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1. Introduction. Obstructive hydrocephalus is a disease caused by condi- 
tions that obstruct the outflow of cerebrospinal fluid (CSF) from the brain 
ventricles. It is characterized by significant changes in the water content 
and transport in the brain. These changes are always accompanied by brain 
deformation, often large. The purpose of this work is to develop a mathe- 
matical model which reproduces both the hydraulic and mechanical changes 
that occur in a hydrocephalic brain. 

The brain ventricles, marked "V" in Fig. 1, are a series of connected 
cavities in the brain, filled with CSF. CSF, which is mainly composed of 
water, is largely produced (about 80%) by the choroid plexus that lines the 
interior of the ventricular walls (Rekate and Olivero, 1990). From there, the 
CSF flows through the fourth ventricle into the (subarachnoid) space 
around the spinal cord and the brain, and is absorbed into the venous blood 
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Figure 1. Schematic of the brain. (a) Normal brain; (b) hydrocephalic brain. 

dilated ventricle 

Obstruction of aqueduct 
due to tumor 



HYDROMECHANICS OF HYDROCEPHALUS 297 

through the arachnoid villi. The available data indicate that the CSF is 
produced at a pressure-independent rate of 0.35 to 0.37 ml/min (Rekate 
and Olivero; 1990; Nyberg-Hansen et al., 1975). An obstruction of outflow 
of CSF (as caused by tumors or congenital defects) leads to increased 
pressure within the ventricles (Fig. lb). The CSF then flows through 
alternate pathways, these are widely believed to be through the ventricular 
walls and into the interstitial spaces of the surrounding brain. Here it flows 
outward under a pressure gradient and subsequently gets absorbed into the 
bloodstream through the semipermeable walls of the fine venules dis- 
tributed largely throughout the gray matter of the brain (Nyberg-Hansen et 
al., 1975; Lux et al., 1970). 

Clinical hydrocephalus has two distinctive features. One is the dilation of 
the ventricles following the increased ventricular pressure (Figs. lb and 2b). 
The second is the movement of fluid out of the ventricles into the brain 
parenchyma and the development of edema--the accumulation of this fluid 
in the interstitial spaces of the surrounding brain. The edema is seen as a 
hypodensity of x-ray computed tomographic (CT) scans or as altered 

(a) (b) 
Figure 2. MRI studies of brain, showing normal and dilated ventricles. (a) Axial 
image, level of internal cerebral veins. Tl-weighted spin-echo axial image 
showing normal ventricular configuration. (b) Axial image at the level of 
internal cerebral veins, showing severe dilation of ventricles due to hydro- 
cephalus. The low-density regions marked by arrows indicate increased water 
content in tissue. 
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signal-intensity regions in MRI scans of the brain. In severe cases, there is 
a marked accumulation of fluid all along the ventricular boundary accom- 
panying a large ventricular expansion, as seen in the magnetic resonance 
image (MRI) scan of Fig. 2b. This characteristically periventricular feature 
of the edema (Pasquini et al., 1977) is particularly interesting, but unex- 
plained. 

Biological tissues are biphasic. Their microstructure can be described as 
composed of cellular conglomerates embedded in a fibrous extracellular 
matrix (Oloyede and Broom, 1991); and interstices of this matrix contain 
water in bound and free states. Biological solids can thus be considered to 
be porous solids filled with fluid. Under the action of an external load, the 
deformation of such a solid is accompanied by fluid flow through the 
porous medium. That the mechanical deformation of the brain is always 
accompanied by edema suggests that incorporating this biphasic nature is 
critical to the proper modeling of hydrocephalus and many other problems 
in brain biomechanics. 

In this work, we model hydrocephalus by incorporating the coupled 
dynamical (viscous) interaction between the fluid flow and the mechanical 
deformation of the brain tissue. This approach reproduces the specific 
features of hydrocephalic edema and ventricular dilatation. The geometry 
of the head is idealized to be that of concentric cylinders, with the brain 
parenchyma contained in the annular regions. The brain parenchyma is 
treated as a porous medium whose pore space is saturated with viscous, 
incompressible fluid. The fluid is considered incompressible since it is 
largely composed of water. The voids of the solid matrix correspond to the 
extracellular space of the brain parenchyma (Rall et al., 1962). Such a 
description is comparable to Hakim's physical analogy of a sponge-like 
material for brain matter (Hakim and Hakim, 1984). The above conceptual- 
ization of the brain takes place in our model at the macroscopic level. 
While the cells in the solid matrix at the microscopic level are themselves 
incompressible, the deformation of the porous solid is brought about by 
porosity changes due to its dynamical interaction with the fluid flow. The 
general formalism of our approach is known as the theory of mixtures. 
Specific applications of this approach, called the theory of consolidation or 
poroelasticity (Biot, 1941), have been extensively used by soil and rock 
engineers, and have also been used by others to model soft biological tissue 
when the fluid flow is characterized by a small Reynolds number; for 
instance, in studies on the deformation of articular cartilage (Oloyede and 
Broom, 1991), on fluid flow across the arterial wall (Klanchar and Tarbell, 
1987; Jayaraman, 1983) and on the behavior of cardiac muscle (Yang and 
Taber, 1991). 

Biot's theory of consolidation has also been used recently to study brain 
biomechanics. This work furthers the effort of Drake et al. (1996), who have 
obtained closed-form analytic solutions for a cylindrical geometry using a 
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small-strain approximation and allowing the skull boundary to move. Both 
these assumptions pose problems in the study of hydrocephalus. The skull 
boundary in adults is rigid; therefore, the outer boundary of the brain 
should be considered fixed. The actual displacement of the brain close to 
the ventricle can be as large as 30 to 40 percent of the total distance 
between the ventricle and the skull, as evident from comparison of Fig. 2a 
and Fig. 2b. The extracellular space close to the ventricle is known to 
expand due to the edema in that region. Since the total vascular volume is 
only about 3 percent of the total cranial volume (which is a constant), and 
the fluid and cellular components of the brain are essentially incompress- 
ible at physiologic pressures, significant compaction of the brain tissue in 
regions away from the ventricle must then take place. This is borne out by 
CT and MRI scans. Thus, there is a large gradient in the tissue deforma- 
tion, and therefore a large strain. The change in the fluid content in the 
periventricular region is also large, as seen qualitatively from the edema- 
tous regions of Figs. 2b and 3, and quantitatively from Fig. 4, which gives 
the measured distribution of the increase in water content in the vicinity of 
the ventricle, based on the experimental results of Lux et al., (1970). The 
small-strain approximation is thus not reasonable for hydrocephalus. 

