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We propose a model which describes the dynamics of vast classes of terrestrial plant 
communities growing in arid or semi-arid regions throughout the world. On the basis of this 
model, we show that the vegetation stripes (tiger bush) formed by these communities result 
from an interplay between short-range cooperative interactions controlling plant reproduc- 
tion and long-range self-inhibitory interactions originating from plant competition for 
environmental resources. Isotropic as well as anisotropic environmental conditions are 
discussed. We find that vegetation stripes tend to orient themselves in the direction parallel 
or perpendicular with respect to a direction of anisotropy depending on whether this 
anisotropy influences the interactions favouring or inhibiting plant reproduction; further- 
more, we show that ground curvature is not a necessary condition for the appearance of 
arcuate vegetation patterns. In agreement with in situ observations, we find that the width of 
vegetated bands increases when environmental conditions get more arid and that patterns 
formed of stripes oriented parallel to the direction of a slope are static, while patterns which 
are perpendicular to this direction exhibit an upslope motion. �9 1997 Society for Mathemat- 
ical Biology 

1. Introduction. For a long time, it has been known in the field of plant 
ecology that many plant communities exhibit non-uniform, non-random 
vegetation distributions, usually called vegetation patterns (Greig-Smith, 
1979). Tiger bush (TB) belongs to this class of botanical organisations. It 
was described for the first time 46 years ago by Macfadyen (1950a, b) in 
British Somaliland, but since then, it has been observed in many regions 
throughout the world (White, 1971). By its spatial regularity, by the vastness 
of the territories which it covers, by the variety of its constitutive plants, as 
well as by the variety of soils on which it is found, TB is a remarkable and 
puzzling phenomenon. Its properties summarise as follows: 

1. Often undetectable on the ground, it is clearly visible on air pho- 
tographs such as Fig. 1. It corresponds to amazingly regular patterns 
in which more or less densely populated vegetation stripes (also often 
called vegetation bands) alternate with stripes of sparsely covered or 
even bare ground. These patterns may extend over several square 
kilometers. Their aspect, which usually reminds of the coat markings 
of the tiger, is at the origin of their name (Clos-Arceduc, 1956). 
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Figure 1. Stripes of Acacia bussei bush in Go-Gub area of Somaliland (repro- 
duced from Boaler and Hodge, 1962). The bands of dense vegetation (dark) are 
approximately 100 m wide. The width of the separating lanes (bright) is about 
50 m. 

. 

. 

Its existence has been reported in many regions of the Australian, 
African and American continents. In fact, it is a landscape which may 
appear in most of the arid and semi-arid regions covering approxi- 
mately one-third of the emerged surfaces of the earth (White, 1971; 
Schlesinger et al., 1990). The climate of these regions is characterised 
by few but intense rains of short duration (Boaler and Hodge, 1964). 
The annual rainfall ranges from 50 to 750 mm (White, 1969, 1970). 
The composition of its vegetation may vary considerably from one 
geographical region to another. The stripes may entirely consist of 
grass (Worrall, 1959), of grass and scrub (Van Der Meulen and 
Morris, 1979), or predominantly of trees and bushes (Macfadyen, 
1950b, Worrall, 1960b). In fact, the phenomenon is not specific to a 
particular kind of vegetation (Bemd, 1978). It is also not specific to a 
particular kind of soil. It has been described on soils ranging from 
sandy (Worrall, 1960a; Clayton, 1966; Wickens and Collier, 1971) and 
silty (White, 1969) to clayey (Worrall, 1959; Hemming, 1965). 
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4. Often, the ground surface slopes gently from 1 m in 500 m up to 1 m 
in 50 m (Mabbutt and Fanning, 1987). This favours water flowing 
without drainage channel formation (Greenwood, 1957; Boaler and 
Hodge, 1964; Montafia, 1992). According to its orientation with re- 
spect to (w.r.t.) this slope, TB divides in two classes (Macfadyen, 
1950b; Greenwood, 1957; Boaler and Hodge, 1962; White, 1969): 
(a) the one which is oriented orthogonally to the ground slope, i.e., 
parallel to the contour lines; (b) the one which runs down parallel to 
the ground slope. Furthermore, an upslope migration of class (a) 
stripes has been observed for grass patterns (Worrall, 1959). Similar 
upslope motion seems also to occur with patterns constituted of trees 
and bushes, but on a much slower time scale (Greenwood, 1957; 
Cornet et aL, 1988; Tongway and Ludwig, 1990; Montafia, 1992). 
When the ground surface is practically flat, the vegetation bands are 
oriented w.r.t, neighbouring declivities or, in their absence, w.r.t, the 
system borders (Clos-Arceduc, 1964; White, 1970). 

5. Comparing patterns in regions of increasing aridity shows that the 
stripes wavelength increases while simultaneously the average vegeta- 
tion density decreases (Gavaud, 1966; White, 1970). An inverse corre- 
lation between the stripes wavelength and the ground slope has also 
been put into evidence (Valentin et al., 1996; Eddy et al., 1996). 

Some environmental factors which come immediately to mind in looking 
for causes capable of explaining the formation of TB can easily be dis- 
carded: namely, that TB originates from non-uniformities in the spatial 
distribution of precipitation, from man activities (Worrall, 1960a; Wickens 
and Collier, 1971), or from soil heterogeneities (Grove, 1957; Beard, 1967). 
Given that the periodicities involved are typically in the 10-to-100-m range, 
it is reasonable to consider that, on that scale, the distribution of rainfall is 
uniform, which excludes the first possible cause mentioned above. On the 
other hand, nearly all sites where vegetation patterns have been described 
are (or were until recent times) totally uninhabited by man, which excludes 
the second possible cause. As far as soil heterogeneities are concerned, the 
underlying bedrock is, in general, homogeneous at the scale of the pattern 
wavelength; the soil differences existing between the vegetation bands and 
the sparser lanes mainly consist in organic content differences due to the 
vegetation itself (White, 1971). Moreover, it is unrealistic to imagine that 
an intrinsic feature of the soil is moving upslope and accounts for the 
upward shifting which has been recorded in the case of some patterns. The 
third putative cause is therefore excluded as well. 

