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The main concern of this paper is with survival or extinction of predators in models of 
predator-prey systems exhibiting group defence of the prey. It is shown that if there is no 
mutual interference among predators, enrichment could result in their extinction. However, 
if there is mutual interference, the predator population survives (at least deterministically). 

1. Introduction. In a well-known and controversial paper, Rosenzweig 
(1971) warns that "Man must be careful in attempting to enrich ecosystems 
in order to increase its food yield. There is a real chance that such activity 
may result in a decimation of the food species that are wanted in greater 
abundance." He considers six different mathematical models of predator- 
prey (or parasite-host) interaction and shows that sufficient enrichment or 
increase of the prey-carrying capacity can cause destabilization of an 
otherwise stable interior equilibrium. Using a truncation for the sake of 
biological reality he also integrates the equations numerically and obtains 
extinction of the predator. 

Several authors including Gilpin (1972), May (1972) and Riebesell (1974) 
criticize Rosenzweig's predictions. They show that the destabilization of the 
equilibrium results in the birth of an asymptotically stable periodic orbit. 
Freedman (1976, 1980) shows that for a class of generalized Gause models 
of predator-prey interaction this destabilization of the equilibrium is due to 
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a Hopf bifurcation. Most of the models that Rosenzweig (1971) considered 
are special cases of models in this class. Rosenzweig (1972a,b) defends his 
conclusions by pointing out that if the amplitude of the periodic orbit is 
sufficiently large, sections of it may become dangerously close to one or 
both of the coordinate axes. It might therefore be very likely that some 
random perturbation (of even a minor nature) could result in the extinction 
of one or both populations. 

McAllister et al. (1972) criticize Rosenzweig's warning by giving 
experimental evidence that shows moderate enrichment can be beneficial. 
However, there is exerimental evidence that seems to indicate that in some 
situations Rosenzweig's warning is valid. For example Huffaker et al. (1963) 
were able to obtain destabilization and extinction of an otherwise stable 
exploitation system involving an acrophagous mite (exploiter) and 
herbivorous mite (victim) by trebling the food density of the victim. 
Luckinbill (1973) and Schaffer and Rosenzweig (1978) were also able to find 
evidence connecting enrichment to dynamic instability. 

It is the purpose of this paper to provide more support for Rosenzweig's 
warning, although for different reasons. In most predator-prey models 
considered in the literature, the predator response to prey density is 
assumed to be monotonic increasing (Holling 1965), the inherent assump- 
tion being that the more prey in the environment, the better off the 
predator. However, there is experimental and observational evidence that 
indicates that this need not always be the case, for example in the case of 
'group defence.' 

Group defence is a term used to describe the phenomenon whereby 
predation is decreased, or even prevented altogether, due to the increased 
ability of the prey to better defend or disguise themselves when their 
numbers are large enough. An example of this phenomenon is described by 
Tener (1965). Lone musk ox can be successfully attacked by wolves. Small 
herds of musk ox (2-6 animals) are attacked but with rare success. No 
successful attacks have been observed in larger herds. A second example 
described by Holmes and Bethel (1972) involves certain insect populations. 
Apparently, large swarms of the insects make individual identification 
difficult for their predators. 

Related examples of non-monotone consumption occur at the microbial 
level where there is considerable evidence (Andrews, 1968; Aris and 
Humphrey, 1977; Boon and Laudelout, 1962; Bush and Cook, 1976; Yang 
and Humphrey, 1975), which indicates that when faced with an overabund- 
ance of nutrient the effectiveness of the consumer can begin to decline. 
That is, certain nutrients may be growth-limiting at low concentrations as 
well as growth-inhibiting at high concentrations. This is often seen when 
micro-organisms are used for waste decomposition or for water purification. 
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This phenomenon is called 'inhibition' of the consumer by high densities of 
the resource. 

With the phenomenon of group defence in mind it is therefore of interest 
to study mathematical models of predator-prey interactions in which the 
predator response function is not necessarily a monotone increasing func- 
tion of prey density, but rather is only monotone increasing until some 
critical density and then becomes monotone decreasing. We are unaware of 
literature reports of predator-prey models incorporating such non- 
monotone functional responses. 

