easily [-see Reed 
(1988) for details] that the optimal harvest policy drives the stock as rapidly as 
possible to an opt imum biomass level X* which is the solution to a modified 
golden rule (MGR) equation: 

F'(x) F(x) = 6 + O ( x ) +  (18) 
p - c ( x )  6 + " 

This is analogous to the golden rule equation derived by Clark (1976, p. 40) 
save for the inclusion of two additional terms on the right of (18) involving the 
hazard function ~. The significance of these terms is discussed in Reed (1988). 
Here it suffices to note that the second term on the right which is positive, 
depends on the size of the hazard, while the third which is negative depends on 
the rate at which the hazard is changing. The effect of the first term is to lower 
the optimal biomass (optimally one might want to practice less conservation 
because the population may not survive for later use), while the effect of the 
second is to increase the optimal biomass (one would want to avoid driving the 
stock low because it would increase the hazard). Whether the optimal biomass 
is greater or less than that in a risk-free environment depends on the particular 
functions, ~ and F. 

It is easily verified that the inclusion of a penalty G(X) - K associated with a 
collapse leads to an additional term: 

~'(x) 6K 
x 

6+t~(x) p - c ( x )  

being included on the right hand side of the MGR equation (18), thereby 
increasing the optimal stock biomass as one would expect. In Reed (1988) the 
adjustments required to the model from the inclusion of the possibility of 
recovery after a collapse, in an uncertain time, are discussed. 

Optimal pollution-consumption trade-offs in an environment vulnerable to 
irreversible collapse. A clean environment is a natural resource, and in many 
cases, up to a point, it is a renewable one. Natural processes can in time often 
cleanse pollutants from the environment. Not  surprisingly then the methods 
developed for the optimal management  of renewable biological resources have 
been applied to questions relating to the optimal tradeoffs between consump- 
tion and pollution. The seminal papers on this are those of Plourde (1972) and 
Forster (1973, 1975). [-See also Conrad and Clark (1987, Chapt. 4) where the 
relationship with other renewable resource management problems is made 
apparent.] 

In some cases once threshold levels have been exceeded, the environment 
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loses its ability to cleanse itself, and an irreversible change takes place. For 
example, patterns of consumption based on fossil fuel energy may lead to 
concentrations of greenhouse gases which could cause irreversible climate 
changes. Similarly, certain toxic substances inhibit the self-purification powers 
of water by killing the bacteria required to degrade organic wastes. If the 
pollution level is great enough it may render a waterway biologically dead and 
unable to cleanse itself. 

Threshold levels are largely unknown and a simple way to model this is to 
assume that the hazard-rate for an irreversible collapse of the environment 
depends on the level of pollution P. Thus we assume: 

h(t) = O(P(t)) (19) 

where in this case 0 is non-decreasing and convex. 
The standard optimal control model for consumption-pollut ion tradeoffs 

[Forster (1973)] assumes that: 

P=Z(C)-F(P) (20) 

where Fis  the pollution decay function (positive, concave and increasing), and 
Z(C) is the net rate of creation of pollution, when consumption is at level C. The 
objective to be maximized is the present value of the flow of utilities U(C, P) 
where Uc>O, Ucc<O, Up<O, Uep<O. 

If we suppose that after a collapse of the environment the utility flow is 
reduced to some base level U o ~ 0, then the expected discounted present value 
of utility over an infinite time horizon is: 

(21) 

Using the methods described earlier this can be expressed as: 

/ L  
J = | e-a'-Y~')[U(C, P ) -  Uo] dt + vu  (22) 

6 J o  

where 

)?=0(P). (23) 

Consumption C(t) is the control variable and maximization of the expected 
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present value of utility is obtained by solving the optimization problem of 
maximizing (22) subject to (20) and (23). 

