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Depletion of Caffeine-Sensitive Calcium Store Results
in Diminution of ATP-Induced Metabotropic
Calcium Responses in Rat Neocortical Neurons
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ATP receptor-mediated changes in the Ca®* concentration were recorded from neurons of the sensorimotor cortex
in brain slices from 3-week-old rats. To measure the cytoplasmic concentration of Ca2+, slices were incubated with
Fura-2/AM, and a microfluorimetry system was focused on an individual cell. Possible glutamatergic signals resulting
from ATP-evoked glutamate release were excluded. After elimination of caicium from the extracellular solution, the
first ATP~induced [Caz’]i transient decreased to 62 + 9% of a similar response in the normal solution, suggesting
the participation of metabotropic purinoreceptor-triggered Ca release in transient generation. Depletion of the
caffeine-sensitive calcium store results in diminution of ATP-induced [Ca}}]i transient in the Ca*’-free solution by
31.4 + 7.0% (P < 0.01). This may indicate that in pyramidal neurons of the sensorimotor cortex InsP3- and
Ca-induced Ca-releases demonstrate noticeable functional interaction. Nevertheless, there is no single compartment
in the endoplasmic reticulum bearing both IICR and CICR channels.

INTRODUCTION

Two main types of Ca-releasing channels are
described in excitable cells: the channels activated by
elevation of cytosolic Ca* (Ca*-induced Ca* release,
CICR) and those activated by an intracellular mes-
senger, inositol-1,4,5-triphosphate (InsP;-induced Ca**
release, IICR) [11. Neurons with functioning intracel-
lular Ca** stores show significant differences in the
capability of the latter to accumulate and hold Ca ions
{2, 3]. Some cells (small-size DRG neurons transmit-
ting predominantly nociceptive signals) do not reveal at
all InsP,-triggered Ca”™ release [4]; these cells are also
lacking Ca”*-induced Ca” mobilization through
ryanodine/caffeine-sensitive release channels {5].

One of the important questions in the studies of the
intracellular calcium release mechanism is whether the
endoplasmic reticulum forms a single compartment en-
dowed with both InsP;-receptors and CICR channels, or
whether CICR and IICR are realized from separate Ca”*
pools. The respective data are very limited and con-
tradictory. For cultured hippocampal neurons, it was
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found that discharging the Ca*-sensitive pool does not
affect IICR activated by quisqualate [6], which indi-
cates to a separate nature of Ca™ pools. Yet, later
experiments performed on the same neurons demon-
strated that [ICR never can be activated after caffeine
application [7]. In cultured cerebellar granule neurons,
the data favoring the existence of single Ca™ store
involved in both CICR and IICR were obtained [81].
Thus, the existence of functionally segregated or co-lo-
calized release mechanisms seems to considerably vary
between different neuronal types. In our experiments,
we tried to solve the question about possible interactions
between caffeine- and InsP;-sensitive Ca® pools in
neocortical neurons.

METHODS

Brain Slice Preparations and Solutions. Experi-
ments were performed on brain slices freshly isolated
from Wistar rats (postnatal day 21). Briefly, after
anesthesia rats were decapitated, and the brain was
removed and placed in cold (4°C) physiological saline
for 1-2 min; then the hemispheres were separated, and
one hemisphere was cut in the sagittal plane using a
vibroslicer. The 250-300 um thick slices were trans-
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ferred into physiological saline saturated with 95% O,
+ 5% CO,. The physiological salt solution contained
(mM): NacCl, 135; KCl, 2.5; CaCl,, 2.5; MgCl,, I;
NaHCO,, 25; KH,PO,, 1.6; glucose, 10; pH 7.4, when
continuously gassed with §% CO, + 95% O,. To obtain
calcium-free solution, CaCl, was omitted; MgCl, was
increased to 3 mM, and 1 mM EGTA was added. For
preparation of high-potassium extracellular solutions,
[K'], was altered by isoosmotic replacement of Na with
K'. To block voltage-gated sodium channels, in all
experiments 0.5 uM tetrodotoxin (TTX) was added to
the physiological saline.

