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Continuous population distributions tha t  undergo self-diffusion, migrat ional  cross- 
diffusion and interaction in a region of (1-, 2- or 3-dimensional) space are described 
dynamical ly  by  a governing system of nonlinear reaction-diffusion equations. I t  is shown 
tha t  the constants associated with migrational  cross-diffusion are ordinari ly nonnegative 
or nonpositive, contingent on the type  of species interaction. A simple sign relationship 
obtains between the la t ter  diffusivity constants and the rate constants for species inter- 
action in the neighborhood of a spatial ly uniform equilibrium state, and this relationship 
of signs serves to simplify the general s tabi l i ty  theory for the growth or decay of a rb i t ra ry  
perturbat ions on a spatial ly uniform equilibrium state. The s tabi l i ty  of the equilibritun 
s tate  is analyzed and discussed in detail  for the case of a generic two-species model, where 
the self-diffusion and migrational  cross-diffusion of species act to either stabilize or 
destabilize the equilibrium, depending essentially on the character of the species interaction 
and also on the magnitude of the Helmholtz eigenvalues associated with the region and 
boundary conditions. In  particular,  for a prey-predator  or host -paras i te  model, self- 
diffusion usually helps to stabilize the equilibrium state and migrational cross-diffusion 
can only act as an addit ional  stabilizing influence, as evidenced generally by  the experi- 
ments on such two-species systems. Sufficient conditions are derived for s tabi l i ty  of the 
equilibrium state in the  general case for an arbi t rar i ly  large number  of interacting species. 
I t  is shown tha t  the equilibrium state is always stable if all species undergo significant 
self-diffusion and the Helmholtz eigenvalues are sui tably large. 

I. Introduction. S p a t i a l  v a r i a t i o n s  in  t h e  d e n s i t y  o f  b io log i c a l  p o p u l a t i o n s  

a r e  e v i d e n t  t h r o u g h o u t  n a t u r e  a n d  h a v e  b e e n  t h e  s u b j e c t  o f  s e v e r a l  i m p o r t a n t  

e x p e r i m e n t a l  i n v e s t i g a t i o n s  (Nicho lson ,  1933; N i c h o l s o n  a n d  B a i l e y ,  1935; 

Gause ,  1934, 1935, 1936; H u f f a k e r ,  1958; H u f f a k e r ,  S h e a  a n d  H e r m a n ,  1963; 

P i m e n t e l ,  N a g l e  a n d  M a d d e n ,  1963; L u c k i n b i l l ,  1973). S u c h  e x p e r i m e n t s  

s u g g e s t  t h a t  se l f -d i f fus ion  a n d / o r  m i g r a t i o n a l  c ross -d i f fus ion  c a n  a c t  t o  s t a b i l i z e  
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and permit coexistence of species in an ecology that  would otherwise be un- 
stable. I t  is possible to s tudy the effects of self-diffusion and migrational cross- 
diffusion in a much simpler context which admits analytical treatment,  namely, 
a generic n-species ecological model that  features a spatially homogeneous 
equilibrium state. Clearly, the analysis of diffusive effects on the stability of 
spatially homogeneous equilibrium states is a logical preliminary to the study 
of the diffusive stabilization of specialized population distributions with spati- 
ally inhomogeneous equilibria in nature, and indeed the general method de- 
veloped here provides a basis for such specialized extensions. The purpose of 
the present communication is to report necessary and sufficient conditions for 
the stability of a spatially uniform equilibrium state in an n-species ecological 
model with continuous population distributions that  undergo self-diffusion, 
migrational cross-diffusion, and interaction in a region of(l-, 2- or 3-dimensiona l) 
space. The results obtained here show that  the latter effects can act to either 
stabilize or destabilize the spatially uniform equilibrium state, depending 
essentially on the character of the species interaction and also on the size and 
boundary of the spatial region (more precisely, on the magnitude of the Helm- 
holtz eigenvalues associated with the region and boundary conditions). I t  
should be noted that  the analysis in this paper breaks new ground by studying 
the most general phenomenological theory for continuous population distri- 
butions that  undergo (Fick-type) self-diffusion, migrational cross-diffusion and 
interaction in an arbitrary sp~.~ial region (compare, for example, with L~vin, 
1975 ; Maynard Smith, 1974 and v/v:~ cited therein). 