In Reed and Clarke (1990) the optimal solution is discussed, and the optimal 
levels of pollution and consumption are compared with those that would be 
prescribed by the model if risk of collapse were ignored. Also the disequilibrium 
user costs which should be charged to polluters in the two cases are compared. 
It is shown that: 

(a) If the hazard-rate does not depend on current pollution levels 
(0 (P) -cons tan t )  then optimal consumption and pollution levels are higher 
when risk of collapse is included in the model, than when not. Furthermore 
user costs are lower. 

(b) If the hazard-rate exhibits some dependence on current pollution 
(0'(P) > 0) and the disutility ( -  Uo) associated with a collapse is suitably large, 
then optimal consumption and pollution levels are lower and user costs are 
higher when risk of collapse is included in the analysis. 

The reason for the, at first somewhat surprising, result (a) is the same as in 
the fishery model. If the risk of collapse is independent of any action users of the 
resource may take, then its presence acts simply as a premium added to the 
discount rate (the variable y(t) is simply a constant times t), thereby leading to 
less conservation of the resource. On the other hand, when the hazard depends 
on the level of pollution its effect can be reduced by lowering consumption and 
pollution levels. If the consequences of a collapse are sufficiently horrible it 
becomes optimal to reduce pollution, overcoming the increased discount rate 
effect. User costs to be charged to polluters should, in consequence, be higher. 

3. Finite Time Horizon Model. We use the same model and notation as in the 
previous section. However we suppose that if the resource is still surviving at 
time T, a reward ~(X(T)) is earned. For instance this could be the revenue 
earned through clear-cutting a stand of trees at the rotation age. It could also 
represent the terminal fitness function of an organism in a behavioral ecology 
model [Mangel and Clark (1988, p. 58)]. 

It is shown in the Appendix that the expected present value functional is: 

F r  
J =  Jo e-at-Y")[g(x' u, t ) - a G ( x ) +  G'(x)f(x, u, t)] dt 

+ e-ar-y~r)[O(x(T))_ G(x(T - ))] + G(x(O)) (24) 

where G(x(T- ) )  = lira G(x(t)). Since G(x(0)) is a constant it can be eliminated 
t.~ T 

from the optimization problem, which is similar to the infinite time horizon one 
in the benefit flow function, but now includes a terminal reward. To solve this 
using the maximum principle the conditional current-value Hamiltonian is as 
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in (9), and the co-state equations as in ( l l )  and (12). However  now there are 
transversality conditions which determine the values of the co-state variables at 
time T. They are: 

Pl (T) = [@'(x(T)) - G'(x(T- ))] (25) 

and 

p 2 ( T )  = - [ ( I ) ( x ( T ) ) -  G(x(T-))]. (26) 

If the time T is not specified (but is rather a control variable) then there is an 
additional free terminal time condition: 

I4(T) + ~ [~(x(T))--G(x(T- ))] --6[~(x(T))-G(x(T ))] =0 .  (27) 

We now give some examples from forest management  and behavioral 
ecology. 

Optimal protection of a forest against fire. We consider a forest stand which 
if clear-cut harvested at age T yields a revenue V(T) but incurs costs c 1 . If 
however a fire occurs before harvest takes place, we assume that costs c 2 are 
incurred. Suppose that the "natural" hazard (in the absence of any fire 
protection) depends only on age: 

h(t)=a(t) 

say. If on the other hand at time t a flow of expenditure of size u(t) ($ per unit 
time), is spent on protection, suppose that the hazard is reduced to: 

q)(t, u)= O(u(t))a(t) (28) 

where 0 is a decreasing convex function. 
The problem we consider is to choose a harvest age T, and a protection 

schedule u(t), 0 < t <  T to maximize the expected present value of harvest 
revenues net of protection and other costs. In the form of equation (24) this can 
be expressed as maximize: 

J= fro e-at-ylt)[-u(t)+6c2] dt+e-ar-Y(r)[V(T)-Cl +C2]-c 2 (29) 

over T and u(t); 0 < t < T, subject to: 

f~ = ~p(u)a(t) 

and 
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u> 0. (30) 