In the following, given that the existence of TB is not due to this sort of 
external factors, that it is not restricted to a particular kind of soil or a 
particular kind of vegetation, given also the overall common spatio- 
temporal characteristics exhibited by TB in many different geographical 
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regions, we will suppose that the mechanism underlying the formation of 
these structures is unique, of an intrinsically dynamical nature, and origi- 
nates from inter-plant interactions operating at the population level. Though 
introduced by some of the earliest works devoted to TB (see, e.g., Clos- 
Arceduc, 1964; White, 1971; Greig-Smith, 1979), this idea remains a hy- 
pothesis and a subject of debate in the literature, the main reason being 
that its confirmation (or refutation) meets with considerable practical 
difficulties on the experimental side. The latter are inherent to the com- 
plexity of plant Communities and to the very long time scales, by human 
standards, which govern the evolution of these systems. As a consequence, 
devising in situ experiments capable of determining which effects, if any, a 
multitude of systemic and environmental factors have on the vegetation 
distribution is a highly problematic task; it is an even more problematic one 
to quantify these effects (think, e.g., of quantifying the effects of such 
factors as the variability of soils, the presence or absence of slopes on the 
territory, the direction and intensity of dominant winds, the light availabil- 
ity, the presence of termites or of other agents having an influence on soil 
irrigation and humidity, the occurrence of fires, etc.. .).  

Theory, on the other hand, has up to now played a limited role in the 
debate concerning the genesis of TB. Unformalised theories, describing the 
phenomenon in qualitative terms, have been developed and progressively 
formalised (Greig-Smith, 1979; Ambouta, 1984; Wilson and Agnew, 1992; 
Mauchamp et al., 1994; Thi6ry et al., 1995). So far, however, there exists no 
theoretical study which investigates the idea that TB has a strictly intrinsic 
origin, which supports this idea by suggesting a mechanism capable of 
generating vegetation bands without assuming some environmental spatial 
anisotropy (especially, a ground slope) and, above all, which provides 
explicit expressions for the wavelength of these bands in terms of a small 
number of kinetic parameters. The population dynamics model presented 
in this paper fills this theoretical gap. It allows us to predict that uniform 
distributions of vegetation may undergo a symmetry breaking instability as 
a result of the competition between short-range and long-range inter-plant 
interactions. The parameters pertinent for describing this instability corre- 
spond to properties of the vegetation rather than of the environment: they 
refer principally to the ranges of inter-plant interactions, to the plant 
reproduction rate and average lifetime; they are independent from such 
environmental constraints as boundary conditions or territorial geometries. 
It is our hope that the identification of these parameters, and the predic- 
tions made below concerning the changes in properties which accompany 
their variations, will feedback on the experimental side and stimulate the 
development of in situ investigations concerning the population dynamics 
aspects of vegetation patterns. 

Modeling the dynamics of vegetal populations is, however, a problem in 
itself, even if one forgets about the questions raised by vegetation patterns. 
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The unusual point to be dealt with from a theoretical point of view is that, 
since individual plants lack mobility, the spatial propagation of plant 
communities over a territory depends in the first place upon their mecha- 
nism of reproduction (e.g., via seeds) 1. This propagation-by-reproduction 
relationship constitutes a transport process without equivalent outside of 
the vegetal kingdom. Its description needs an innovative modeling effort. 
Recent attempts in that direction are due to Mauchamp et al. (1994) and 
Thi6ry et al. (1995). Using a discrete cellular automata kind of model, these 
authors have been able to simulate numerically the spatial propagation of 
vegetation. The formation of banded vegetation patterns has also been 
investigated within this framework of approach (Thi6ry et al., 1995). In the 
present paper, we endeavour to tackle the problem along another, more 
analytical, line of approach inspired by the mean-field theory of phase 
transitions in physical systems (see the extension of Turing ideas via an 
interaction-redistribution formulation discussed by Levin and Segel (1985) 
for the application of a similar treatment in another context). Concerning 
this line of approach, let us remark in passing that the use of physical and 
mathematical methods to investigate the formation of vegetation patterns is 
encouraged by Macfadyen himself, the discoverer of TB. In one of his 
papers, he notes indeed (Macfadyen, 1950b): They (TB) are manifestly within 
the province of  botany and ecology; the essential background concerns geomor- 
phology and meteorology; the causes as I believe, must be investigated by 
physics and mathematics. We can only wish that somehow the theory 
reported below contributes to demonstrate the insightfulness of this 
statement. 

In the next section, we formulate an evolution equation for the vegeta- 
tion density of plant communities. The salient feature of this equation is 
that it takes into account the non-local character of the cooperative and 
self-inhibitory interactions which govern the dynamics of vegetal popula- 
tions. This incorporation is achieved by adopting a mean-field idealisation 
which has the following advantages: though integro-differential in its for- 
mulation, it easily leads to a partial differential equation modeling the 
propagation-by-reproduction transport process specific to vegetal communi- 
ties; in this form, the model can be studied by standard analytical methods 
and conveniently lends itself to numerical simulations, so that the dynamics 
it predicts can be explored in detail; though much of the complexity of 
natural environments is not taken into account (at least explicitly), this 
treatment allows us to explain the properties of TB in terms of a small 
(minimal) number of dimensionless parameters. In section 3, we show that 
the formation of vegetation patterns, and of TB in particular, is associated 

1 In the following, we encompass within the term reproduction the ensemble of processes correspond- 
ing to the production of seeds by the plants, the dissemination of seeds over the territory in the 
neighbourhood of their "mother plant," the germination of these seeds and the development of the 
plantules resulting from this germination into new mature plants. 
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with a symmetry breaking instability, the occurrence of which is not caused 
by the numerous sources of spatial heterogeneity (anisotropy) which natu- 
ral environments unavoidably contain. This instability allows for the spon- 
taneous formation of non-uniform vegetation density distributions even 
under strictly homogeneous (isotropic) conditions. Less idealised environ- 
mental conditions, such as those encountered by vegetation growing on a 
slope, are modeled in section 4. The results demonstrate the role that 
anisotropies play as a pattern selection mechanism. More particularly, we 
discuss the conditions under which the anisotropy associated with a surface 
ground slope selects an orientation of TB parallel or perpendicular to the 
gradient. 