Figure 3. MRI studies of brain, showing edema. T2-weighted spin-echo image 
showing CSF as bright white, and areas of increased water content in the brain 
as lesser degrees of whiteness. Periventricular edema is indicated by the arrows. 
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Figure 4. Water  content in the hydrocephalic cat. Data from experiment due to 
L u x  et al. (1970). Change of water content in the brain of a hydrocephalic cat 
measured as the ratio of the change in inulin 14C concentration in the extracel- 
lular space to the concentration in the ventricular space. See section 3.3 for 
further details. 

The first application of Biot's approach to the brain was by Nagashima et 
al., (1987, 1990), who developed a finite-element model within the small- 
strain approximation to study hydrocephalus and vasogenic brain edema. In 
earlier work, we have obtained finite-element solutions for a similar Biot 
model to study the progression of the disease in time (Subramaniam et al., 
1995). Nagashima's work uses a Poisson ratio of 0.499 for the solid matrix 
of the porous medium, which makes it nearly incompressible and incapable 
of sustaining changes in fluid content for realistic values of the elastic 
modulus. This has also been criticized by Drake et al., who show that such a 
value leads to physically inconsistent results. The inability to make such 
approximations pertaining to the strain and compressibility of the porous 
medium distinguishes the study of hydrocephalus from problems such as 
atherosclerosis (Klanchar and Tarbell, 1987). The large-displacement issue 
applies to brain biomechanics in general, as similar changes occur in 
cerebral hemorrhage and in the edema that follows the breakdown of the 
blood-brain barrier in trauma and tumor growth. The study of hydro- 
cephalus therefore provides an excellent testing ground for the validity of 
accurate solid-fluid "mixture" theories to be used for the study of brain 
biomechanics as well as for other biological tissues. 

In this work, we demonstrate that the important features of the hydro- 
cephalic brain are distinctly that of a porous material undergoing deforma- 
tion due to fluid flow. We have formulated a numerical scheme for a 



HYDROMECHANICS OF HYDROCEPHALUS 301 

large-deformation analysis; our results show the error arising from a 
small-strain approximation. We have incorporated the structural and hy- 
draulic differences of gray and white matter, and the ependymal lining 
surrounding the ventricles, and have examined their effect on the e d e m a  
and ventricular dilation. A velocity boundary condition is used based upon 
known values of the CSF production rate, in contrast to the pressure 
boundary condition used by Drake et al., (1996) and Nagashima et al., 
(1987, 1990). 

In the next section, we detail the model and its underlying assumptions. 
The model is then solved within a small-strain theory. Next, the solutions 
are extended to incorporate a strain dependence in the permeability. In 
section 3, we describe a formulation to treat large deformations using these 
solutions. This is followed by a discussion of the parameters used and 
quantitative results. The distribution of water content obtained by our 
model is compared with experiment. The Appendix elaborates further upon 
the significance of the parameters used in poroelastic theories. 

2. The Model. 

2.1. General assumptions. In this model, schematized in Fig. la and lb, 
we presume that the CSF is formed entirely within the ventricles and that 
the disease state is produced by complete occlusion of the aqueduct 
(outflow tract) by, for example, a small tumor. Following occlusion, the CSF 
(in the model) seeps into the surrounding parenchyma and flows through it. 
Here, we idealize that all absorption of the CSF takes place at the edge of 
the subarachnoid space. This edge, in our model, is equivalent to the skull 
boundary. 

The brain consists largely of two types of tissue--gray matter, containing 
nerve cell bodies and their dendritic processes, and white matter, character- 
ized by a large proportion of myelinated axons (Hirano, 1993). Gray matter, 
comprising about 30% of the total brain volume, is mostly found at the 
periphery of the brain and has a much higher concentration of blood 
vessels. In the white matter, each axon is encased in many layers of myelin 
sheath provided by an oligodendroglial cell membrane. Thus the white 
matter consists, to a large extent, of water-permeable lipid bilayer struc- 
tures. In contrast, the cell bodies, dendrites and blood vessels in the gray 
matter contain numerous tight junctions, gap junctions and synaptic clefts, 
all structures with tightly regulated permeability. Furthermore, the cellular 
elements of gray matter are highly intermingled, in contrast to white 
matter, which has an orderly arrangement of nerve fibers running in 
roughly parallel fashion (Hirano, 1993). Consequently, as argued by Reulen 
et al. (1977), the extracellular space of gray matter offers more structural 
resistance to enlargement than white matter; we have modeled this by 
considering a low permeability for gray matter. 
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The edge of the ventricular boundary is lined by a thin layer of cells 
known as the ependyma, which is permeable to CSF (Nag, 1991). The cells 
in this layer are, however, packed closely together and the extracellular 
space is diminished relative to that of the brain parenchyma. We therefore 
assume that the permeability of this structure is less than that of the white 
matter of the brain. The ependyma is also observed to be structurally stiffer 
than the rest of the brain tissue. Although the thickness of the ependyma is 
about 0.5 mm, this is much smaller than its radius. Thus, neglecting 
inhomogeneities of the stress in the solid matrix of the ependyma and in 
the fluid velocity through it, we adopt a membrane model for the ependyma. 

The brain parenchyma and the ependyma are modeled as a two-phase 
medium composed of a porous elastic matrix saturated with fluid. The 
constitutive equations for the model refer to the macroscopic behavior, i.e., 
each local quantity (fluid velocity, matrix displacement, stresses, etc.) is 
understood as an average of the corresponding microscopic quantity. The 
averaging is assumed to be over a length-scale much larger than the 
characteristic size of the pores; it therefore disregards inhomogeneities at 
the microstructure level. On the other hand, the averages are over domains 
much smaller than the size of the brain, thus allowing a continuum 
approach. 