There is only a single state variable y(t) in this optimization problem IV(T) 
can be assumed to be exogenously determined]. Thus the conditional current- 
value Hamiltonian will involve only one co-state variable, which we shall 
denote by Pz for the sake of consistency. It is: 

H = - u(t) + 6c 2 + p20(u)a(t). (31) 

This is maximized over u at: 

u=O if p20'(O)a(t)<<. 1 

otherwise at the solution to: 

p20'(u)a(t) = 1. (32) 

Differentiating this with regard to t and using the co-state equation: 

P2 = [6 + O(u(t) )a(t)]p2 (33) 

it can be shown that when the optimal expenditure is positive it follows the 
differential equation: 

h'(t) 
O"(u)fi=[O'(u)]2[u-6c2]a(t)-tp'(u)[6+tp(u)a(t)] - ~  tp'(u). (34) 

Furthermore the transversality condition (26) and the free terminal time 
condition (27) give that at the optimal cutting time T: 

0 
0T [ V ( T ) - c l ]  -tp(u(T))a(T) [V(T)--c  1 +c2] - -u (T)=6[V(T) - -c l  ]. (35) 

This is a version of the Wicksell (1934) condition, which requires that at the 
optimal cutting time the incremental expected net revenue earned through not 
cutting the stand [the left hand side of (35)] exactly equal the revenue earned 
through cutting the stand and investing the proceeds at interest rate 6 [the right 
hand side of (35)]. 

In the case of an ongoing forest (Faustmann paradigm) it is shown in Reed 
(1987) that, for a constant hazard [a(t) - constant], the optimal expenditure on 
protection is increasing over the whole lifetime of a stand, or is initially zero 
followed by a period of increase. To determine it exactly involves numerical 
solution. Examples and an interpretation of equation (34) are given in Reed 
(1987). 

We describe now another model for optimal fire protection. Rather than 
assume that the hazard rate for a protected forest depends solely on the current 
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expenditure, we assume instead that it depends on the accumulated capital 
investment in protection, K(t), at that time, i.e. that (28) is replaced by: 

h(t) = O(t,  K )  = O(K)a(t)  (36) 

where 0 is a decreasing convex function. 
The accumulated capital is assumed subject to depreciation at a constant 

rate 7- In addition new investment at the rate u(t) ($ per unit time) can be made 
at any time. Thus the state variable K(t) follows the differential equation: 

Ii[= -- TK + u(t). (37) 

As before u(t) is a control variable, subject to the constraint u(t)>>. O. 
The expected present value net of costs over a single rotation is: 

J =  fo r e-O'-Y(')[6c2- u(t)] d t + e - ~ r - Y ( r ) [ V ( T ) - C l  +c2] --t-c 2 . 

This must be maximized over T and u(t), 0 ~< t < T subject to the dynamic 
constraints (37) and: 

p(t)=O(K)a(t). (38) 

The conditional current-value Hamiltonian is: 

I t =  3c 2 - u + pl ( -  7 K +  u) + pzO(K)a(t) (39) 

which is linear in u and so the optimal control can only comprise bang-bang or 
singular components. 

In Reed (1989) a differential equation for K on the singular path is derived 
and is solved numerically in an example. The optimal policy involves an initial 
pulse of investment followed by a period of increasing investment along the 
singular path, with a final period of no investment leading up to the optimal 
harvest age. Also in Reed (1989) the relationship between the equation of the 
singular path and the equation (34) for the optimal expenditure is established. 