2. The Model. 

2.1. Assumptions. Let c(s, t) be the density of the vegetation at time t 
and point s. We define this density as the plant biomass per unit area. The 
global variable c(s,t) encompasses all vegetal species present. This is 
justified in all cases where vegetation patterns are formed by a one-species 
pure strand and where genotypic differences and age classes can be 
neglected. In the cases where many different species are present, we 
assume that those which dominate impose their spatial distribution on the 
others. We do not take into account explicitly the inter-species dynamics. 
As a place to start, we thus consider that the vegetation community reacts 
as a whole (Greig-Smith, 1979). The kinetic equation modeling the evolu- 
tion of c(s, t) has to express the balance between the processes contributing 
to the growth of the vegetation, and the processes contributing to its death 
or destruction. We assume that this equation is of the form 

t) xF2-F3 ,  (1) 

where the growth term, F 1 • F a, expresses the rate at which c(s, t) in- 
creases. It is the product of two non-negative functions modeling two 
ensembles of processes which are independent insofar as they are influ- 
enced by different factors, relate to different plant structures, and operate 
over different spatial ranges. These processes are: in the case of F 1, the 
natural reproduction of plants via seed production, dissemination, germina- 
tion and development into new mature plants; in the case of F2, the 
interactions between plants, and between plants and the environment, 
which prevent the vegetation density from increasing beyond some finite 
upper bound or close packed density K. The second term on the right-hand 
side of equation (1) stands for vegetation spontaneous (natural) death 
and /o r  destruction by external factors such as, e.g., grazing, fire, termites, 
or other biological and physical agents. 
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Let us now define the functions F 1, F 2, and F 3. The first one, which 
refers to plant reproduction, we parameterise by the replication constant A, 
the value of which depends on the number of seeds that an isolated plant 
produces on the average each year and on the probability that these seeds 
give rise to new plants when they germinate on a virgin territory. Thus, A 
fixes the rate at which the density c(s, t) increases when the interactions 
between plants are negligible, i.e., when their density c(s, t) is vanishingly 
small. We assume that under those conditions, c(s, t) increases exponen- 
tially with time. At high densities, when the interactions between plants can 
no longer be neglected, reproduction may involve cooperative effects: the 
number of seeds produced by the plants, as well as the probability that 
these seeds germinate and further develop, depend on the environmental 
conditions which may be favourably influenced by the presence of vegeta- 
tion. A higher vegetation density tends to be beneficial by facilitating water 
percolation into the soil due to roots penetration, by decreasing 
water evaporation and soil crusting due to shading, and /o r  by increasing 
water collection through the accumulation of vegetal litter (Vesey- 
Fitzgerald, 1957). To deal with such cooperative effects, we suppose that, as 
the vegetation density increases, its temporal evolution becomes a non- 
linear function of c(s,t). For simplicity and without important loss of 
generality, we take this non-linearity to be quadratic. The magnitude of this 
contribution is modulated by a cooperativity parameter fl, having the 
dimensions of the inverse of a density and a value which is necessarily 
non-negative. 

On the other hand, the variations of density taking place at a given point 
s have at least in part a non-local origin insofar as they result not only from 
the reproduction of vegetation at point s, but also from the dissemination 
of seeds by the vegetation situated at neighbouring points, say s + s'. In 
other words, the reproduction rate at s integrates contributions due to the 
reproduction of vegetation in the neighbourhood of s. The magnitude of 
these contributions depends, in general, upon the relative position of the 
neighbouring points s' considered. We express this property by introducing 
a weighting function w I = Wl(S' , L 1) which depends on s' and defines the 
dissemination length, Lx, over which the neighbourhood effectively con- 
tributes to the vegetation density increase at s. Hence, wa(s', L 1) can be  
interpreted as giving the spatial distribution of the "daughter plants" 
Surrounding a "mother plant" or, equivalently, as the probability of finding 
a "daughter plant" at point s when its "mother plant" is at s + s'. On the 
basis of these assumptions, we write F 1 as 

F 1 = fds' AWx(S', L 1 ) c ( s  + s' ,  t ) (1  + 12c(s  + s' ,  t ) ) ,  (2) 

where integration extends over the entire territory. 
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The function F 2 represents interactions between plants which are dis- 
tinct from the cooperativity mentioned above. They inhibit vegetation 
reproduction and have a twofold origin. First, since each plant obviously 
occupies a finite surface area, c(s, t) can never exceed some upper physical 
limit, K, which we call the close packed density. Second, plants also interact 
in a non-local way, by lowering the reproduction and /o r  growth potentiali- 
ties of plants in their neighbourhood. Therefore, in general, the carrying 
capacity of a territory is not constant throughout space, and simply equal to 
the inverse of the close packed density, i.e., K-  1. At any given point s, it has 
an effective value which integrates the inhibitory effects that the neighbour- 
ing vegetation produces in competing for the same resources; for example, 
it reduces the water supply at the point considered. As in the case of F 1, we 
associate to this non-local effect a weighting function w 2 = w2(s',L2), 
which depends on s' and introduces another characteristic length distinct 
from LI: the inhibition length, L2, which defines the effective range over 
which inhibitory interactions operate. The inhibition at point s resulting 
from the vegetation present at point s + s' can then be written as 

w2(s', L 2) 
ot c(s + s', t). 

K 

Integrating last expression over the territory, the function F2, which ac- 
counts for the existence of an upper bound of the vegetation density at 
point s, and thus for the vanishing of the vegetation growth rate as this 
density is approached, is then given by 

F2 = 1 - f d s '  w2(s ' ,  L 2) c(s + s', t) K (3) 

The third function in equation (1), F3, describes the rate at which 
vegetation dies or is destroyed. We assume that it is proportional to the 
mortality constant ~7, the reciprocal of which measures the vegetation 
average lifetime. As before, in the case of the reproduction and inhibition 
functions F 1 and F 2, we suppose that the death rate F 3 may be influenced 
by neighbouring vegetation and we model this effect by introducing a 
weighting function, w 3 = w3(s', L3) , which depends on s' and introduces 
another characteristic length, L3, which we call the toxicity length. Accord- 
ingly, the effective death rate at the point s, 

F3 = fds '  1~W3($' , L3)c(s + s', t), (4) 

is obtained by integrating the product of the vegetation density by the 
weighting function w 3 over the territory considered. 
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0 s s + s' Space 
Figure 2. Sketch of the weighting functions w i which model the non-local 
inter-plant interactions influencing the dynamics at s as a consequence of the 
presence of vegetation at a neighbouring point s + s'. The range of toxic 
interactions influencing plant mortality, L 3 (weighting function w 3, short dashes), 
is small compared to the reproduction range L 1 (weighting function wl, full 
line) and inhibition range L 2 (weighting function w2, long dashes). All wi's are 
decreasing functions of the distance between interacting points; the environ- 
ment is supposed to be isotropic. 