To permit solving the coupled differential analytically, we have repre- 
sented the brain geometry as a thick-walled cylinder with a central cavity 
which represents the ventricular space at whose edges the boundary condi- 
tions are specified. The brain parenchyma is contained in the annular 
region of the cylinder. Other model-specific neuroanatomical distinctions 
are also made as explained below. 

We consider three cases. First, we presume a homogeneous material for 
the entire brain parenchyma (that is, a single annular region). In the second 
case, we admit different mechanical and hydraulic properties for white and 
gray matter of the brain. We split the annular region into two adjoining 
rings. The outer annular region corresponds to gray matter, the inner 
annular region to white matter. The two regions mechanically interact at 
their interface. We will refer to the above cases as the "single ring" and 
"double ring" models, respectively. In the third case, we add, to the double 
ring model, a membrane representing the ependymal lining at the ventricu- 
lar boundary. This membrane is stiffer and has a lower permeability than 
white matter. 

With reference to Fig. la, the boundary conditions are as follows: 

1. At the outermost boundary, S, the displacement of the solid and the 
fluid pressure are zero. The former condition corresponds to a rigid 
adult skull, while the latter implies the reference pressure to be zero. 
The velocity of fluid at the skull boundary is constant and such that it 
corresponds to the fluid production rate within the ventricle (0.37 
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m l / m i n  for adults). We believe this is superior to using ventricular 
pressure as the boundary condition since the production rate is known 
with a greater level of accuracy and, furthermore, is considered to not 
vary with pressure. 

2. At the ventricular boundary, V, continuity of stress in the fluid is 
assumed. The displacement at this boundary is not constrained. 

2.2. Two-phase model of  brain tissue. The basic principles of  the two- 
phase mechanical model  of saturated porous media are the balances of 
mass and linear momentum.  These are established independently for each 
phase a ( a  = s  for solid and = f  for fluid) (see, Bowen, 1976; Kenyon, 
1976), i.e., 

O( n~p av ~ ) 

Ot 

O(n~p ~ ) 

Ot 
+ V.(n~p~v~) = m  '~, (1) 

+ V'(n~p~v~v~) - V . o ' ~ -  n~p~b~ = R~. (2) 

n ~, 19 ~, and v" denote volume fraction, intrinsic mass density, and velocity 
of phase o~. o- ~ and b '~ are stress tensor and density of external body 
forces, m '~ and R e are rate of mass and linear momen tum exchange 
between the two phases. Since we have a closed mass system, the equations 
must satisfy the relations 

m s + m f = 0, (3)  

R s + R f = 0. (4) 

We are interested in the steady-state behavior of the brain body; therefore, 
the inertial forces are neglected, no mass exchange between phases is 
allowed, and solid velocity should be equal to zero. Then, for a constant 
intrinsic density of the fluid, the system of four balance equations (1), (2) 
may be reduced to three steady-state equations, which for convenience are 
rearranged using conditions (3) and (4), to the form 

V.q  = O, (5) 

V . (o -~+  o -f) = 0 ,  (6) 

V.o-f  + R f =  0, (7) 

where q( = nfv  f) is the rate of volumetric flow or discharge velocity of fluid. 
The brain material is subjected t o  drained conditions, where the flow of 

fluid out of the loaded porous material is possible. Since the bulk modulus 
of the brain matter  is much smaller than the compressibility of the solid 
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tissue itself, we may adopt Terzaghi's principle of effective stress (Kumpel, 
1991). The effective stress, o-', is defined as the difference between the 
total stress, o-s + tr I, and the hydrostatic component of intrinsic pore fluid 
stress, - p .  Terzaghi's principle uniquely relates the effective stress to the 
strain of the solid matrix (Detournay, 1993). That is, if we disregard the 
contribution of the viscous interaction in the fluid to the macroscopic stress 
tensor, as assumed for flow through most porous materials (Atkin and 
Craine, 1976), then for small deformations of an isotropic material, the 
stress state can be expressed by the equations 

o "s = - n p l ,  (8) 

o-' = o -s + o - I + p l =  2 /ze+  AtreI ,  (9) 

where n( = n f) is porosity of the material. The pore pressure, p, is taken to 
be positive when compressive, in contrast to the opposite sign convention 
for stresses. The small-strain tensor e is related to the displacement of the 
solid matrix u, e = l[Vu + (Vu)r], and /z and A are the Lam~ constants of 
the brain matter under drained conditions. The interaction force, R/, for 
the steady flow of fluid through porous materials has two components: the 
term representing viscous interaction of fluid with solid matrix, and the 
buoyancy force due to the variable volume fraction of phases (Bowen, 
1976), i.e., 

R f - -  - - - q  + p V n .  (10) 
k 

/ff is the dynamic viscosity of the fluid, and k is the intrinsic permeability 
of the solid. It may be noted that one can obtain Darcy's Law in this theory 
from equations (7) and (10). 

The change in the water content per unit volume of the porous sample is 
equal to the dilatation (tr e), if the density of the solid is assumed to be 
constant. Since the deformation of the solid matrix of the soft brain matter 
induces a change in its microstructure, the permeability of the material is, 
in general, a function of deformation. Mow et  al., (1980) have demonstrated 
the validity of the following two-parameter model in their study of small 
strains of articular cartilage: 

1 1 
~ =  ~o (1 - M t r e ) ,  (11) 

where k 0 and M are constants. This was later used by Klanchar and Tarbell 
(1987) while studying water transport through arterial walls. The above 
expression is a small-strain approximation of a more general exponential 
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relationship for permeability. For the case when the parameter M is 
assumed to be small, this is equivalent to the assumption of a constant 
permeability. Although the principal structural protein in cartilage is colla- 
gen, a triple a-helix, while in the brain the principal long structures are 
neurofilaments and neurotubules, non-destructive deformation of either 
tissue must be limited to bending and stretching of long proteins without 
breaking covalent or hydrogen bonds. We therefore postulate that the 
relationship given above should apply as well to brain tissue in the re- 
versible deformation domain. 