In Section 2 of this paper we re-examine the paradox of enrichment in the 
light of group defence. We show that enrichment can, indeed, lead to 
extinction in a closed ecosystem as originally postulated by Rosenzweig 
(1971). However, just as in Rosenzweig's original paper we draw the con- 
clusion only if we assume that "the exploiters do not actually interfere with 
each other". In Section 3 we incorporate mutual interference of the 
predators in the model as was done in Erbe and Freedman (1985), 
Freedman (1979) and Freedman and Rao (1983). See also Beddington 
(1975), Hassell (1971) and Rogers and Hassell (1974). Just as in the 
previous work mentioned we find that mutual interference is stabilizing (at 
least deterministically). However, we observe by means of a series of 
numerical examples that, viewed stochastically, there might be a larger 
probability that the predator population may become extinct as mutual 
interference becomes stronger and stronger. We conclude with a discussion 
in Section 4. 

2. Group Defence--No Mutual Interference. We propose the following 
system of autonomous ordinary differential equations of generalized 
Gause-type as a model of predator-prey interaction with group defence 
exhibited by the predator 

x=xg(x,K)-yp(x) 

y=y(-s+q(x)) (1) 

x(0)_>O, y(O)->O, " -  d 

where x(t) and y(t) denote the density of prey and predator, respectively. 
We assume that the functions g, p and q are continuously differentiable and 
that s and K are positive constants. 

Here, g(x,K) represents the specific growth rate of the prey in the 
absence of predation and is assumed to satisfy 

g(0,K)>0, g(K,K)=O, gx(K,K)<O 
(2) 

g~(x,K)<-O and gK(X,K)>O for any x>0. 
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The function p(x) denotes the predator response function. We assume 
p(x) satisfies 

p(O)=O, p(x)>O for x>O (3) 

and that there exists M>O such that 

and 

p'(x)>O for O<-x<M. 

p ' (x)<0 for x>M. 

The rate of conversion of prey to predator is described by q(x). In 
Gause's model q(x)=cp(x) for some positive constant c. We assume q(x) 
has properties similar to p(x). In particular 

q(0)=0, q(x)>0 for x>0, q(M)>s 

q'(x)>O for O<~x<M (4) 

and 
q ' (x)<0 for x>M. 

Specific examples of g(x,K), p(x) and q(x) can be found in Boon and 
Luadelout (1962), Holling (1965), May (1972), Rosenzweig (1971), and 
Yang and Humphrey (1975). 

The existence of M>0 is precisely the assumption which models group 
defence. It is also only reasonable to assume that the same M holds for both 
p and q since the conversion of prey to predator should increase and 
decrease as the consumption of prey increases and decreases. We assume 
that q(M)>s since otherwise the predator cannot survive on the prey at any 
density. Therefore, there exists h<M such that q(h)=s and there may exist 
Ix>M such that q0x)=s. We assume that k<K or again the predator cannot 
survive on the prey. 

From the above assumptions one can conclude that there is always an 
interior equilibrium, Ex, of the form (k,kq(k,K)/p(k)) where q(k)=s, 
p ' (h )>0  and q ' (k)>0.  Furthermore, it follows from a standard linear 
analysis (see Freedman 1976, 1980) that this equilibrium is stable or 
unstable according to whether the slope of the prey isocline at Ex is negative 
or positive. 

Our first observation follows as in Freedman (1976, 1980) (see Figs 1 and 
2). 



P R E D A T O R - P R E Y  S Y S T E M S  4 9 7  

J x 

X K x 

Figure 1. Predator-prey dynamics for (1) in the case q(x)>s for x>M: 
- -  isoclines; - -  - -  - -  orbits. 
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Figure 2. Predator-prey dynamics for (1) in the case X < K < t ~ :  - -  

- -  - -  - -  orbit. 
isoclines; 

THEOREM 1. If 
lira q(x)~s (5) 

x - - - >  o o  

(i.e. no IX>M exists such that q(ix)=s) or if q(ix)=s where k<K>IX, then 
solutions of (1) with positive initial conditions either approach Ex or 
approach a positive limit cycle surrounding Ex or are themselves periodic 
solutions surrounding Ex. 

If on the other hand Ix<K, the dynamics differ substantially (see Figs 
3a-c). In particular, for a significant set of initial conditions the predator 
can be driven to extinction (see Figs 3 and 4). 

The variational matrix about any equilibrium (x*,y*) is: 

V(x*,y* )= [ X* gx(x * ,I,;) + g(x* ,I{)- y*p' (x* ) 
y*q'(x*) 

-p(x*) 
-s+q(x*) 1 " (6) 
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Figure 3. Predator-prey dynamics for (1) in the case h<lx<K: isoclines; 
WS(E.); . . . . . .  periodic orbit(s) surrounding Ex. (a) F comes 

from x(0>lx. Solutions starting outside the region bounded by W~(E~) 
converge to EK. (b) F is a homoclinic orbit. The only solutions that do not 
converge to EK originate inside the region bounded by F or lie on W~(E~). (c) F 
satisfies x(t)<lx for all t. The only solutions that do not approach EK are those 
that lie on W~(E~) or those originating inside the outermost periodic orbit (if one 

exists). 