2.2. Properties of the weighting functions. Replacing expressions (2), (3), 
(4) in equation (1) yields that the vegetation density c(s,t) obeys the 
following kinetic equation: 

~,c(s,t)= [f  ds' Awl(S',L1)c(s + s',t)(l + X-~c(s + s',t)) ] 

�9 [1 - fds'w2(s',L2) c(s +KS"t) 

- f ds' ~W3(S' , L 3 ) c ( s  + s ' ,  t ) .  (5) 

For this model to be complete, the weighting functions w i (i = 1, 2, 3) must 
still be specified. By choosing these functions, the properties of particular 
vegetation and/or  territories can be fitted. The mathematical form of the 
wi's is thus system-dependent and cannot be fixed once and for all. There 
are, however, several important properties, illustrated in Fig. 2, which these 
functions should possess in general: 

(i) They should be non-negative everywhere: 

W i ~--- Wi (S ' ,  Z i)  >_ 0, V s ' .  (6) 

(ii) For systems exhibiting no direction of anisotropy (e.g., a slope 
imposing to rainwater a well-defined running down direction), they' 
should be invariant w.r.t, the operation of rotation; their variation 
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(iii) 

should then only depend on the distance s ' - I s ' [  separating the 
points between which the interactions are evaluated. Furthermore, 
the w/s should be maximum at s ' - - 0 ,  monotonously decreasing 
with s' ,  and tending to zero as s'  tends to infinity. Their range L i 
should simply represent the distance beyond which non-local effects 
become negligible. 
When the interaction ranges Z i tend to zero, for isotropic systems, 
the dynamics becomes strictly local. The weighting functions wi(s', L i) 
should then reduce to 6 distributions, 

lim Wi(S', L i)  --  8(s'), (7) 
Li---~ 0 

implying that the kinetic equation (5) transforms into a standard 
Verhulst-Fisher type of equation (Fife, 1979), 

Otc(s, t) = [ Ac(s, t)(1 + ~c ( s ,  t))][1 
c ( s ,  t )  1 

/ - nc(s, t),  
K I 

describing the evolution of a population deprived of any mean of 
spatial propagation. 2 

(iv) The wi(s', L i ) ' s  m u s t  be normalised: 

f d s '  wi(s', Z i) = 1. ( 8 )  

This condition simply expresses that all interactions generated on 
the territory necessarily end up somewhere on the territory. 

For isotropic environments, we take as weighting functions wi's the 
gaussian distribution functions: 

1 
W i ( S ' ,  L i) = (2~.)d/ZLd e -(Is'12/2L~), (9) 

where d corresponds to the space-dimension (2 in the present context). 
This choice satisfies conditions (i)-(iv) above and seems justified qualita- 
tively, for many vegetal populations. At the same time, it avoids mathemati- 
cal complexities which are not essential for the general purpose, which is 
ours, of discussing those aspects of vegetation patterns which do not 
specifically depend on the nature of the plants and soils involved. Our aim 
in the next section is to determine the conditions under which these 
patterns can form as a result of non-local interactions such as those 

2 For vanishing death rate, i.e., when r /= 0, the density c(s,t) simply grows monotonously in time 
until it reaches the close packed density K. 
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described by expressions (2), (3), (4). We will see that their appearance 
depends fundamentally upon the existence of well-defined relationships 
between the interaction ranges L i. 

3. Symmetry Breaking and Pattern Formation under Spatially lsotropic 
Environmental Conditions. Many environmental constraints have a spa- 
tial structure. As a result, the processes influenced by these constraints, 
instead of occurring in a spatially isotropic manner, become spatially 
oriented. Dominant winds, for instance, influence seed dissemination and 
may enhance plant reproduction in the downwind direction3; similarly, on a 
sloping territory rainwater streaming creates an anisotropy in the distribu- 
tion of seed germination spots and thus favours the propagation of vegeta- 
tion in a particular direction. 4 We shall see in section 4 that such spatial 
anisotropies of external origin play a determinant role in pattern selection 
mechanisms, e.g., they select how the stripes of TB are oriented on the 
territory. 

These external anisotropies, however, are unlikely to be the cause of the 
phenomenon itself. It is hard to see how they could give rise to such 
systematic and well-defined regularities as those displayed by TB. It is much 
more likely that the latter arise by a self-regulatory dynamical mechanism 
capable of generating periodic vegetation distributions even in isotropic 
environments. 

To start with, let us try to guess the dynamical factors which explain the 
organisation of plant communities in arid regions. Reasoning as Clos- 
Arceduc (1964), we consider the fate of a plant which needs a minimal 
quantity of water to survive. For a fixed annual rainfall, this quantity 
corresponds to a minimal ground area which the plant root system pumps 
dry. As the climate gets more arid, the annual rainfall decreases. To 
compensate, the plant needs to have an increased drainage area at its 
disposal. But if this area becomes greater than that protected by its foliage 
against the sun and dry wind, which are the main factors responsible for 
evaporation, the plant either dies, if it is isolated, or perhaps survives if it is 
surrounded by other plants and benefits from an increased protection 
against evaporation procured by the foliage of the latter. In this interpreta- 
tion, vegetation clustering is viewed as a natural response to more arid 
environmental conditions. There are, however, obvious limitations to this 
(cooperative) protective clustering effect. For example, if the resources 
(especially water) of the plants growing inside a cluster are mostly con- 
sumed by neighbouring plants, the central plants will again die without 

3 Wind may also have an inhibitory or even mortal effect on the vegetation due to defoliation (Ives, 
1946; Moloney, 1986). 