Optimal thinnin9 of  a forest stand. Clark (1976) describes the Faustmann 
model for the optimal rotation of a forest stand, and presents an optimal 
control model for determining optimal thinnings up to the age of clear-cut 
harvesting. The extension of the rotation model to include fire risk can be posed 
as a free-terminal time optimal control model but is more easily treated directly 
[Reed (1984)]. The inclusion of a fire-hazard into the optimal thinning model 
can be treated using the methods presented in this paper. The important 
question is specifying how the hazard depends on age, thinning activity and 
stand density. Following Clark and de Pree (1979) let: 
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x(t) = volume of timber in stand at age t 
p(t) = the unit value (price) of timber at age t 

c o = the cost per unit volume of thinning 
r(t) = p ( t ) - c  o = the unit net revenue from thinning at age t 

c a = the cost per unit volume of clear-cut harvesting 
q(t) = p ( t ) - c  a = the unit net revenue from clear-cut harvesting at age t 
u(t) = the rate (volume per unit time) of thinning at age t 

T =  age of clear-cut harvesting 

and assume that: 

2=9( t )F(x ) -u( t ) ;  x ( 0 ) = x  0 (40) 

where g is positive and decreasing, and F is positive and concave. 
The value of thinnings plus a clear-cut harvest over a single rotation can be 

expressed in the form (24) as: 

J = f T  e-  at-y,)r(t)u(t) dt + e-6r-Y~T)q(Tjx(T) (41) 

which is to be maximized over T and u(t): O<<.t<T subject to (40) and the 
appropriate dynamic equation for y. 

If the hazard depends only on age, then: 

29 = a(t), (42a) 

whereas if it depends on age and volume: 

29 = ~(x, t) (42b) 

where typically we might expect 6x~<0, since dense stands will tend to have 
more shade and retain more ground moisture than sparse ones. 

Another  possibility is that the hazard depends on age, and whether thinning 
is actively taking place or not. In this case an appropriate model might be 

29 = a(t) + 2H(u) (42c) 

where H(u) is the step function: 

H ( u ) = ~ 0  if u = 0  (43) 
(1 /f u>O. 

As one might expect when the hazard depends only upon age, the optimal 
policy is the same as that given in Clark's deterministic analysis, except with the 
discount rate adjusted upwards at each instant in time by an amount  a(t), i.e. it 
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comprises, in general, a period of no thinning, followed by an interval of 
thinning along a singular path: 

r'(t) 
g(t)F'(x) + ~ i )  = 6 + a(t) (44) 

followed by another period of no thinning leading up to the optimal clear-cut 
harvest age T which satisfies the Wicksell condition: 

g( T)F(x( T) )q( T) + x( T)q' ( T) 
x(r)q(7? 

= 6 + a(T) (45) 

[see Reed and Apaloo (1991)]. 
When the hazard depends on age and stand density [equation (42b)] it can 

be shown that qualitatively the optimal policy is of the same form, although an 
explicit equation for the singular path cannot apparently be obtained [see 
Apaloo (1988)]. The optimal rate of thinning when fire risk is present can be 
either greater or less than that which is optimal when no risk is present. This is 
similar to the situation in the fishery and pollution models described in 
Section 2, and the reasons for this are the same--the contrasting effect of 
discounting the future more heavily at the same time as wishing to avoid 
driving up the hazard by thinning the forest too much. 

In the case when the hazard depends on whether thinning takes place or not 
[equation (42c)], it can be shown [Reed and Apaloo (1989)] that singular 
control is no longer optimal. If there is a maximum rate b/ma x at which thinning 
can take place, then optimal thinning occurs in pulses at this maximum rate, 
interspersed with periods of no thinning. Switches occur when the switching 
function: 

Jr(t) - Pa] blrnax + •P2 (46) 

changes sign. The first term represents the rate at which revenue is generated 
net of the user cost, through thinning at the maximum rate. Recalling the 
interpretation of pz(t) given in Section 2 as the negative of the value of the 
resource at time t, it can be seen that the second term in (46) represents the 
increase in expected loss in future revenues through fire, caused by thinning. 
Thinning takes place when the net revenue exceeds the increase in expected 
future loss. 