2.3. M e m b r a n e  m o d e l  f o r  the ependyma.  We model the ependyma as a 
two-phase cylindrical membrane (two-dimensional body). The principle of 
mass conservation requires the continuity of discharge velocity, q, through 
the membrane, i.e. q+= q- ,  where + and - refer to the internal and 
external boundaries of the membrane. The balance of radial components of 
linear momentum of the solid and fluid components for any small element 
of the membrane gives us (see Appendix for details), 

tr ~ - (or + -  tr-  + R f e ) r  ~ = 0, (12) 

- ( p + - p - ) n ,  + R e l=  O. (13) 

Here, o -~ is the circumferential component of the membrane stress, o -+ 
and o-- are normal components of the stress vectors on solid matrix, 
defined on the external and internal surfaces of the cylindrical membrane, 
and r v is the radius of the cylinder. R fe (=  R el) denotes the interaction 
force between the fluid and the membrane matrix, n e is the membrane 
porosity, and p+, p -  refer to the fluid pressure on the membrane surfaces. 

Assuming that the membrane stress is linearly dependent on the stretch- 
ing of the membrane, one obtains a linear relationship between surface 
stress, tr e, and radial displacement of the membrane, u~, 

U e 
O "e - -  ( 1 4 )  

OL e r v , 

where o~ e is the elastic modulus of the membrane. The interaction force 
between fluid flowing through the membrane and the membrane matrix, 
R se, is assumed to be proportional t o  the velocity of fluid flowing through 
the membrane, 

Urne 
- R f e  = ReI  = - ~ q e ,  (15) 

ke 
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where the permeability of the membrane, ke, is represented in the form 
assumed for the brain parenchyma, i.e., 

1 1( eUe) 
k7 = ke 0 1 - M  77 , (16) 

and keo , M e are constants. 
The components of stress on the internal and external surfaces of the 

cylindrical membrane are determined by the fluid pressure in the ventricles, 
p- ,  and the stress tensor in the brain matrix, o -s, respectively. Hence, 
assuming that the porosity of the membrane is equal to the porosity of the 
adjoining brain ( n  e = n), we have that 

o--= - ( 1  - n ) p - ,  

er += er~' - (1 - n ) p  +, 

(17) 

(18) 

where tr" is the radial component of the effectiveness stress in the 
adjoining brain tissue. Eliminating the stresses, pressures and interaction 
forces, the above equations lead to the condition 

Ole tzf ( e ue ) 
(rv)s +qe-~e I - M  77 =0.  (19) 

The above equation determines the equilibrium condition of the membrane 
and will be used in case 3 as a boundary condition at the inner boundary 
and the annular region. 

2.4. Analytical solutions. Assuming that all dependent variables of the 
two-phase model of brain matter, i.e. fluid velocity, fluid pressure and solid 
displacement, depend only on the radial coordinate r (axial symmetry), and 
using constitutive functions defined by relations (8)-(11), the governing 
equations, (5)-(7), reduce to the following system of ordinary differential 
equations in cylindrical coordinates: 

dq + q O, (20) 
dr r 

d2u 1 du u t dp 
( 2 / z + h )  -d-~-r2 + ] = O, (21) 

r dr r 2 dr 

--~r + 1 -  M -~r + r q = O. (22) 
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Integration of equation (20) gives 

C 1 
q = - - ,  (23) 

r 

where C 1 is an integration constant. Substitution of equations (23) and (22) 
into equation (21) leads to the following non-homogeneous differential 
equation with variable coefficients: 

dZu du  
r a ~  + Br--;-  - Cu = - Kr, (24) 

dr z ar  

where the new parameters B,  C and K are defined as follows. 

tz f MC1 I~ f m c 1  l~ f C1 
B = 1 C = 1 + K = ( 2 5 )  

(2/x + A)k 0 ' (2/z + A)k 0 ' (2~ + A)k 0 " 

The solution of equation (24) can be found as the sum of the general 
solution of the homogeneous equation (of the Cauchy-Euler type), u h, and 
of a particular solution of the non-homogeneous equation, u n (see, e.g., 
Rabenstain, 1972). This solution is 

K 
U = U h + U n + C2(r )  v' + C3(r) v2 B-----~r,  (26) 

where C 2 and C 3 a r e  integration constants, and v 1 and/)2 are roots of the 
algebraic equation v ~ + (B - 1)v - C = 0. 

Using solutions (23) and (26) in equation (22) and then integrating the 
resulting equation, we finally obtain a formula for the radial distribution of 
fluid pressure: 

[( 2K ) v1+1 ]'LfC1 1 + ~ In r + M C e ~ ( r )  v ' - I  
P =  k--'-~ B - C  v 1 - 1  

/)2+ 1 ] 
+ M C 3 - - ( r )  02-1 + C 4 , 

v 2 - 1 
(27) 

where C 4 is the fourth integration constant of the boundary value problem. 

2.5. Boundary  and  match ing  conditions. Solutions (23), (26) and (27) 
contain four unknown integration constants C 1 - C  4. Thus, to find the final 
form of the solutions for the single homogeneous ring of the brain matter, 
four boundary conditions are required. Subsequently, boundary conditions 
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valid for all of the considered geometries will be specified. The detailed 
forms of the integration constants for the three geometries are determined 
on the basis of these conditions and are given in the Appendix. 

We have the following conditions at the outer (skull) boundary of the 
brain for all the three models: (1) displacement of the solid is zero, (2) the 
fluid pressure is equal to zero, and (3) the discharge velocity of the fluid is a 
given constant Q, i.e., 

u = 0 ,  p = 0 ,  q = Q  for r = r  s. (28) 

The axial symmetry of the problems permits us to consider a uniform 
pressure and velocity at this boundary. Further note that the symmetry also 
allows us to prescribe the discharge velocity at the outer boundary, instead 
of specifying it at the inner ventricular boundary. 

At the inner (and interfacial, for cases II and III) boundary, we have for 
the three models: 

(I) Single ring model. The total stress at the inner (ventricle) surface of 
the ring, r = r v, is determined by the pressure in the ventricles. In 
our analysis, this is an unknown. However, by virtue of the effective 
stress principle, the effective stress at this boundary is prescribed 
equal to zero, 

o" = 0 for r = r v. (29) 

(II) Double ring model The two adjoining concentric regions are in 
general characterized by different values for the elastic constants 
and permeabilities. Then, the solutions (23)-(27) are valid within 
the inner and outer rings, and two sets of integration constants 
(eight parameters) need to  be determined. 