4 Slopes may, of course, also have an inhibitory effect on the vegetation due to the redistribution of 
water they imply. 
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replacement, this time not as a result of evaporation, but due to some 
inhibitory effect of the vegetal population on itself. This suggests that the 
wavelength of TB is a compromise between two spatial scales: one charac- 
terising the cooperative reproduction of the population; the other charac- 
terising the self-inhibition effects through which the population hampers its 
own growth. 

The mechanism proposed below translates these intuitive ideas in mathe- 
matical terms. It attributes the formation of vegetation patterns to a 
symmetry breaking instability which homogeneous vegetation distributions 
may undergo even if the environmental conditions are strictly isotropic. 
Typically, this instability triggers the appearance of spatial inhomogeneities 
the characteristic length of which is determined by the ranges L i character- 
ising the interactions existing inside the vegetation community. The latter, 
rather than some anisotropic external constraint or boundary condition, 
appear to be the governing parameters of the population spatial organi- 
zation. 

It is thus best to discuss at first the mechanism of this instability for the 
idealised conditions of a territory subjected to strictly isotropic environmen- 
tal constraints. This is the purpose of this section. The more complex 
situation of an anisotropic environment will be dealt with in section 4. 

3.1. Uniform steady state distributions. Using the expressions (9) for the 
weighting functions, normalising time, space and density by setting 

{T,r, p(r ,z)} - (At, 
s c(s , t )  ) 

L 2 K 
(10) 

and defining the dimensionless combinations of parameters 

~7 L1 L3 ) 
{A,/~, L, L'} - KI~, A ' L 2 ' L 2 ' (11) 

the kinetic equation (5) can be rewritten in dimensionless form as (d = 2) 

1 fdr' O,p(r , r )  = 

1 fdr, e_(i,,12/z)o(r+r,,z) . 1 -  

fdr' e-O~'l~/2L'~)p(r + r ' ,  ~'). 
2 ~ L  '2 

e-(Ir'l~/2L2)p(r + r ' ,  r)(1 + Ap(r  + r ' ,  z))] 

(12) 
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It admits two uniform steady state branches of solutions: 

A - 1 _+ ~/(A - 1) 2 -1- 4A(1 - / - 0  
P o = 0  and P•  2A (13) 

The first one, P0, represents a territory deprived of any vegetation; obvi- 
ously it exists for all values of the parameters. The second one, p • has to 
be real and non-negative to represent a vegetation density; in fact, the 
values of p • belong to the interval [0,1], since the close packing density K 
is normalised to 1 by the change of variables (10). Two cases must then be 
distinguished according to whether the parameter A measuring the co- 
operative effects influencing reproduction is less or greater than 1 (see 
Fig. 3). 

In the first case, 

A < I  and 0 < / z < l ,  (14) 

cooperativity is weak and there exists, for each value of /z in the interval 
[0, 1], a unique non-zero homogeneous steady state, given by p§ It is 
maximum and equal to 1 for/x = 0. As tz increases, the steady state branch 
p§ monotonously decreases till the switching point p~ = 1 is reached. At 
this point, the probability of reproduction of an isolated plant becomes less 

0 p~ i , 
0 1 g 

Figure 3. Uniform steady state solutions and their stability w.r.t, homogeneous 
perturbations (corresponding to k = 0, cf. subsection 3.2). The vegetation-free 
steady state, P0 = 0, is always a solution of the kinetic equation; it is unstable 
(dashed line) for 0 < / z  < 1 and stable otherwise. Depending upon whether A is 
less or greater than 1, the steady state branch of solutions p•  exhibits a 
hysteresis loop. Clearly, cooperative interactions allow vegetation to survive 
under harsher environmental conditions. For A _< 1 and /z > 1, or A > 1 and 

>/z*, the only stable state is P0 (full line). For A > 1 and 1 _< ~ _</z*, p_ 
exists and is unstable (dashed line); for A _< 1 and 0 < ~ _< 1 or A > 1 and 
0 _</z _</z*, p+ is stable (full line). The density p* = (A - 1 ) /2A is the bound- 
ary between p+ and p_. 
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than its probability of death; accordingly, the steady state branch p+ 
intersects the trivial branch P0, i.e., vanishes. In the following, we shall 
therefore call /z the switching parameter. 5 When /., > 1, no real non- 
negative solution exists: the survival of vegetation is impossible. 

In the second case, 

(1 + A) 2 
A > I  and 0 < / z <  ---/z* ( / z * > l ) ,  (15) 

4A 

cooperativity is strong. As a result, the steady state branch of solutions p + 
exhibits a hysteresis loop in the range 1 ~< ~ ~</z*. Thanks to the fact that 
plants mutually protect each other, non-zero uniform steady state densities 
p+ and p_ can be observed, for values o f / z  greater than 1. 

3.2. Symmetry breaking instability. We look for conditions under which 
the establishment of a uniform vegetation distribution is impossible be- 
cause the non-zero homogeneous steady state branch of solutions p+ is 
unstable w.r.t, a finite band of spatial modes. This unstable band must 
exclude both the very large wavelengths (small wave numbers), correspond- 
ing to quasi-uniform vegetation distributions, and the very short wave- 
lengths (large wave numbers), corresponding to inhomogeneities varying in 
space much more quickly than the interactions. This Turing-kind of symme- 
try breaking scenario is well known to entail the formation of a pattern the 
periodicity of which is determined by the intrinsic parameters governing the 
dynamics rather than by geometrical factors and /o r  boundary conditions 
(Turing, 1952; Cross and Hohenberg, 1993). 

Before examining the stability properties of the p • branch of solutions, 
it is useful to investigate the linear stability of the trivial steady state P0 and 
to show that to be consistent with the mean-field treatment adopted here, 
the condition L 1 > L 3 must be satisfied. Writing that an arbitrary deviation 
8p(r, z) from the reference state P0 is given in Fourier space by 

1 fdk ~t3(k, r ) e  ik'r, (16) 

where 8/3(k, r)  = e'~ 8/3(k, 0) is the amplitude associated to the wave vector 
k, replacing expression (16) in equation (12) and retaining only linear terms, 

5 In this context, /z could also be interpreted appropriately as a parameter measuring the aridity of 
the territory considered. 
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we easily obtain that the eigenvalue o k associated to the wave vectors of 
modulus k =--[kl is given by 

(.O k = e - ( L 2 k 2  /2 )  _ ] . lbe-(L '2k2 / 2 ) .  (17) 

In agreement with the notion that (isolated) plants cannot survive if the 
switching parameter/x (death-to-birth ratio) exceeds 1, relation (17) shows 
that P0 is stable (unstable) w.r.t, the homogeneous mode k = 0, when/x  > 1 
(0 < ~ < 1). 