A behavioral ecology model. Mangel and Clark (1988) describe a number of 
models in which an organism's behavior is determined by the maximization of 
its survival probability or the maximization of its lifetime fitness (the expected 
value of a terminal fitness function). They use stochastic dynamic programming 
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to determine the optimizing behaviour. In this section we describe a highly 
stylized version of the basic "patch selection" or foraging model used as a 
paradigm by Mangel and Clark. Rather than using discrete time however we 
formulate the problem in continuous time and show how the methods 
described in this paper can be used to solve the problem. 

Let x(t) denote the energy reserves of the organism at time t, and let u(t) >>- 0 
be a control variable describing the location at which the organism forages or 
which it inhabits. For  example u(t) could denote the depth selected by an 
aquatic organism, or the distance from cover selected for feeding by a bird. We 
shall suppose that the hazard of death through predation or another cause 
depends on both u and x: 

h(t) = O(x, u) (47) 

with 0x <~ 0. 
Also suppose that energy reserves are used up at a rate c + cffu) with c > 0 and 

~(u) >~ 0 and that reserves increase at the rate fl(u) when the organism is foraging 
at location u. Thus in toto reserves change at the rate: 

2 = - c + 7(u) (48) 

where 7(u)= fi(u)-offu). We suppose that 7'(u) and 0 ,  are of the same sign, so 
that selecting a location where food is more abundant ,  results in an increase in 
the risk of death through predation or other cause. For  simplicity we shall 
assume that ;/(u) and t)u are both negative (for the opposite case consider as 
control some monotone  decreasing function of u), and that ?(u) is concave and 
O(x, u) is convex in u. 

Let (I)(x(T)), where T is a terminal time, denote the terminal fitness of the 
organism. We seek the behavior which will maximize the lifetime fitness: 

S( T[ t )@(x( T) ) (49) 

at all times t(0~< t < T), where: 

S(T I t )=P  (organism alive at T I alive at t). 

This problem can be posed as an optimal control problem in which there are no 
flow benefits, only terminal rewards. Specifically the problem is: 

maximize 

subject to (47) and 

and u(t) >>. O. 

J=e-r~r)~(x(T)) 

S' = u)  
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The conditional current value Hamiltonian is: 

I~= p l [ - c  + ~(u)] + p20(x,  u) (50) 

which by assumption is concave in u (P2 is negative). The co-state equations 
are: 

Ijl = O(X, u)p I --~lx(X , U)p 2 (51) 

t62 = O(x, u)p 2 (52) 

with transversality conditions: 

Pl (T) =- ~ ' ( X ( T ) )  

p2(T) = --O(X(T)).  

The optimal control is u*(t)= 0 if: 

p17'(O)-[- p2~lu(X(t), 0 ) < 0  

otherwise it is at the solution to: 

pl T'(u) + P2Ou(X(t), u)=0.  

(53) 

(54) 

For simplicity suppose that an interior solution is always optimal 
[0,(x, 0)= ov will guarantee this], then from (55), (51), (52) and (48) a pair of 
differential equations for the behaviour of the optimal u*(t) and the 
corresponding x*(t) can be derived. They are: 

2 = - c + 7 ( u  ). (57) 

BoUndary conditions are given by x(0)= x 0 and: 

q~'(x(T))~'(u(r))- ~,(x(T))O,(u, x(T)) = O. (58) 

These equations can be solved numerically as a boundary value problem using, 
for example, a shooting method. An analytic solution can be obtained in a 
simpler special case: that in which the hazard depends only on the foraging 
location u(t) and not on the level of reserves x(t) (~k:,= ~kx, = 0). 