II.  Governing system of reaction-diffusion equations. Let ci = ci(x, t) denote 
the concentration (3-dimensional space) or density (2- and 1-dimensional 
space) of the ith participating biological species in the ecological model. I t  is 
assumed that  c~ is a nonnegative continuously differentiable function for all x 
and all t > 0. The time rate of change of c /a t  a fixed spatial point is given by  

~c~/~t = - V . f ~  + Q ~ ( c ) ,  (1) 

in which f~ is the total diffusional flux for the ith species and Qi(c), an algebraic 
function of the n-tuple c = (cl . . . . .  Cn), expresses the local rate of production 
of the ith species due to biological interactions. By  evoking a generalized 
Fick-law representation, the total diffusional flux is given by  

n 

fl = --ci ~ DijV(ln ci), (2) 
J = l  

where D~ t is the diffusivity constant which relates the influence of the gradient 
of the j t h  species on the flux of the ith species. For self-diffusion of the ith 
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species we have Dii > 0, while the signs of the D~I for migrat ional  cross- 
diffusion with  i ~ j depend on the character  of the interact ion between the 
i th  and j t h  species, as shown for the main types  of species interact ion in 
Table I.  For  example, if  j is a predator  and i its prey, then  the i j  migrat ional  
cross-diffusion te rm in ft is generally opposite in direction to Y (ln ca), implying 
D~I > 0, while the  j i  migrat ional  cross-diffusion te rm in fl is generally parallel 
to V(ln c~), implying D1~ < 0, provided tha t  both  prey  and  predator  are motile 
and  respond appropriately to spatial  variat ions in the distr ibution of the other 
species; of course, either D~I m a y  vanish (for a nonmoti le  or nonresponsive 

T A B L E  I 

Main Types of Species In terac t ion  and  Signs of  Associated Diffusivity and  
Ra te  Constants  

Symbol for Type of Signs of associated 
interaction interaction diffusivity and rate constants 

N i, j noninteracting D~I = 0 = Djl, Q'lj = 0 = Q'j~ 
i prey of j predator 

P or D~j >_ 0 >_ Djt ,  Q'tj < 0 "< Q'ji 
i host of j parasite 

C i, j competitor species Dtj >- 0 <- Dj l ,  Q'lj < 0 > Q~l 
S i , j  symbiotic species Dij ~-- 0 ~ Dji, Q'tj > 0 < Q'll 

N P  (or N S )  j saprophytic on waste D~ = 0 _> Dji ,  Q'i~ = 0 < Q'j~ 
products of i 

1VC j inhibited or destroyed Dr1 = 0 < Djl, Q'~j = 0 > Q' 
by waste products of i 

prey  or predator) and  thus  we have the general condition Dlj  > 0 > Dli 
s ta ted for a P (prey-predator)  type  of interaction in Table I. The same 
assumptions regarding the signs for the migrat ional  cross-diffusion flux co- 
efficients are implicit  in the work of other authors  (e.g., Maynard  Smith, 1974, 
p. 71). 

Subst i tut ing (2) into (1) and  introducing the more convenient dependent  
variables ~ = In (c~/Sl) = ~(x,  t) wi th  the 5~'s disposable positive reference 
constants,  we obtain the system of governing reaction-diffusion equations 

e~let = ~: D~j (V2~j+Vr (3) 
i=1 

in which the rate  functions Ri(~) -- c~lQ~(c) are assumed to be expressed in 
terms of the n-tuple ~ = (~1, �9 �9 ~n)- Le t  us suppose t h a t  the rate  expressions 
admi t  the spat ial ly uniform equilibrium state c - ~ = (51 . . . . .  5n) satisfying 
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the algebraic equations Qi(c) = 0 or equivalently R,(O) = O. In the neighbor- 
hood of the equilibrium state the components of ~ are small in absolute magni- 
tude compared to unity, and by  dropping terms quadratic and of higher order 
in g, (3) takes the approximate linearized form 