The boundary conditions (28) and (29) are still valid. Matching 
conditions are then specified at the interface between the two rings 
at r = r i, and result from continuity requirements for the displace- 
ment of the solid matrix, the mass flux of fluid, pore pressure and 
the effective stress, i.e., 

Uw=U g, q W = q g ,  p W = p g ,  ( rW= trg  f o r  r = r  i. (30) 

(III) Double ring lined with permeable membrane. The system of two, 
rings, as considered above, is assumed to be lined with an elastic 
permeable membrane, as described in section 2.3. Since the mem- 
brane is assumed to be a two-dimensional continuum, equation 
(19), which is derived from the equilibrium condition of the mem- 
brane, may be used as the boundary condition for the inner surface 
of the inner annular region. This condition replaces condition (29) 
in the set of boundary conditions of case II. 
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3. Results and Discussion. 

3.1. Material parameters. The numerical implementation of our model  
requires the specification of two parameters describing elastic properties 
and permeability for the brain material in each of the annular regions as 
well as in the ependymal membrane (the numerical data are given in Table 
1). The elastic properties of the skeleton under  drained conditions are 
specified by the Young's modulus, E, and Poisson's ratio, v. The Lam6 
constants /z and A, used in section 2 to define the elastic properties of the 
porous brain, are related to parameters E and v: g = E/[2(1 + v)] and 
h=Ev / [ (1  + v ) ( 1 - 2 v ) ] .  We use the value determined by Metz et al. 
(1970) for E. Since the phenomenon  being studied is very slow, we use the 
value determined for the lowest strain in this reference. Drake et al. (1996) 
have reassessed Metz's experimental data for use in poroelastic calcula- 
tions. We use their rough estimate of 0.35 for v. Their suggested value of E 
is in agreement with that used in our calculation. The conditions under 
which the above parameters are valid are examined further in the Ap- 
pendix. 

As the solid matrix deforms, the change in porosity induces a correspond- 
ing change in the permeability of the medium. This is likely to be particu- 
larly significant for the ependyma, for it is known that the development of 
extensive edema in hydrocephalus does not take place until a moderate  
amount  of "flattening and tearing" of this membrane has occurred (Ny- 
berg-Hansen et al., 1975). We have incorporated a dilatation-dependence in 
the functional form for the permeability (section 2.2) and presented results 
for the small-strain case. However, we have been unable to include this 
feature in the numerical  solutions obtained for large deformations; this is 
discussed further in the Results section. Thus the numerical results we 
present for large deformations use a constant value for the permeability 

Table 1. Material parameters 

Elastic modulus Poisson's ratio Permeability 
Model [N/m 2] [--] [m4/N s] 

Case I. 
White matter 1.0- 10 4 0.35 

Case II. 
White matter 1 . 0 - 1 0  4 0.35 
+ gray matter 1.0.104 0.35 

Case III. 
White matter 1 . 0 - 1 0  4 0.35 
+ gray matter 1.0.10 4 0.35 
+ ependyma a 5.0.105 

1.6.10-11 

1.6.10-11 
1.6.10-13 

1.6- 10-11 
1.6.10-13 
1.0.10-12 

aTo get the elastic modulus, Ore, and permeability of the membrane, ke, defined in the 
model (section 2.3), the values given in the table must be multiplied and divided, 
respectively, by the thickness of the membrane, equal to 0.05 cm. 
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within each homogeneous annular region and the ependymal membrane. 
The value used for the permeability of white matter is calculated from the 
work by Reulen et al. (1977) on the spread of Na-fluorescein dye through 
the brain in cold-induced edema. As discussed earlier, the permeability of 
gray brain matter is expected to be significantly lower than that for white 
matter. We have therefore chosen a value smaller by two orders of 
magnitude than that for the inner ring. 

The radii for the different annular regions are chosen to roughly corre- 
spond to their locations in adult human brains. In the absence (to the best 
of our knowledge) of experimental data for the hydraulic and mechanical 
parameters for the ependymal membrane, we have chosen values for the 
elastic modulus and permeability that, in comparison with white matter, 
make the ependyma stiffer by a factor of 50 and less permeable by a factor 
of 10. 

3.2. Small-deformation analysis. If the discharge velocity specified at the 
outermost boundary, Q, is small enough that the relative deformation of 
the brain body does not exceed a few percent, the small-strain solutions 
given by" equations (23), (26) and (27) may be used to quantify the hydrome- 
chanical behavior of the brain. Figure 5 shows the dilatation of the brain 
matrix, defined as d u / d r  + u / r ,  vs radius for the three considered geome- 
tries. The value of Q for the small-deformation analysis is chosen to be 100 
times smaller than the velocity 39.3.10 -6 cm/s, determined from the 
experimentally assessed production rate of the CSF (Rekate and Olivero, 
1990). Following the data for articular cartilage (Klanchar and Tarbell, 
1987), the parameters M w, M g and M e, which describe the dependence of 
permeability of the materials in the three regions on their deformation, are 
assumed to be equal to 4.3. 

The radial flow of CSF through permeable brain matter induces an 
interaction force between the fluid and the solid brain matrix (see section 
2.2), experienced by the solid as a mechanical loading. This results in an 
outward displacement of elements of the brain material. Because of the 
zero displacement boundary condition at the outermost (skull) surface, 
the material in the annular region experiences a bulk compression. On the 
other hand, however, for the cylindrical geometry considered here, the 
radial displacement of solid elements is necessarily accompanied by their 
circumferential stretching. The local state of strain and the distribution of 
dilatation of the matrix, which in turn represents the change in water 
content of the brain, are thus determined by the increment of the radial 
displacement and the displacement itself. The calculated distribution of 
dilatation of the porous brain matrix, given in Fig. 5, shows that for all the 
models, the volume of the material in the inner part of the brain ring 
increases, with the greatest increase occurring at the periphery of the 
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Figure 5. Calculated dilatation for the small-strain case. This represents the 
change in fluid content. Case I: white matter only, case II: white and gray 
matter; case III: case II + ependymal membrane. 

ventricle. This explains the increased edema measured experimentally, and 
seen in MRI scans, near the ventricles. The material in the outer part of 
the brain ring decreases in volume, and the magnitude of the volume 
change depends mainly on the permeability of the material. 