On the other hand, since the integrals appearing in equation (12) average 
out inhomogeneities the wavelengths of which are much smaller than the 
interaction lengths L i, it is consistent with the coarse-graining treatment 
adopted here to require that, whatever the value of ~, all modes corre- 
sponding to wave numbers k larger than some upper cut-off value ku are 
stable: P0 should be stable for k tending to infinity, or alternatively w.r.t. 
inhomogeneities the wavelengths of which tend to zero. In Appendix A, we 
show that this condition amounts to asking that the inequality L > L' holds, 
i.e., that the cooperative dissemination length L 1 exceeds the toxicity 
length L3: 

L 1 > L 3. (18) 

Henceforth, we shall suppose that inequality (18) is amply satisfied. It is 
indeed plausible that compared to reproduction, which involves the process 
of seed dissemination, vegetation death is a short-ranged, essentially local 
process. For simplicity and without important loss of generality, we shall 
therefore set L 3 = 0 (L'  = 0) in the following. 

We now investigate the linear stability of the p_+ uniform steady state 
branch of solutions. The eigenvalue associated to the kth Fourier mode is 
in that case given by 

to k = (1 - p~)(1 + 2Aps)e-(LZk2/2) -- p~(1 + Aps)e  -(k2/2) 

- ( 1  - ps)(1 + a o ~ ) ,  (19) 

where the values of Ps = P • belong to the interval [0, 1]. The behaviour of 
this eigenvalue summarises as follows. The rapidly varying inhomogeneous 
modes are always stable: in the limit k going to infinity, the eigenvalue t% 
is always negative; one simply has - ( 1 -  ps)(1 + Aps). As already noted 
above, this is consistent with the coarse-grained treatment adopted to 
describe the interactions existing within the vegetal community. When the 
vegetation is close packed ( p~ = 1,/~ = 0), the uniform distribution is stable 
w.r.t, perturbations of any wave number k. If p~ exhibits no hysteresis loop 
(i.e., when A < 1), the vegetation density tends necessarily to 0 when the 
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switching parameter /x tends to 1: the environmental conditions getting 
more arid, the vegetation becomes extinct. In this limit, the eigenvalue w k 
tends to e x p ( - L 2 k 2 / 2 ) -  1, and clearly the uniform distribution Ps is 
stable: the plants are getting thinly dispersed over the territory so that their 
interactions become negligible and thus, in first approximation, each plant 
behaves as if it were isolated. If & exhibits a hysteresis loop (i.e., when 
A > 1), the homogeneous mode k = 0 is stable (unstable) for &--p+ 
( & = p_). Finally, we note that if there exists a wave number k = k c > 0 for 
which the conditions 

= = 0,  - ~  < 0, (20)  
0, --d-k- 1.=< k=*,c 

can be fulfilled for positive values of the parameters, the stability of the 
steady state p+ becomes marginal. This value of k c, which marks the 
appearance of a finite band of unstable modes and hence of a symmetry 
breaking instability, can be calculated from the first two of these conditions. 
One obtains 

~/ 2 [(1 - pc)(1 + 2 A & ) L  2] 
k c = ~ In &(1 + Ape) ' (21) 

where Pc is solution of 

- ( 1  + A&) + (1 - L2)(1 + 2Apc) 
(1 - pc)(1 + 2Apc)L 2 

p~(1 + A&) 

L2/(1 
= O, 

~ Z  2 ) 

(22) 

and belongs to the interval ]0,1[. 
Two interesting results can immediately be derived from equation (22) by 

looking for the conditions under which it admits physically acceptable 
solutions. First, one sees that the occurrence of the symmetry breaking 
instability requires that the self-inhibition length must  be greater than the 
dissemination length, 6 

L < 1, or equivalently that L 1 < L 2. (23) 

Second, one sees that the reproduction process must  be cooperative, i.e., that 
one must have 

A > 0. (24) 

6 This condition is the analogue of the short-range activation-long-range inhibition condition typical 
of Turing instabilities in reaction-diffusion systems. 
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Indeed, for A = 0 and thus Pc = 1 - /xr  relation (21) reads 

k c = In 1 - /~c  ' (25) 

while equation (22) reduces to 

] L2/(1 
/'/'c L2 

- 1  + ( 1 - L 2 )  l _ / x  c 

-L 2) 
= O. (26)  

Clearly, in order that equation (26) admits a solution, it is necessary that 
L < 1, and thus that /zcL2/(1 - /xc)  < 1, in order that relation (25) be real, 
which turns out to be incompatible with the existence of an acceptable 
solution for equation (26). 

The mechanism of appearance of a finite band of unstable modes, from 
which the homogeneous  mode k = 0 is excluded and which thus entails the 
occurrence of a symmetry breaking instability, is represented in Fig. 4. In 
Fig. 4a, one sees that unstable modes appear as soon as L < L c (A > 0, and 
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Figure 4. (a) Sketch of the eigenvalues to k as a function of the wave number  k 
for different values of L. When  L decreases, a finite range of unstable modes 
appears. When  L > Lc,  all modes are stable; L = L  c is the critical value for 
which a real eigenvalue changes sign for k = k c (dashed line); when L < Lc,  the 
modes between k l and k u are unstable. Vanishingly small wave numbers  and 
arbitrarily large wave numbers  are always stable. (b) Sketch of the behaviour of 
the eigenvalues to k as a function of the wave number  k for different values of 
when A < 1. When  /x is close to 0, the homogeneous stationary density Ps = P+ 
approaches 1; no symmetry breaking instability is then possible. When /z 
approaches 1, ps becomes close to 0 where no instability is possible either. So 
that when /x increases from 0 to 1, the succession stability-instability- 
stability is as follows: first, all modes are stable for /x < /x  c (curve 1); second, 
there appears a critical mode kc for/~ = / z  c (curve 2), so that w h e n / z  c < / z  </~'c 
(curve 3), there exists a finite interval of unstable modes; third, there appears a 