A t  (x*,y*)=(K,O) this becomes  

V ( K , 0 ) = I  Kgx(K,K) -p(K) 1 (7) 0 -s+q+(K) j 

and so bo th  e igenvalues  are negat ive .  The re fo re ,  the  equi l ibr ium EK= (K,O) 
is locally asymptot ica l ly  stable which implies tha t  the re  is a set of  initial 
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conditions of positive measure in the interior of the positive cone for which 
lim y(t)=O. 

t----) ~ 

Also, in the case Ix<K, there exists a second interior equilibrium 
E,=(Ix,Ixg(Ix,K)/p(Ix)). 

F lXgx( Ix,K) + g(Ix,K)- y*p' ( Ix ) -p(Ix ) ] V(E~)= V(Ix,y)= 
L y*q'(Ix) 0 J " (8) 

The constant term in the characteristic equation is therefore equal to 
y*q'(ix)p(ix)<O since q'(ix)<0. Therefore, E~ is always a saddle point. 
Observing the direction the solutions must cross the predator and prey 
isoclines one observes that there cannot be a periodic orbit surrounding E~ 
(see Figs 3a-c). 

Since E~ is a saddle point, it has a one-dimensional stable manifold, 
W~(Er and hence there are two orbits that approach E~ asymptotically. 
Consider the orbit that approaches E~ from the left and call it F. There are 
at most three possibilities (see Figs 3a--c). Case 1: in negative time F can 
leave the strip 0-<x-<ix (Fig. 3a). In this case all solutions with positive initial 
conditions that start outside the region bounded by W~(E,) approach EK 
asymptotically. Case 2: secondly, F can be a homoclinic orbit, that is tends 
to E~ in negative time (Fig. 3b). In this case the only solutions with positive 
initial conditions that do not approach EK originate inside the region 
bounded by F or on W~(E~). Case 3: finally, F can remain in the strip 
0-<x<lx for all backward time. In this case E• is either unstable with no 
periodic orbit surrounding it or it must be surrounded by one or more 
periodic orbits and the outermost one must be unstable from the outside. F 
then either approaches E• (in the case of no periodic orbit surrounding Ex) 
or the outermost periodic orbit if time is followed in reverse. The only 
solutions that do not approach EK are those that lie on W~(E~) or those 
originating inside the outermost periodic orbit (if one exists). 

Since enrichment results in an increase of the carrying capacity K, it is 
now easy to see that our model predicts that sufficient enrichment could 
result in extinction of the predator if the prey practice group defence. 
Consider model (1) with K<lx. Then EK is unstable and at least 
deterministically both populations persist uniformly (see Butler et al., 
1986). In fact, all solutions approach Ex or some periodic orbit surrounding 
E• At K--=IX, there is a bifurcation of the critical point EK. As K increases 
beyond Ix, EK becomes asymptotically stable and E~ appears in the interior 
of the non-negative cone. Thus there is a set of initial conditions of positive 
measure for which extinction of the predator results and so Rsenweig's 
warning applies. It is interesting to note that these outcomes are 
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independent  of the local stability of Ex and hence of which side of the prey 
isocline E~, lies on. Rather  they depend upon whether  or not p~<K and 
hence on whether  or not E~ lies on the positive cone. 

In the following numerical example we see that as the carrying capacity K 
increases, the model  exhibits the dynamics described in each of the three 
cases described above. Consider 

x 9xy 
x = 2 x ( 1 -  ~-  ) -  xZ+3.35x+13. 5 

11.3x 
x = y ( - l +  xZ+3.35x+13. 5 ). 

(9) 

The functions and the values of the parameter  have been chosen solely for 
convenience and have no biological significance. In Fig. 4a we see how 
increasing K affects the prey isocline. When K=4,  then k<K<lx ,  and since 
the slope of the prey isocline is negative at E 4, then E 4 is asymptotically 
stable. (The superscripts differentiate the critical points for K = 4  from those 
for K=6  or K=7. )  If enrichment causes K to increase to K=6  (see Fig. 4b) 
we see that we are in Case 1. In this example, E 6 is unstable and there is a 
unique asymptotically stable periodic orbit surrounding it. At  K--7 (see Fig. 
4c), we are in Case 3 (with no periodic orbit surrounding E7). Therefore,  
there must be some critical value K*, 6 < K * < 7  for which the periodic orbit 
coalesces with a homoclinic orbit that is stable from within and unstable 
from without (i.e. Case 2). 