3.3. Large-deformation analysis. The small-strain model is valid only for 
small fluid velocities since the driving force of deformation of the brain 
matrix is the fluid flow. Thus, the small-strain model is applicable only to a 
partial occlusion of CSF outflow and, therefore, to ventricular dilatations 
far smaller than those in Fig. 2b. 

Following methods used in computational mechanics, we develop solu- 
tions pertaining to large-deformation cases by superposition of the small- 
strain solutions. Such an approach is an altemative to large-strain theory, 
which uses the full non-linear form of the strain tensor (geometrically 
non-linear model). Under the scheme used in this work, the loading, that is, 
the total fluid velocity at the outer boundary of the brain ring, Q (= 39.3- 
10 -6 cm/s) ,  is divided into a number of equal increments (steps) constitut- 
ing elementary loadings for each step. For large N, successive iterations of 
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the small-strain model will converge to the large-deformation result. The 
value of N deemed sufficient is determined from the convergence criteria 
of the numerical results for increasing N. 

To determine the spatial distribution of the dependent variables, the 
annular ring is divided into a number of cylindrical elements having the 
same thickness in the initial configuration. The positions of the inner 
boundary and the grid formed by the cylindrical elements constitute the 
finite set of spatial coordinates for which solutions for displacement of the 
solid matrix, pore pressure and fluid velocity (equations (26), (27), and (23), 
respectively), corresponding to an incremental increase in the velocity are 
found. After each incremental loading, the new positions of the chosen set 
of radial coordinates are determined by the displacement of the matrix, and 
the boundary and matching conditions are updated. Finally, the changes in 
the surface area of the small cylindrical elements with respect to their 
initial surface area are used to determine the ultimate distribution of 
dilatation of the solid matrix. 

The small-strain solution, described in section 3.2, incorporates a func- 
tional dependence of the permeability on the dilatation. However, direct 
application of that function in the above numerical approach for large 
brain deformations would link the permeability to the dilatation of the solid 
reached in a single incremental step, and not to the actual dilatation of the 
matrix. Therefore, our numerical simulations of the large-deformation 
model will only use constant permeabilities for brain matter in the two 
annular regions and in the ependyma. 

The numerical procedure described above allows calculation of the 
distributions of displacement, dilatation and pore pressure for the three 
cylindrical models in the large-deformation range. Figure 6 illustrates the 
rate of convergence of our solutions and shows that 100 iterations (velocity 
increments) are enough to obtain convergence in the large-deformation 
regime. The rate of convergence is similar for all the models. Since the 
small-strain solution is approximately that obtained for a single iteration of 
the large-displacement analysis, the results in this figure show that a 
small-strain analysis can significantly overestimate the displacement (in this 
case, by a factor of 5). 

The final displacement of the brain matrix as a function of radius in the 
undeformed state is shown in Fig. 7. The ventricular displacement is to be 
compared with Fig. 2b. The single ring model underestimates the ventricu- 
lar displacement, whereas the case of complete outflow obstruction should 
result in a severe form of the disease. The double ring model results in 
large deformations; since the fluid velocity at the outer boundary is fixed, 
the low permeability of the gray matter material results in a greater force at 
the inner boundary. The displacement of the ventricular boundary de- 
creases to less than half of this value when the ependymal membrane is 
added, as a result of the lower permeability and stiffer structure at the 
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ventricular edge. Although the role of the ependyma in brain biomechanics 
is poorly understood, it is clear that if the parameters we have chosen for 
the ependyma are qualitatively correct, its inclusion in the model results in 
a large difference. Our results demonstrate that its effect upon ventricular 
dilation may be substantial. The ependyma may therefore play an impor- 
tant role in the biomechanics of the brain when significant exchange of CSF 
takes place with the ventricular space. 

Figure 8 shows the distribution of dilatation of the solid matrix as a 
function of the radius of the undeformed geometry. In all cases, the porous 
material in the elements near the ventricle increases in volume. Assuming 
insignificant changes in the density of the solid material, this volumetric 
expansion of the matrix is equivalent to the increase of the fluid content in 
the brain material. This demonstrates the formation of extracellular edema, 
the accumulation of fluid in the extracellular spaces of the tissue. The 
simulation reproduces the characteristic periventricular nature of hydro- 
cephalic edema seen in Fig. 3, and discussed in the Introduction. The 
comparison of increments of the displacement of white and gray matter in 
the double ring models indicates that gray matter undergoes much larger 
deformations than white matter, resulting in a compaction of the outer ring 
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material. The results show that the formation of edema is almost entirely 
confined to white matter, in agreement with experimental and clinical 
observation (Reulen et al., 1977; Weller and Mitchell, 1980). The above 
observation are, of course, a consequence of the significant difference in 
the hydraulic properties of the two materials. The negative values for the 
dilatation indicate the loss of extracellular space. Such a compaction of gray 
matter is often observed in CT scans of hydrocephalic patients in areas of 
the brain close to the subarachnoid boundary. 

Figure 8 is in good qualitative agreement with the experimental data of 
Fig. 4, values obtained by Lux et al. (1970) for the distribution of the 
change in the water content of the brain tissue near the brain ventricles of 
hydrocephalic cats. The experimental curve has been corrected here to 
show only the excess extracellular water content relative to the normal cat 
for the purpose o f  comparison with our result. 1 A strict quantitative 
comparison with Fig. 4 is not appropriate since our geometrical dimensions 
correspond to that of humans. 

1We have plotted Fig. 4 using the data from Table 2 of their work, which provides the inulin 14C 
concentration in brain tissue at short distances away (0 to 5 mm) from the ventricle. This is considered a 
measure of the extraceUular space, and therefore that of the water content in the tissue. To obtain the 
change in water content from their data, we corrected the inulin 14C concentration in the extracellular 
space of the, hydrocephalic cat by that measured in the normal animal. The result is weighted by the 
concentration in the ventricular space. 
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The calculated pore pressure distribution shown in Fig. 9 indicates in 
case I a fluid pressure of 2746 N / m  2 (20.6 Torr) at the ventricular 
boundary relative to the skull boundary. This is in the range of observed 
intraventricular pressures in human hydrocephalus. The model demon- 
strates that this fluid pressure in the ventricles results from the boundary 
conditions of section 2.5. There is a large difference between this value and 
that predicted by cases II and III (which obtain almost the same ventricular 
pressure), a consequence of the low permeability of gray matter. This is, 
however, not physiologic; the discrepancy arises because of the idealization 
in our model that all CSF absorption takes place at the skull (subarachnoid) 
boundary. The absorption is instead believed to be through the capillary 
bed distributed mainly throughout the gray matter region (Lux et al., 1970). 