n 

~ll~t Z ~ ' = (D~jV ~j + Q ~ j ) ,  (4) 
J=l 

where an array of rate constants appears as Q~'j -'- (~Rd~j)~=o = (5j/5~) 
(aQd~cj)c=-e. Reflecting the nature of the self-interaction of the ith species in 
the neighborhood of the equilibrium, the rate constant Q~ may be positive 
(ith species freely reproductive), equal to zero (e.g., as in the n-species Volterra 
model with aR~/~l - 0), or negative (e.g., as in the n-species Verhulst.-Volterra 
model with ~Rt/~i  < 0); with the singular exception of a human population, 
the latter case with Q' .. ,  ti < 0 for i = 1,. n will ordinarily be manifest for 
interdependent animal populations in a realistic many-species ecological model 
(Tanner, 1966). The signs of the Q~j for i # j are generally fixed by the character 
of the interaction between the i th and j t h  species, as shown for the main types 
of species interaction in Table I. For every type of interaction we have DitQit <= 
0 for all values o f / #  j ,  or equivalently 

t 
D,~ = -?,~Qij, ?if > o , i # j  (5) 

for a certain array of nonnegative ?tj. The relationship berween the signs of 
off-diagonal elements in the diffusivity and rate constant arrays, as shown in 
Table I and expressed by (5), plays a key role in the general stability theory 
for the equilibrium state of an ecological model with diffusion based on the 
governing equations (4). 

I I I .  General perturbative solution in the neighborhood of the equilibrium state. 
Let us first consider an unbounded spatial region and an arbitrary continuous 
initial distribution for each ~i with the property that  

lim ~,(x, O) = O. 
Ixl~oo 

For such a localized perturbation on the equilibrium state we have a Fourier 
integral representation 

~s(x, O) = r re(+) (k, O)(cos k .x)+f~-)  (k, O)(sin k .x)]  dk, (6) j u j  

in which f ~ ) ( k ,  O) are Fourier amplitude functions dependent on the real 
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wave-vector k. The associated solution to (4) subject to (6) is given by 

~l(x, t) = S [fJ+) (k, t)(cos k" x )+f ( - )  (k, t)(sin k-x)]  dk, (7) 

where the t ime-dependent  ampli tude functions satisfy the system of ordinary 
differential equations 

?t 

df~ • (k, t ) /d t  = Z ~of~ ~:) (k, t) (S) 
f=1 

with the constant coefficients 

, ~-Du I k 12+Q;, for i = j 
04t = - D * I  I k 12+Qo = ((1 + Y'l ] k ]2)Q~1 for i # j (9) 

in view of (4) and (5). Notice tha t  (8) is identical to the system of equations 
tha t  would obtain in the stability theory without  diffusion except for the 
appearance of ~,1 in place of Q~I; according to the final member  in (9), ~},1 
has the same sign as q~j, with ] Q,j [ __> [ O~j l, for all i ~ j .  

The integrals over all continuous wave-numbers in (6) and (7) are to be 
replaced by infinite sums over Helmholtz eigenfunctions in x (associated with 
the spatial region and linear homogeneous boundary conditions on ~) for an 
arbitrary finite bounded spatial region (Aris, 1975; Rosen, 1974; Rosen and 
Fizell, 1975), the discrete positive eigenvalues of the negative Laplacian 
operator - V  2 replacing the continuous nonnegative values of [ k  12 for the 
unbounded spatial domain. Following other authors (e.g., Keller, 1970), it is 
assumed here tha t  the (Robin) boundary conditions on ~ preclude the spatially 
homogeneous perturbative mode with k = 0. All subsequent equations in 
this paper hold good for an arbi trary finite bounded spatial region if I k 12 

2 ( > km~ n with k~ln usually of the order of the length extension of the region) 
is interpreted as a Helmholtz eigonvalue for the region and boundary conditions 
of interest. 