(56) 

(55) 
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In this case since / i l=0 (u )p  1 and ti2=tP(u)p2, we have pl( t ) /p2( t ) -  
constant, k say where k<0 .  The optimal control will be at u * = 0  if 
0 , (0)+ k7'(0)~>0. Otherwise it will be at level u * ( t ) - ~  where zi solves: 

k~'(u) + ~,(u) = 0. (59) 

The value of the constant k can be determined from the transversality 
conditions (53) and (54): 

k - (I)'(x(T)) (60) 
O(x(T))"  

It follows that the optimal control will be at u*(t)=0 if: 

cI)'(x o) qJ.(0) (61) 
 (Xo) " 

Otherwise it will be at u*(t)-=O, where ~ solves: 

~ ' ( X o - ( C - u ) T  ) O,(u) 
@(x o - ( c -  u)T) y'(u) " 

(62) 

Assuming that (I) is concave, increasing we have the result that the organism 
will choose a patch where the hazard is minimum (u* - 0) if the initial reserves 
are sufficiently high. Otherwise it will choose a patch (u* -= z2 > 0) at which there 
is an optimal tradeoff between food intake and the hazard of predation. 

The above model is highly stylized, and it is only by making a large 
simplification that an analytic result can be obtained. This simplified model is 
perhaps the minimal model that one could contrive and still contain the essence 
of a behavioral ecology model, viz. a tradeoff between benefits and risk. For 
more realistic models of the type used by Mangel and Clark to describe the 
behavior of particular organisms, analytic solution is out of the question. 
Indeed modeling in continuous time when returns are stochastic would lead to 
optimal control problems with stochastic dynamics for which the methods 
described in this article would be of no use. The maximum principle appears 
then to have little prospect of being used successfully in Behavioral Ecology, as 
Mangel and Clark (1988, p. 239) point out. It has been included here mainly to 
demonstrate a commonality between problems in resource management  and 
Behavioral Ecology, the two areas in which Colin Clark has made such 
significant contributions. 

Before concluding the discussion of this model it is worth establishing the 
link between the maximum principle approach and the dynamic programming 
approach. Let: 
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V(x, t) = max {E[O(x(T))lx(t) = x} 
u(s) 

O<~s<~t 

[this is the continuous-time analogue of the lifetime fitness function F(x, t, T) 
used by Mangel and Clark]. From the principle of optimality (e.g. Mangel, 
1985, p. 42) we have: 

V(x, t)= max {V[x+ (--c+7(u)) dt, t + d t ]  (1-~(x, u) dt)+O-~(x, u) dt} 
U 

(63) 

which on expanding to o (dr) and dividing by dt gives the Bellman partial 
differential equation: 

V t + max {(-c+7(u))Vx-~P(x, u)V} =0. 
U 

(64) 

Making the identification of the co-state variable p 1 with the shadow value, 
V x of a unit of reserves, given the organism is alive at time t, and of the other 
co-state variable/92 with the negative of the value function V at t, it can be seen 
that the expression in braces in (64) is exactly the conditional current value 
Hamiltonian H in (50). The maximum principle and dynamic programming 
both require that this quantity be maximized. 

Furthermore the right hand side of (63) represents the expected value of Vat 
time t + dt conditional on its value at time t. Thus from equation (64) it follows 
that the expected growth rate oflifetime fitness is equal to zero? i.e. that { V*} is a 
martingale. This is a condition analogous to the familiar condition in resource 
economics, that the imputed value of a conserved resource should, under 
optimal management,  be growing in expectation at a rate equal to the rate of 
discount (see e.g. Brock et al., 1988; Reed, 1988). Note that this condition can 
be derived directly from the co-state equation (52), since - P 2  represent the 
lifetime fitness conditional on the organism being alive. The unconditional 
lifetime fitness is #2 = e-YP2 �9 

4. Summary and Conclusions. One of the major mathematical tools used in 
analysing problems in resource management and conservation has been the 
Pontryagin maximum principle of optimal control theory. It was used 
extensively by Colin Clark in his seminal 1976 book, Mathematical Bioecono- 
mics, and its use in problems of intertemporal resource allocation has now 
become standard. However its use has been almost entirely confined to 
deterministic models. For stochastic models, dynamic programming (usually 

tThis result can be verified numerically for the basic patch selection model of Mangel and Clark (1988, 
pp. 45-57) using the numerical solution obtained therein (p. 55) by discrete dynamic programming. 
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in discrete time) has proved much more fruitful. The same is true for behavioral 
ecology models where stochasticity is of the essence. 