- ' (curve 4), so that when /~ > /z '  c (curve 5), all second critical mode k'  c for/~ - / x  c 
modes are stable again. 
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Figure 5. The intervals of unstable modes are shown in terms of the local steady 
state density Ps --- P+ for A = 0.5 (I) and A = 1 (II); L being fixed at 0.2. The 
unstable modes are enclosed by the curves. The domain of instability increases 
with A, showing that cooperativity of the reproduction process favours the 
occurrence of the patterning phenomenon. One notes that the interval of 
unstable modes shifts toward smaller k 's  for decreasing values of ps, predicting, 
in agreement with field observations, that the wavelength of the vegetation 
patterns increases under more add conditions. 

/z being kept fixed). For values of L decreasing further, the width of the 
unstable band gets broader both on the side of the large wave numbers and 
on the side of the small wave numbers: the band lower cut-off kt decreases, 
while simultaneously its upper cut-off ku increases. Ow the other hand, the 
wave number of the fastest growing mode, which determines the character- 
istic length of the pattern appearin~ for L inferior but close to Lr 
progressively drifts towards larger values (smaller wavelengths). Figure 4(b) 
shows how the unstable modes behave as /x increases (L < 1 and 0 < A < 1 
being kept fixed). Given that for Ps -- P+-- 1, or equivalently for ~ = 0, the 
system is stable, the marginal stability point (20) is reached by increasing 
the switching parameter /z  up to some finite value ~ =/x c > 0. Beyond this 
point, a further increase of the switching parameter induces the appearance 
of a finite band of unstable modes. There exists, however, an upper critical 
value /z =/z '  c > 0 beyond which the homogeneous steady state branch p+ 
becomes stable again. Indeed, the domain of instability excludes both the 
points7/x = 0 and g = 1 when A < 1 (cf. above). When A > 1, the values of 
/.~ for which p+ is unstable may extend up to /x =/x* (see Fig. 3). 

The conditions for a symmetry breaking instability are further illustrated 
in Fig. 5. The instability domain, corresponding to the areas enclosed by the 
curves, has been represented in the (k, ps)-space for two values of the 
cooperativity A and for a fixed value of L. One notes that as the environ- 
ment gets more arid, i.e., when p~ decreases, the modes k t and k u shift 

7 In general, some finite neighbourhood of these points. 
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towards the small wave numbers (large wavelengths). This suggests, in 
agreement with in situ observations, that the width of the vegetation bands 
should increase under those conditions. This behaviour finally leads to the 
disappearance of the instability when ps tends to 0. 

We shall see in section 3.4 that the instability leads in isotropic environ- 
ments to the formation of patterns having a roll-type or hexagonal sym- 
metry. 

3.3. Approximation of the model by a partial differential equation. Equa- 
tion (12) is an integro-differential equation which has the advantage of 
being compact. It is, however, not of easy use for undertaking an analytical 
investigation of its non-linear behaviours when the uniform steady states Ps 
becomes unstable; it is also not a convenient starting point for implement- 
ing a numerical exploration of these non-linear solutions. This requires the 
discretisation of the integrals appearing in equation (12), which is pro- 
hibitive in terms of computer time. Therefore, we prefer to deal with this 
problem by using a partial-differential-equation approximation of equation 
(12). We obtain the latter by expanding the vegetation densities p(r + r', z) 
in Taylor series (Murray, 1993), 

p ( r + r ' , T ) =  Y'~ ~ . l ( r ' .V)np(r , r ) .  
n = 0  �9 

(27) 

As explained in Appendix B, fourth-order terms must be retained in this 
expansion in order that the linear stability properties of the partial- 
differential and integro-differential versions of the model be qualitatively 
identical. The fourth-order differential terms are stabilising; they guarantee 
the existence of an upper cut-off on the band of unstable modes. The 
situation is reminiscent of the mean-field treatment of spinodal decomposi- 
tion based on the Cahn and Hilliard equation, where the instability associ- 
ated with the appearance of a negative diffusion coefficient is controlled by 
including fourth-order differential terms modeling surface tension effects 
(see, e.g., Gunton et al., 1983; Langer, 1992). We obtain the desired 
approximation in the form 

O~p(r, r) = [(1 + �89 p(r, T)(1 + Ap(r, T)))] [1 - ( 1  + �89 z)] 

1 p(r, 7)(1 + Ap(r, r))V~o(r, T) - /~p(r,  ~). 8 (28) 

3.4. Numerical simulations. The results reported below are obtained by 
integrating equation (28) numerically. The integration domain corresponds 
to a square-shaped territory subjected to periodic boundary conditions. The 
initial condition is chosen to be an unstable uniform steady state density p+ 
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perturbed by some small-amplitude random noise. This noise stands for the 
numerous  more or less random environmental factors which disturb the 
uniformity of natural mediums, e.g., ant or termite activity, which is both 
benefic (nests increase water infiltration by soils) and detrimental (eroded 
material from nests increases runoff) to vegetation (Ouedraogo and Le- 
page, 1996), fire or grazing, vegetal debris, animal excreta accumulations, . . .  
(Boaler and Hodge, 1964; Hemming,  1965; White, 1971). 

In the course of time, the system evolves towards a stationary and 
spatially periodic pattern the symmetry properties of which depend on the 
value of the parameters kept fixed. Figure 6 reports three types of regular 
spatial structures obtained for different values of the parameters /z, A and 
L. The first two patterns are of the roll-type: they are constituted of an 
alternation of densely and weakly populated vegetation bands; the width of 
these bands is approximately equal to A c = 2 ~ / k  c. This result confirms that 
even under  isotropic environmental conditions, vegetation stripes are possi- 
ble: homogeneous,  fiat territories can support tiger bush formations. 