I t  is well-known tha t  every solution to (8) for fixed k approaches zero for 
large t, 

lim f~+)(k, t) -- 0, 
$-*o0 

if and only if all (complex) eigenvaluos of the matrix Q = (~},1) have negative 
real parts, i.e. if ~} is a so-called stability matrix  (Bellman, 1970). Moreover, it 
is a simple mat ter  to prove tha t  (7) gives ~t(x, co) = 0 for all x if and only if 
fJ~)(k, co) = 0 for all k r 0, the spatially uniform pe.rturbative mode with 
k = 0 being excluded by the localization condition 

lim ~(x,  O) = 0 
Ixl-*oo 
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which implies that  ~ ) ( 0 ,  0) = 0 and hones ~ ) ( 0 ,  t) - 0 by virtue of (8). 
Thus, the spatially homogeneous equilibrium is stable if and only if (9) is a 
stability matrix for all values of {k ] 2 > 0 with the standard conjecture of 
"linear stability" commonly made in the literature (and probably amenable 
to rigorous proof in the present case), i.e. that  the stability of the ~ - 0 solution 
to the nonlinear (3) is concomitant with the stability of the ~ - 0 solution to 
the associated linear equations (4). Before considering conditions under which 
(9) is a stability matrix in the case of general n, let us derive and discuss the 
necessary and sufficient conditions for the case n = 2. 

IV .  Stability of the equilibrium state in a two-species model. For an ecological 
model with n = 2, ~ is a stability matrix if and only if 

t r Q  = 011-{-022 < 0, d e t ~ )  ---- ~11Q22-Q12O21 > 0 (10) 

and hence from (9) we obtain the necessary and sufficient conditions for the 
equilibrium to be stable against perturbations in the k eigenmode : 

(Dll+D22) { k [ 2 > (Q'll+Q~2), ( l l )  

(Dll  {k 12-QI1)(D22 [k {2-Q[2) > Q12Q21(1 + ~12 I k 12)(1-{-v21 I k 12). 
(12) 

The condition (11) is satisfied automatically for all k if (Q'll+Q'22) < 0 or for 
all k with sufficiently large { k { if at least one of the species undergoes self- 
diffusion, the presence of the self-diffusion terms making (11) a less stringent 
condition on (Q'll+Q'22) for stability. The full content of (12) is revealed by  
considering the types of species interaction in Table I. 

Cases N, N P  and NC. Q'12Q'21 = 0 and (12) becomes 

2 ' 12 ' (Dll { k I -QI1)(D22 {k -Q22) > o, (13) 

which in combination with (11) yields the necessary and sufficient conditions 
for stability 

Qll < D11 I k {2, Q22 < D22 [ k  [ 2 . (14) 

The latter conditions are satisfied for all k with sufficiently large I k { if D l l  
and D22 are both nonzero, or for all k if Qll and Q22 are both negative. Thus, 
the self-diffusion of either or both species always helps to stabilize the equili- 
brium state for these types of species interaction, while the migrational cross- 
diffusion (say with Dm ~ 0) does not influence the stability at all. 

Cases C and S. Q'12Q21 > 0 and the right side of (12) is a positive quantity. 
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Hence, in view of (11) we have (14) holding a fortiori as necessary conditions 
for stability. F rom the standpoint  of requirements on the rate constants 
Q~j, condition (12) is usually made less stringent by the presence of the self- 
diffusion terms, which increase the value of the left side of (12) with increasing 
I k [ ff (14) is satisfied. The contrary to this usual effect of self-diffusion occurs 

--1 , -1 , if Dl l ,  D29, (Dll Qll + D~2 Q29) are all positive and I k 12 < �89 + D92Q~2)-I, 
or i fD~  = 0 < Q~ for ~ = 1 or 2 with (Dll+D22) > 0, for then the left side of 
(12) decreases as I k [  increases from zero. Without  exception condition (12) 
is made more stringent by the presence of the migrational cross-diffusion 
terms, which always increase the value of the right side of (12) with increasing 
I k I" Thus, the necessary and sufficient conditions (11) and (12) show tha t  the 
self-diffusion of either or both species usually helps to stabilize the equilibrium 
state (special cases excepted), while the migrational cross-diffnsion always acts 
as a destabilizing influence. In  the limit of short wave-lengths with [ k I very 
large in relative magnitude, the equilibrium state is stable against perturbations 
if and only if D l lD22 > DieD21. 