The purpose of this paper is to demonstrate how the maximum principle can 
be extended to cover continuous time optimal control models in resource 
management in which there is a component of stochasticity present viz. the 
possibility of a random catastrophic collapse of the resource. Mathematically 
this involves the inclusion of an extra state variable corresponding to the 
survival probability of the resource, and a possible adjustment to the benefit 
flow function. Corresponding to the additional state variable there is an 
additional co-state variable which is closely related to the value of the resource, 
or the lifetime fitness of an organism. 

The method has been applied to a number of problems in resource 
management most of which have been analysed before in a deterministic 
framework. Application of the method has led to some analytic insight into the 
consequences of risk. Naively one might expect that the presence of risk would 
lead to greater conservation, especially if the hazard of collapse increased with 
lower levels of the resource stock. It is shown that this is not necessarily the 
case. One consequence of the presence of the risk of collapse is essentially to 
increase the rate of discount, which leads to less, rather than more, conservative 
exploitation. In some cases this effect is counterbalanced by other effects which 
lead to more conservative exploitation. In many cases the overall effect of risk 
on optimal behavior can lead to either more or less conservation depending on 
the particular values of the parameters of the model. 

A highly stylized behavioral ecology model has also been addressed using the 
maximum principle method described in the paper. Its purpose is not to suggest 
that this method is a viable alternative to stochastic dynamic programming in 
behavioral ecology modelling but rather to demonstrate a link between 
resource management and behavioral ecology models. Also an analytic insight 
is given viz. that for behavioral ecology models in which fitness depends only on 
the terminal state, the lifetime fitness is a martingale, i.e. it should grow in 
expectation at a zero rate. 

A P P E N D I X  

The finite-time horizon problem of Section 3 is to maximize the expected present value of 
rewards. The present-value of rewards is a random variable: 

f ro: g(x,  u, t) e -6t d t + e - 6 Z G ( x ( Z ) )  if Z <  T 

lo n g ( x ,  u, t) e -6t d t + e - 6 r G ( x ( T ) )  if Z =  T (A1) 
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where Z is a random variable denoting the time of collapse, with Z = Tif no collapse occurs. The 
cumulative distribution function of Z is equal to 1 - S ( z )  for z < T and is one for z 1> T. Thus the 
expected present value of rewards can be expressed as: 

fT 
J = 9(x, u, t) e -at dt d ( -S (z ) )  + e-a'G(x(z)) d( -S (z ) )  

30 

I 
T 

+S(T)  9(x, u, t) e -a '  dt + S(T) e-6r~(x(T)). 
do 

(A2) 

On reversing the order of the double integral, integrating by parts the second integral and 
rearranging, one arrives at: 

J = e 6'[g(x, u, t) + G'(x(t))Yc(t)- 6G(x(t))]S(t) dt 

+ a(x(O)) - e aT[G(x( T-  )) - ~(x(T))] S(T). (A3) 

Now letting: 

y(t) = --log S(t) (A4) 

we have 

3~(t) . . . .  h(t)  = q~(x, u, t) (AS) 
s ( t )  

[which is (5)] and the expected present value can be expressed as: 

f T J =  e a'-YmO(x, u, t) d t +  G(x(O))+e-ar-Ylr )[~(x(T) ) -G(x(T- ) )]  
0 

(A6) 

where ~ is as given in (10). 
Letting Tpass to infinity the last term vanishes and the infinite time horizon objective is thus: 

J =  fo :~ e a'-Y(t)~(x, u, t) dt§ (A7) 

[which is (8)]. 
We seek to maximize (A6) or (A7) subject to the dynamic equation: 

=f(x ,  u, t) (A9) 

and 

3~= ~o(x, u, t). (A10) 

The current-value Hamiltonian is: 