We next examine the sensitivity of the calculation of the two structural 
parameters, the Poisson's ratio v and the elastic modulus E. Figures 10 and 
11 compare the displacement distribution for case III for different values of 
v and gray matter E. The displacement shows high sensitivity to values of v 
greater than 0.45. The displacement at the ventricle increases significantly 
(by a factor of 2.3) as the elastic modulus of gray matter is increased to four 
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times that of white matter. As discussed earlier, we expect gray matter to be 
structurally stiffer than white matter. Thus the sensitivity analysis under- 
scores the importance of better experimental data on the differences in the 
elastic moduli, and on the proper range of the Poisson's ratio. 

4. Conclusions. A mathematical model was developed for the steady state 
of the disease, hydrocephalus, based upon a theory of a deformable 
fluid-filled porous medium for the brain material. The simulations, using a 
simple geometry and rough estimates of material properties, show that the 
salient biomechanical features of hydrocephalus result from the response 
of the brain to well-understood mechanical forces. The model incorporates 
the interaction between the cerebrospinal fluid flow and the solid matrix of 
the porous medium. The agreement of our results with experimental and 
clinical observations demonstrates that this interaction accurately repre- 
sents the mechanical loading on the matrix which gives rise to the large 
observed deformations. Further, the model predicts the formation of hydro- 
cephalic edema (accumulation of interstitial fluid) and its characteristic 
distribution around the brain ventricles, in agreement with experimental 
data on the edema of hydrocephalic cats. The numerical formulation 
addresses large deformations, and we demonstrate that a small-strain 
analysis markedly overestimates the displacement. 
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We have presented solutions for three cases of the above model. The first 
case considered a homogeneous annular ring of brain matter; this was 
enhanced first to include annular regions of gray and white matter and then 
the ependymal layer around the ventricle. The comparative studies reveal 
that the structural and hydraulic differences of these regions strongly 
influence the quantitative results. Experimental data on these differences 
and for the Poisson's ratio of brain matter are lacking. Our results indicate 
that experiments focused on determining these values are necessary for 
realistic simulations of brain biomechanics. Another experimental issue 
which needs to be addressed is that currently available data have not been 
determined under the near-quasi-static conditions pertinent for problems 
such as hydrocephalus, where the steady-state configuration is reached over 
a long period (more than a week). 

Our analysis ignores material non-linearities of the solid matrix. Never- 
theless, our results show that the model captures the dominant quantitative 
features of the disease. The calculations in this work offer a benchmark for 
numerical codes based on a more complete non-linear theory. 

Subsequent work will address the absorption of the CSF through the 
venular bed of the brain as well as the transient problem of the progression 
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of the disease with time. We are also engaged in finite-element calculations 
using actual geometries obtained from the computed tomographic scans of 
patients. 

We acknowledge with thanks the many useful discussions we have had with 
Professor G. Tenti (University of Waterloo). 

Appendix 

Equilibrium Equations for Permeable Membrane. A cylindrical permeable membrane of 
circular cross-section is considered. On the outer surface, the membrane interacts mechani- 
cally with the adjoining porous matter (brain). The interior of the cylinder is filled with fluid. 
A constant amount of fluid flows through the membrane under the pressure difference on 
both sides of the membrane. The thickness of the membrane is assumed to be small enough 
in comparison with its radius, r v, so that the stress inhomogeneity in the direction 

perpendicular to the surface may be neglected. A small element of the membrane defined by 
angle d~b (see Fig. A1) will be considered to find the equilibrium equation for the membrane 
matrix and the equation which governs the fluid flow. Since the macroscopic approach is 
adopted, the size of the membrane element r ~ d~b has to be much larger than the 
characteristic size of the membrane pores. Considering the solid matrix and fluid individu- 
ally, the condition for balance of forces for the element d~b in the direction defined by the 
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unit normal vector in the center of the element, er, gives us 

- -2o  "e sin -~- + ( t r + - o r - + R f e ) r V d 6 = O  , (A1) 

[-(p+-p-)n e + Ref]r v dch = O, (A2) 

where cre is the circumferential component of the membrane stress, tr + and t r -  are radial 
components of stress vectors acting on the outer and inner surface of the membrane matrix, 
p + and p -  are pore pressures given on the outer and inner surface of the membrane, and 
R fe ( = - R  el) is the interaction force between fluid and membrane matrix. Since the 
equations (A1) and (A2) have to be valid for any small element of the membrane, and for 
small angles d~b, sin(d~b/2) ~ dch/2,  the equilibrium equation for the membrane matrix and 
fluid flow equation read as follows: 

0 "e -- ( 0  "+-  t r - + R f e ) r  v = O, 

- ( p + - p - ) n  e + R e f  = O. 

(A3) 

(A4) 

Integrat ion Constants .  The cons tan ts  C 2 - C  4 are given for Cases I, II and III. 

Case I. 

K 
C 1 = Qr s, C 2 = - - ( r S )  l - v 1  --  Vo(rS) v : v '  , C 3 = Vo, ( A 5 )  

B - C  

C4= 1 + B - C In r~ - M  (rS)  1-vl -- Vo(r~) v~-~  U1 -b 1 v 1 - 1 (rS)Vl-1 

v 2 + 1  v 1 
- MVo--Si -_  1 ( r , )  ~- (A6) 
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vo= 
[Vl(2/z + A) + A](rV) v ' - l (rs) l  -vl _ 2(/x + A) K 

[vi(2/z + A) + a](rV)V~-l(rS) vz-v~ - [v2(2/* + A) + A](rV) v2-1 B - C" 
(A7) 

Case II. 

where 

C~' = Cf = Qr*, 

1 
c ~  = - z - ( T 2 ,  - v f f  ~ ) ,  

122 

1 
= + v=r,), 

13  

c7  = v1, c l  = v'2, 

T23T6  - -  TTT22 [ T 1 6 T 2 4  - Tls T19T5 
c:= -r  r=t r=  - - - 7 7 ,  +T2~+Va T3 "-T2o 