Fluorimetric [Ca®*], Measurements. Fluorimetric
[Caz’ ], measurements were performed in neurons
loaded with acetoxymethyl ester of fura-2 (fura-2/AM,
Molecular Probes, USA). For loading, brain slices were
incubated in a solution supplemented with fura-2/AM
(10 uM, diluted in DMSO) and plurcnic F-127 deter-
gent (0.02%) for 20 min at 35°C. Later on, slices were
incubated in physiological solution for' an additional
40 min to ensure fura-2/AM deesterification. For fura-2
excitation, the cells were alternately illuminated at the
wavelength of 360 = § and 390 + § nm. Excitation
filters were mounted in a filter wheel set at five
revolutions per second. The emitted light was collected
at 530 = 10 nm by a photomultiplier. The filter wheel
and photomultiplier outputs were controlled by a Fura-2
system (Luigs and Neumann, Germany). Signals cor-
responding to both excitation wavelengths were fed to
an IBM-compatible PC via a TIDA interface (Batelle,
Germany). Dye-loaded neocortical neurons were posi-
tioned in such a way that the fluorescent signal was
collected from their somata. The actual [Ca™], was
calculated from the ratio (R) of fluorescence recorded at
360 and 390 nm excitation wavelengths using the
equation of Grynkiewicz et al. [9]. The system was
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calibrated in vitro. The calibration parameters K, R,
and R, characterizing the system were 1512 nM, 0.6,
and 4, respectively. After incubation for 1 h at 32°C and
1 h at room temperature (about 22°C), the selected slice
was transferred to an experimental chamber, mounted
on the stage of an upright microscope (Axioscope, Zeiss,
Germany) and continuously superfused (10-20 mi/min)
with a Tyrode salt solution. The cells were visualized
using a long-distance water-immersion objective (40x,
NA 0.75). All experiments were carried out at 32°C.

RESULTS AND DISCUSSION

Ten-sec-long application of ATP in the concentra-
tion of 100 M produced a transient increase in [Ca™ ],
in the majority of pyramidal neurons from the sen-
sorimotor cortex (18 of 24 units). The mean amplitude
of ATP-induced [Ca® ); transients reached 86.3 = 8§ nM
(n = 18). This effect of ATP could be mediated by
post-synaptic iono- and metabotropic purinergic recep-
tors or ATP-induced release of other neurotransmitter
from pre-synaptic terminals [10]. Since glutamate is the
main excitatory neurotransmitter in the brain [11], we
recorded ATP-induced [Ca®), transients in the
presence of glutamate receptor antagonists (20 uM
6-cyano-7-nitroquinoxaline-2,3-dione, CNQX, and
25 uM 2-amino-5-phosphovaleric acid, d-APV) in the
bath solution. The amplitude and time course of in-
tracellular calcium transient was not altered (n = 9)
under such conditions (Fig. 1). In this way we avoided
glutamatergic signals resulting from ATP-evoked
glutamate release and made it certain that the observed
Ca®™ rise was triggered by postsynaptic purinergic
receptor activation.

Applications of 50 mM KCl (§-sec-long) were per-
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Fig. 1. Glutamate receptor antagonists exert no effect on ATP-induced [Caz*] ; transients in neurons of the sensorimotor cortex from 3-week-old rats.
Examples of Ca®* transients evoked by 100 uM ATP bath application without and with glutamate antagonists (2-amino-5-phosphovaleric acid, d-APYV,

25 uM, and 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX, 20 uM).
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Fig. 2. ATP- induced Ca®* mobitization and Ca”* influx in pyramidal neurons of the sensorimotor cortex from 3-week—old rats. Examglm of 100 uM
ATP-evoked [Ca ], signals measured under control condmons and after 2-min-long slice pre-incubation in the Ca®*-free solution. Ca**~free solution
started 2 min before ATP application in order to ensure Ca®* removal from the slice.
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Fig. 3. Interaction between the InsPj-sensitive and caffeine-sensitive ca®
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pools Long-term bath application of 40 mM caffeine reduced ATP-evoked

[Ca2 ]; transient in Ca®*-free solution in pyramidal neurons of the sensorimotor cortex from 3-week-old rats.

formed to ensure refilling of intracellular Ca®™ stores,
taking into account the involvement of metabotropic
purinergic receptors in generation of ATP-induced Ca*™
transients (Fig. 2). The presence of a considerable
response in the absence of external Ca® indicates that
cortical pyramidal neurons are endowed with metabo-
tropic purinoreceptors. The first ATP-induced [Ca®™),
elevation in the Ca**-free solution dropped to 62 = 99
(n = 14) of a similar response in the normal solution.
In this respect, the cortical neurons under study are
similar to other brain neurons like hippocampal and
thalamic cells [12], and cerebellar Purkinje cells [13],
as well as DRG neurons [14]. In all studied structures,
the metabotropic effect of ATP was mediated via the

InsP; messenger system, as has been in detail analyzed
by Hirano et al. [15].

Considering this finding, we examined the activity
of another main intracellnlar signalling mechanism,
which involves ryanodine/caffeine sensitive intracellular
Ca® pools. In 16 cells of 22 investigated neuroas,
10-sec-long application of 20-40 mM caffeine induced
considerable [Ca** ]; transients, which did not disappear
in the Ca*-free solution. A longer caffeine application
(over 30 sec) could result in complete depletion of the
stores. Depletion of the caffeine-sensitive calcium store
led to diminution of ATP-induced [Ca™]; transient in
the Ca®-free solution by 31.47% (n = 135; Fig. 3); the
difference was statistically significant (P < 0.01). This
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fact may indicate that in pyramidal neurons of the
sensorimotor cortex functional intraction between both
main types of intracellulat Ca™ stores does exist;
however, this interaction is quite limited, indicating that
there is no single compartment of endoplasmic reticulum
bearing both InsP,-receptors and CICR channels.
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