Case P. Q'12Q21 < 0 and (12) becomes 

2 ' 2 t , , (Dll I k ] -Qll)(D22 [kl  -Q29.) > -I Q12Qul I (1+712 1 k [2)(1+~21 [ k [2), 
(15) 

which in combination with (11) implies tha t  the conditions (14) are sufficient 
but  not necessary for stability; in fact, if both factors in parentheses on the  
left side of (15) are positive, then the magnitude of the (negative) term on the 
right side is of no consequence for stability. From (11) and (15) it follows tha t  

( Q ~ - D ~ ] k  ]2) < [[ QI2Q'211 (l+n  I k k 12)] * (16) 

for i = 1, 2 are necessary (but not sufficient) conditions for stability. Condition 
(15) is usually made less stringent by the presence of both the self-diffusion 
and migrational cross-diffusion terms, the exception to the usual behavior 
of the left side occurring for the special parameter  values cited above under 
Cases C and S. Thus, self-diffusion usually helps to stabilize the equilibrium 
state, and migrational cross-diffusion can only act as an additional stabilizing 
influence. Moreover, the equilibrium is always stable against perturbations 
of short wavelength with I k [ very large in relative magnitude if both species 
undergo self-diffusion (D11D22 > 0). 

Experiments on the prey-predater  ciliates Paramecium and Diclinium 
support  these stability conditions qualitatively for the special case with self- 
diffusion of the prey species negligible (Dll = 0 < D22 , Qll > 0 > Q~9). 
I t  has been observed tha t  coexistence of Paramecium-Didinium populations 
can be effected by artifically induced migrational cross-diffusion (Gause, 1934, 

F* 
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1935, 1936), i.e. increasing the effective value of the right side of (16), in accord 
with the direction of the latter inequality for enhanced stability. Reducing the 
food supply of the Paramecium, i.e. decreasing the value of Qll, and rendering 
the medium viscous, i.e. decreasing the value of Ds2, also has been shown to 
effect experimental coexistence (Luckinbill, 1973), in accord with (15) for 
D l l  = 0. In  these experiments a "stable equilibrium" actually features oscil- 
lations in the populations about mean-values because of time-delay effects 
(Maynard Smith, 1974). 

Experiments on the prey-predator  mites Eotetranychus and Typhlodromus 
(Huffaker, 1958; Huffaker, Shea and Herman, 1963) also provide qualitative 
support for the stability conditions derived here. Increasing the spatial com- 
plexity and thus heterogeneity of such a system, and hence the role played by 
self-diffusion and migrational cross-diffusion of the species, helps to stabilize 
the populations of the mites and to forestall their extinction. 

The same type of qualitative evidence for the role played by self-diffusion 
and migrational cross-diffusion in a P type of interaction is also provided by 
host-parasite experiments (~qicholson, 1933; Nicholson and Bailey, 1935; 
Pimentel, Nagel and Madden, 1963). In  general such systems persist longer 
ff they  feature greater spatial complexity and population distributions that  
vary  significantly with x because of the stabilizing influence of diffusion of 
the species, in agreement with the theoretical conditions (11 ) and (15). 

V. SuJficient conditions .for stability of the equilibrium state with n arbitrarily 
large. In  all cases discussed in the preceding section for n = 2, stability of the 
equilibrium state obtains if the stabilizing effect of self-diffusion is dominant 
over (possibly destabilizing influences of) the interaction and migrational 
cross-diffusion. Quantitatively, the equilibrium is always stable for sufficiently 
large values of Dml n I k [2 where Dmt n =- m~n{Dll). That the latter statement is 
true for any multi-species system with arbi trary n is shown by the sufficient 
conditions for stability derived in the following paragraphs. 

First, let us assume that  Oil -- - D t i  Ikp + Qii is negative for i = 1 , . . . ,  n 
and put a = m~n{ _ ~i~} = m~n{[ ~ii [}( > 0). Then from (8)it follows that  

with 
�89 df2(t)/dt < (_~+~)/2(t) (17) 

n 
f2(t) = 2 [f(~)(k, t)] 2 (18) 

i = l  

and fl defined as the maximum eigenvalue of the real symmetric matrix B where 
Bl~ -- O, Blj -- �89 for i r j .  The differential inequality (17) can be 
integrated to yield 

12(t) < f2(0) exp ( - 2 ( ~ - f l ) t )  (19) 



E Q U I L I B R I U M  I1~ M U L T I - S P E C I E S  E C O L O G I C A L  SYSTEM S 381 

and thus for ~ > fl we have f2(oo) = 0 for any initial value. The sum of the 
squares of the n real eigenvalues of ]7 is given by  

n 

1,I=1 

while the sum of the eigenvalues vanishes because 

t r B  
n 

E B .  = 0. 