This example illustrates that a sudden enrichment of a stable system 
could result in extinction of the predator.  Let us assume that before 
enrichment (K--4) the predator-prey population densities stabilized near 
E 4. Enriching this sytem to K=6  would probably not cause extinction since 
the point gk 4 is within the region of attraction of  the stable periodic orbit 
surrounding E• 6. However,  enriching the system further, to K=7,  would 

Figure 4. Predator-prey dynamics for example (9). (a) isoclines. As K is 
increased from 4 to 6 to 7 the predator isoclines (the vertical lines x=h=2.45822 
and x= ix=5.49178) remain unchanged. However, the prey isocline increases as 
K increases. �9 denotes E~x, O, 0, denote E~ and E~, respectively, and A, [] 
denote E 7 and E 7, respectively. (b) isoclines, solutions 
starting close to E~and spiralling out to a periodic orbit. Solutions which initiate 
inside the region bounded by W~(E~) converge to the periodic orbit surrounding 
/~. Solutions initiating outside ~ converge to E 6. (c) - - -  isoclines, 

solution starting close to E~x. All solutions with positive initial 
conditions converge to E 6 except the solution E~ and solutions initiating on 
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most likely cause the extinction of the predator. (In fact, almost all initial 
conditions with K=7  result in extinction of the predator.) Thus enrichment 
could cause an otherwise stable ecosystem, one that had even reached 
steady state, to crash. 

3. Group Defence Model with Mutual Interference. We now incorporate 
mutual interference in our model and write it in the form 

x =xg(x,K)-ymp(x) 

y=--sy+ymq(x) 

x(0)->0, y(O)->O 

(10) 

where 0 < m < l .  Hence m denotes the mutual interference constant. All 
assumptions on the functions g, p and q are as in Section 2. The positive 
equilibria of this model are given by the intersection of the curves 
representing the predator and prey isoclines: 

yl-m=q(x)/s 

ym_ xg(x,K) (11) 
p(x) 

There is always at least one such equilibrium. Several examples are given in 
Figs 5a-c. In previous work (Freedman, 1979; Freedman and Rao, 1983), 
for a model without group defence, it was shown that mutual interference 
has a stabilizing influence on the positive equilibria of predator-prey 
systems. The same is true in the case of group defence. However,  we are 
more interested in the global behaviour of our model. We show that all 
solutions of (10) initiating in the positive cone are eventually uniformly 
bounded away from the coordinate axes and hence both populations persist 
uniformly (at least deterministically). This enables us to conclude, though 
'with reservation' that mutual interference is stabilizing. 

We point out that (10) is not a dynamical system due to the sublinearity 
with respect to y which leads to non-uniqueness of solutions along the 
x-axis. However, if we restrict y > 0  in (10), it is a dynamical system and 
uniqueness of solutions does hold. 
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Figure 5. Predator-prey dynamics for (10). - -  predator  isocline, - - - -  
- -  prey isocline. (a) Isoclines intersect at only one point,  E. (b) Isoclines 

intersect at three points, El ,  E2, E3. (c) Isoclines intersect at two points, E1 and 
E2. 

THEOREM 2. There exists e>0 such that for all solutions of (10) with positive 
initial conditions, 

lim inf x(t}>--e and lim inf y(x)>-~. 

Thus, (10) is uniformly persistent. 
Proof. (Understanding of the proof will be assisted by referring to Fig. 6. 

However, the proof does not depend on the particular configuration of the 
isoclines depicted in Fig. 6.) 

Let cl denote the predator isocline and c2 the prey isocline. Since there is 
at least one interior equilibrium, let EL=(xL,yL) denote the positive 
equilibrium with the smallest x coordinate. Let 

I rxg(x,K) ]~ 
M= max l - -  (12) p(x) 

and select 
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Figure 6. Predator-prey dynamics for (10). - -  predator isoclin% Cl; 
prey isocline, c2 . . . . . . . .  solution segment from /5 to P, F. 

Regions I-VI are defined in the proof of Theorem 2. All solutions with positive 
initial conditions enter Region I in finite time and then remain there. 

1 

y>max{/~/, [q(M)/s]~m--m~-}. (13) 

(Recall that M was defined so that q ' (x)>0  if x<M and q ' (x)<0  if x>M.) 
Let PK= (K,yK) denote the point of intersection of ca with the vertical line 
x=K. Note yK>O. 