H=O(x,  u, t) e-Ym + l~i f (x ,  u, t) +/~2(P(x, u, t) (Al l )  
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with the co-state variables #1 and/~z satisfying: 

/i x = 6/z a - e-  r0x-  tL 1 f ~ -  ~t2q~ 

/ i 2  = (~ ]'L 2 "~ e-  r o. (A12) 

Letting Px = er/~x, P2 = er/~2 a n d / 4 =  eYH gives the conditional current value Hamiltonian as: 

/q= g(x, u, t) + pxf(x, u, t) + pztp(x, u, t) (A13) 

and the co-state equations as: 

Pl =Pl[b+q~-- fx]--P2tPx--gx 

P2 = [6 + ~o]p 2 + g- (A14) 

Since/q(t) represents the shadow value [i.e. the marginal increment to the optimal value of 
(A6) or (A7)] corresponding to an extra unit of stock at time t, it follows that pl(t)=eY#l(t)= 
lq (t)/S(t), is the shadow value of an extra unit of stock at time t conditional on no collapse having 
occurred up until that time. It is this conditional shadow value which corresponds more closely 
to the usual idea of a shadow value, since #x (t), being unconditional, includes the possibility that 
the resource has collapsed by time t with an additional unit of stock consequently having zero 
value. 

To interpret the second co-state variable pz(t), denote the optimal value of (A6) or (A7) by 
J* (x 0). By time t(0 < t < T in the finite time horizon model; 0 < t < oo in the infinite time horizon 
model) the stock will either have collapsed or not collapsed. It follows by the same derivation as 
that of (A3) from (A2) that: 

;0 J*(xo) = e-~z-Yt~)(~(x *, u*, z) dz+ G(xo)+e-~'-rm[W*(x*(t), t)-G(x*(t))] (A15) 

where u*( ) and x*( ) are the optimal control and corresponding trajectory for x; and 
W*(x*(t), t) represents the expected present value at time t of the flow of benefits plus any 
rewards (or penalties) associated with a subsequent collapse, conditional on the resource being 
alive at time t and under optimal management. In short W*(x, t) is the "value" of a living 
resource at time t with the stock at level x. 

The co-state variable P2 is related to J* by: 

P2(t)=e ~+y(t) j*  
ay(t) 

= -- W*(x*(t), t) + G(x*(t)). (A16) 

Thus G(x(t))--p2(t ) represents the value W*(x, t) of the resource at time t. 
In particular in the case when there are no penalties or rewards associated with a collapse 

(G(x) = 0), p2(t) is the negative of the value of the resource at time t. Furthermore in this case the 
co-state equation (A14) for Pz is nothing more than the Bellman equation of dynamic 
programming [e.g. Mangel (1985)]. To verify this, we have from the Principle of Optimality 
(Mangel, op. cit.): 

W*(x, t) = max {g(x, u, t) dt+  (W*+ [JV* d t ) ( 1 -  6dt)(1 - (p  d t )+o  (dt)} (A17) 
u 

where 1~r is the total derivative of W*. On dividing by dt and passing to the limit (dt~0) yields 
the Bellman equation: 
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IPV* = [6 + cp(x*, u*, t)] W* -g(x*, u*, t). (A18) 

Identifying W* with - P 2 ,  it can be seen that the above is the co-state equation (A14) for P2- 
In the case when G(x)~ 0 an extra term of the form G(x)~o dt has to be included on the right 

hand side of (A17) yielding a Bellman equation of the form: 

1~* = [6 + ~o(x*, u*, t)] W* -g(x*, u*, t ) -  G(x*(t))q~(x*, u*, t). (A19) 

Identifying W* with G(x*)-pi(t  ) it can be seen that the above equation is: 

G(x*(t))Yc*(t)-t52 = -p2[6+cp(x*, u*, t)] +~a(x*(t))-g(x*, u*, t) (A20) 

which on rearranging gives the co-state equation (A14) for P2- 
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