1/2[ T4(T8 -- T1) 
[ r3 

(A8) 

(A9) 

(A10) 

T24T6 Ts(T8 - T1) (Al l )  
rg + r2 - ' -~22 + T 3 ' 

1 
C4 g = - -~- ( T s -  V2T4)T ~ - V2T2, (A12) 

13 

[[ ] ] T22 T4(T8 - T1) T9 - T2 4 T== 7'18 + T21 , 
V l = T23TI6 - T17T22 V2 T4 T3 

(A13) 

T2 2 T3 ~12 a'J[ T2 2 T2 2 T3 T2 2 
T19T4 _ ' ~ / Z 2 3 T l o  _ ~ [ Z 2 3 T 1 6  Z4T13 
----~3 - T20J [ - -~22 - TllJ - t---~22 - Z17) ( ~  -Z14) 

M g Q r ~ f ( v ~  + 1) MgQr~lJ(V~ + 1) (rQV~_l, T2 = (rS)V{-1, 
T~ = k~,(vf- 1) k~(v~-  1) 

(A14) 

(A15) 

r s 

= (rS) Uf, T4 = (r*) ~'~, T 5 --- (A16) y, 
2 M  g '  

M W Q r ~ f ( v ~  + 1) (ri)V~_l, /'7 -_ 
7"6-- i~'(v~ - 1) 

MWQr~f(v~ + 1) (ri)~,~_l, 

MaQr~Y(v~ + 1) MgQr~f(v~ + 1) 
T8 = k ~ ( v f -  1) (r i )~ ' f- l '  T9 = k ~ ( u ~  - 1) (ri)V~-l' 

(A17) 

(A18) 

r i 

. . . . .  , (A19) Zlo = ( r , )  vl ' Zll = (ri) r2 ' Z12 2 M  ~ 
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�9 g . v g  r i 

T13 -- (r~)V2, 7:14 = (r ~) 2, I"15 = 2Mg , (A20) 

T16=[(2tz~ + Aw)v~ + AW](ri) vr-1, T17=[(21xw + AW)v~ + AW](ri) v~-l, (A21) 

/x TM + A w . ~_ 
/.18 = M ~ , /.19 = [(2k~g + hg)v f + Ag](r~),~ 1, (.A22) 

= A g ] ( r t ) V 2  1, T21 M g , Z20 [(2/2, g q- A g ) u  g d- " g -  id, g d- A g (A23) 

T22 = [(2/z ~ + A*)v~ + A~](r~ or - l ,  

/x w + A w 
723 = [(2/z w + AW)V~ ' + A~](r") ~ T24 M w , (A24) 

and v m (i = 1, 2, and m = w, g)  are roots of the equation 

] . ~ f M m Q r  s ] . ~ f g m Q r  s 

(Urn) 2 -- (2/x m + am)kgV m -- 1 - (2/x m + X~)kg = 0. (A25) 

Case I lL The integration constants C~-C~ (m = w and g) and parameters T1-T21 are 
defined exactly as for case II, while parameters Tz2, T23 and T24 read 

oz e IzfMeQr s 
1"22 = -7 + lceor" 

[(2/z w + AW)v~ ' + Aw]](rV) vr-1, (A26) 

Of e ] ~ f g e Q r  s 

723 = - - 7 +  keorV 
[(2/z ~ + AW)v~ + A~]](r")  ~ - 1 ,  (A27) 

tffQ S 1 [~ __IJMeQ rs ] 
T24 = keor v 2M----- ~ "7 + keor v 2(/z w + A w) . (A28) 

On Definition of Poisson's Ratio in Two-Phase Model of Brain Matter. The Poisson's ratio, 
v is defined as the ratio between the lateral contraction (the induced lateral strain) of solid 
specimen and the elongation in the direction of the applied strain. This definition is unique 
for homogeneous materials, for which the Poisson's ratio depends only on the properties of 
the materials, and  in the isotropic case, v assumes values between - 1 and 0.5 (Fung, 1994). 
The upper limit refers to incompressible media. 

For inhomogeneous, multi-phasic materials like brain tissue, the Poisson's ratio depends 
not only on the properties of materials but also on the definition of strain and, in certain 
cases, on conditions the material is subjected to during the test. The dependence of v on the 
definition of strain results from the fact that the strain measures for inhomogeneous 
materials may refer either to the mixture as a whole or to particular phases of the material 
(Kaczmarek, 1992). Another important factor which determines the Poisson's ratio of 
saturated porous materials is whether the drained or undrained test is performed (this refers 
respectively to whether flow of fluid through the outer surface of the sample is allowed or 
not). As a result, two independent Poisson's ratios, v and vu, corresponding to drained and 
undrained conditions, may be defined for isotropic porous materials: v = ( 3 K -  2G)/[2(3K 



322 M. KACZMAREK et al. 

+ G)], and v~ = (3K~ - 2G)/[2(3K~ + G)], where K and K u are the drained and undrained 
bulk moduli, and G is the shear modulus which is usually assumed to be identical for 
drained and undrained conditions. The upper limit for vu, equal to 0.5, corresponds to 
phases incompressible on the microscopic level. For isotropic materials, the lateral response 
of the porous material to a given longitudinal strain is always larger for undrained than for 
drained conditions. Thus we have (Kumpel, 1991) 

v < v~ < 0.5. (A29) 

It is assumed in this paper that the relative motion of the fluid with respect to the solid 
skeleton is significant and that the materials of phases are incompressible. As a result, the 
parameters which enter the effective stress law, given by equation (9), are related to the 
drained Poisson's ratio. To our knowledge, the differences between values of v and v u for 
brain matter have not been studied. The data for soft geological materials, however, show 
that v becomes significantly smaller than v u (Detournay, 1993). 

It should be noted that the above definitions of the Poisson's ratio refer to steady or 
quasi-steady state of materials. This presumes that the time between measurements of initial 
and final state of deformation is much larger than the time needed for escape of fluid from 
the lOaded drained porous material, and then the characteristic relaxation time for the 
matrix deformation itself. Such conditions are probably not satisfied during experiments 
such as that of Metz et al. (1970), the results of which have been used to obtain the values 
for the parameters in Table 1. 
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