Consider the solution of (10) with initial condition P=(xL/2, y). By the 
definition of y it follows that for the solution through this point  both x < 0  
and)~<0. This solution must first cross c2 vertically. Then x starts to increase 
while y continues to decrease until the solution crosses c~ horizontally. Call 
this point of intersection PA = (XA,YA). I f  YA~YK, select any point p =  (2,~) 
on Cl with 2<xA and Y<YK. If yA<yx let P=PA. Follow the solution through 
P backward in time. By uniqueness of solutions it must cross the line y=fl at 
some point P=(2 ,2)  with 2<-xL/2. Call the solution curve from P to P, r. 
Define 
Region I = {(x,y): )~-<y-<y, x<-k and x lies to the right of F}. 
Region II = ((x,y): O<-y<-~9, x<-K and x lies to the right of cl}. 
Region III = {(x,y): y<~,  x>O, y lies above Cl and x lies to the left of F}. 

Region IV 
Region V 
Region VI 

= {(x,y): 0<x-<K, y>y} .  
= {(x,y): x>K, y > 0  and y lies below q} .  
= {(x,y): x>_K and x lies above q} .  

It is easy to see that Region I is positively invariant and by the Poincare-  
Bendixson Theorem all solutions with positive initial conditions eventually 
enter Region I in finite time. The following directed graph shows all the 
possible routes solutions can take before they enter Region I 
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(14) 

In Region III, once a solution is to the left of c2, x>0  and so it is not possible 
to converge to (0,0), but rather the solution must eventually cross Ca into 
Region II. In Region II 9>0. Therefore the sublinearity with respect to y in 
(10) is not a problem in our analysis and the proof is complete. [] 

Although we have shown that solutions are uniformly asymptotically 
bounded away from the axes, we do not claim that before entering Region I 
some solutions do not become dangerously close to one of the axes. A 
stochastic effect could then drive a population to extinction. However,  this 
is also true before enrichment and/or when there is no mutual interference. 

The following numerical example shows another reason why our con- 
clusion that mutual interference is stabilizing is 'with reservation'. We 
consider the same example as in the previous section, after enrichment [i.e. 
model (9) with K=7].  This time we also incorporate mutual interference in 
the model. Consider 

x 9 ymx 
x=2x(1- f f )  x2+3.35x+13. 5 

~, = -Y-~ 11.3xy 'n 

x2+3.35x+13.5 �9 

(15) 

We plot the predator and prey isoclines in Figs 7a-c for m=0.95, 0.75 and 
0.5, respectively. In each case, there is only one interior equilibrium, E, and 
the density of the predator at E is dangerously small. Even though 
deterministically all populations survive, again a stochastic effect could 
conceivably result in the extinction of the predator since all solutions with 
positive initial conditions converge either to E or to a periodic orbit 
surrounding E, if one exists. 

4. Discussion. In this paper we consider a predator-prey model in which 
the prey exhibit group defence. Such a model may be applicable in the case 
of animals such as musk ox that are better able to defend themselves against 
predators when in groups or in the case of insects where individual 
identification of the prey by the predator is a prerequisite to successful 
predation. 
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Figure 7. Predator-prey dynamics for (15). predator and prey isoclines. 
i ,  A, [] designate ~ ,  E7x and E7~, respectively, for model (9). In (a) m=0.95, 
(b) m--0.75 and (c) m=0.5. In all cases the predator density at the unique 
interior equilibrium is very small and so the predator is in danger of extinction. 



PREDATOR-PREY SYSTEMS 507 

In the case where  there is no mutual  interference among hunting 
predators ,  our  model  predicts that group defence combined  with sufficient 
enrichment can cause the predator  populat ion to become  extinct. Thus we 
provide more  support  that Rosensweig 's  (1971) warning is valid, though for 
a significantly different reason. 

If the predator  exhibits mutual  interference in seeking out  prey,  
extinction due to group defence combined with enrichment  may be  averted.  
However ,  this conclusion is based  solely on deterministic evidence.  If 
stochastic effects were  to be introduced,  this conclusion would  probably  not  
be robust.  

Of  course,  our models  suppose a closed environment ,  whereas  in the field 
extinction could be avoided by the predator  seeking an alternative prey. 
McAllister  et al. (1972) also ment ion that prey refuges, aestivation, resting 
stages, inhomogeneous  distributions, fluctuating environmental  conditions, 
or even man's  harvesting might protect  the predator  populat ion and 
Rosenzweig and Schaffer (1978) show that coevolut ionary response to 
ecosystem enrichment  enhances ecosystem stability. 

We  are grateful to John Holmes  for supplying us with some of the 
references and to Michael Rosenzweig  for a stimulating discussion over  
lunch. 
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