Therefore we have 

/79. _<_ (1--~,-I) E (BIJ) 2 = �89 Z ((~i~'(~#J"l-(~'/J(~J,) 
t , t  l~,t' 

(20) 

where the double summations run over i , j  = 1 , . . . , n  with i = j  terms 
omitted in the final member of (20). Hence, we have established that  ~ is a 
stability matrix and every solution to (8) approaches zero for large t if  

--(~i( > [�89 E ((~Jk(~//~+(~/~(~k/)] �89 ---- A (21) 
J~k 

for all i = 1 , . . . ,  n. In  view of (9) this sufficient condition for stability of the 
equilibrium becomes 

D. lk]2 Q' -- ii > A, (22) 

where A defined by  (21) is independent of the self-diffusion or self-interaction 
rate constants. Thus, for sufficiently large values of Dml n [ k [2 with Dmi n = 
~n~n{D**} the equilibrium state is always stable. Notice that  it is possible to have 
~t1 = - Oj, for i # j and A = 0 if and only if all interactions are either of type  
N o r P .  

An alternative sufficient condition for stability, resembling (21) in form but  
homogenously linear in I~J~] for j # k, can be stated b y  evoking a well- 
known theorem on matrices that  is used in economies theory. An n • real 
matrix ~ is said to be quas@lominant negative-diagonal if there exist n positive 
constants 10 t, �9 �9 10n such that  

n 

-Ti~ll > Z 1~ ~iJI  (23) 
1(el)=l 

for all values of i = 1 , . . . ,  n. A quasidominant negative-diagonal ~ is a 
stability matrix, according to the theorem (McKenzie, 1966), which is also 
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valid if ] O,l ] is replaced by I l,I in the defining conditions (23) since the n 
eigenvalues of the transpose of t~ are the same as the n eigenvalues of O. 
Clearly, Q given by (9) is quasidominant negative-diagonal for sufficiently 
large values ofDt~ ] k ]2 for all i, since (23) wi thp l  . . . . .  Pn = I yields 

D,,lkr-Q;, > E 10,11 - A,.  (24) 
t(r 

The fight side of (24) depends on the enumerator index i, in contrast to the right 
side of (22), and thus (23) or (24) is a less demanding sufficient condition for 
stability in certain cases. Moreover, we have the important quantitative 
result: I f  

( Du > (0,+k~r2) I Q;l +�89 Q;, l) (2..5) 
\l(~O=l 

for all i with O, = mtax (?at) and k2cr a certain positive constant, then the equilibrium 
is stable for all [ k ]2 >= k2cr. For the proof, put  /0, - (1 +] k [20~)-1 and note 
that  (9) implies 

-piQ~,, - (1 + l k  I2o,)-~(D.[ k I ~. Q' - -  ~,~) > 
n 

~ [Q~j[ (26) 
t(e)~=l 

for I k ] 2 > kc2r ff (25) is satisfied. But from (9) we have 

n n 

Pj[~t1[ ==- ~ ( l+[k[2Ot)- l ( l+?t j[k l2)]Q~ll  < ~, IQ~i[ 
1 (:#'/) = 1  t (  # 0 = 1  t (  # i ) = 1  

(27) 

for all values of I k [ 2. In  view of the inequalities (26) and (27), it follows that  
(23) is satisfied by t~ for the prescribed set of positive p~, and therefore t~ is a 
stability matrix. Condition (25) can also be stated in the substitutive form with 
[ Q~i [ replaced by [Q1t ] and 0~ defined as ~ (?tl), since (23) yields an alter- 
native sufficient condition for ~ to be a stability matrix if[  Q~j [ is replaced by 
1Ol, I 
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