This prediction of the model  steps aside from the rather general opinion 
that the existence of a ground slope is necessarily involved in the formation 
of TB (Greenwood, 1957; Worrall, 1959; Greig-Smith, 1979). Interestingly, 
we may emphasize that as such, the model  is able to explain the existence 
of banded patterns, which has been reported on virtually levelled grounds 
(Clos-Arceduc, 1956; White, 1969), and thus that it is not necessary, in 
order to explain these observations, to invoke, as some authors do, the 
presence of neighbouring declivities. The plausibility of this latter interpre- 
tation can be further questioned in view of the fact that the width and the 
regular spacing of the bands far from the edge of these declivities cannot 

Figure 6. Three examples of spatial patterns obtained for an isotropic system 
(white regions correspond to less vegetated areas). (a) Pattern constituted of 
stripes having a uniform orientation (/~= 0.95, L =0.1, A = 1). The latter is 
determined by the initial condition. (b) Coexistence of stripes with two different 
orientations (/x = 0.95, L = 0.15, A = 1). The relative orientation is determined 
by the choice of the parameters, while the global orientation is again only 
dependent on the initial condition. (c) High-density spots arranged in hexagonal 
lattice on a low-density background (/z = 0.95, L = 0.1, A = 0.8). In all cases, 
the periodicity corresponds to a wavelength approximately given by A c = 21r/k c. 
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be understood by a water flowing-absorption equilibrium (Litchfield and 
Mabbutt, 1962; Galle and Seghieri, 1994): it is indeed unlikely that water 
running down from the escarpments would cross more than one or two 
densely vegetated bands (Cornet et al., 1988). 

Let us remark also that the relation between vegetation cover and 
microrelief is unclear. In Niger, the mean ground slope can be higher in the 
bare interbands than in the vegetated bands (Ehrmann et al., 1996), 
whereas in Australia, the opposite situation is observed: unvegetated bands 
have a lower gradient than grassed bands (Dunkerley and Brown, 1996). 
Moreover, the idea that the local topography could determine the spatial 
organisation of vegetation has been questioned recently, in particular by 
Audry and Rossetti (1996). According to these authors, in Mauritania, it is 
the existence of vegetation bands themselves which, in the first place, 
creates differences in the microtopography, rather than the microtopogra- 
phy which causes the formation of bands. On a more global scale, the role 
of ground slopes seems clearer. Plains, with no consistent slope, often bear 
a vegetation distribution consisting of scattered clusters of trees and shrubs, 
while grounds with a significant mean gradient usually support vegetation 
organised in bands (Couteron, 1996) oriented orthogonally to the direction 
of the ground slope. These observations suggest that the pattern spatial 
symmetry depends on the overall ground slope in a consistent manner: 
banded patterns, oriented at right angle to the slope, being generally 
preferred over spotted ones. We shall come back to this selection problem 
in section 4, where we model the effects of environmental anisotropies. 

In Fig. 6a, the orientation of the stripes is determined by the random 
initial condition. Clusters of specific size, approximately given by A = 27r /k  c, 
appear in the early stage of the evolution and subsequently, on a long time 
scale, finally merge with each other to form the final banded ordered state. 
We plan to study in detail in a forthcoming publication the different 
transient dynamical regimes involved in this evolution. In the final state, the 
orientation of the bands is stable w.r.t, small-amplitude random fluctua- 
tions: no spatial direction or position is privileged (the Fourier transform of 
the fluctuations is essentially constant). In Fig. 6b, there are two distinct 
directions whose relative orientation depends on the dynamics, while their 
orientation as a whole is again determined at random by the initial 
condition. This exemplifies that, as expected, under isotropic environmental 
conditions, the dynamics involves no mechanism capable of selecting a 
particular orientation of the patterns. 

Figure 6c consists of higher-density spots distributed on a hexagonal 
lattice. The distance between two neighbouring spots is roughly given by A c. 
It corresponds to vegetation clusters of fixed size, equally spaced, sur- 
rounded by a less densely vegetated background. To our knowledge, no 
vegetation pattern possessing this kind of spatial symmetry has, up to now, 
been described in arid or semi-arid regions. Three possible reasons may 
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explain this lack: (i) It is more difficult to detect a hexagonal symmetry than 
a linear one in vegetation patterns, which are generally perturbed by 
random irregularities. (ii) The presence of an environmental anisotropy, 
such as a slope of the terrain or the prevailing wind direction, can plausibly 
destabilise a hexagonal structure and select instead a roll-type one. (iii) In 
the isotropic case, the vegetation is obviously less inhibited by neighbours 
on the system border. Therefore, the latter could be the starting point of an 
inward patterning wave, leaving behind an alternation of more and less 
dense lines of vegetation parallel to the system edge (Clos-Arceduc, 1964). 

The second of these putative reasons is further studied in the next 
section by modeling the effect of anisotropic weighting functions on the 
dynamics. 

4. Symmetry Breaking Conditions on Anisotropic Territories. Anisotropic 
environmental conditions are common and can be grouped into two classes: 
(i) Atmospherical factors such as wind and light. The sun trajectory in the 
sky may induce a shadow direction so that one side of the vegetation is 
receiving more light than the other. (ii) Geomorphological factors such as 
ground surface and structure. On terrains which exhibit a slope, the soil is 
generally more compact downslope than upslope because of gravitational 
effects (Ruxton and Berry, 1960; Glover et of., 1964; White, 1971), 

Among the various anisotropies which are encountered, one may distin- 
guish those which conserve the r <--> - r  invariance from those which do not. 
The first kind can select the spatial symmetry of the pattern and its 
orientation, but the pattern remains static. The second kind can, in addition 
to the pattern selection capabilities of the first, induce a global movement 
of the pattern. 

The regular vegetation patterns observed in arid regions consist either of 
stripes running parallel to the ground slope or of sinuous bands and arcs 
the main axis of which is orthogonal to the ground slope (Boaler and 
Hodge, 1962 and 1964). In the latter case, often an upslope migration at a 
speed proportional to the reproduction rate of the vegetal species takes 
place. This has been observed, notably with herbs and grasses (A-i  ~ year) 
(Worrall, 1959), and deduced from indirect measurement in the case of 
shrubs and trees (A - I ~  century) (Cornet et oL, 1988; Montafia et of., 
1990). 

Anisotropy must be introduced in the model at the level of the weighting 
functions and break their r <--> - r  symmetry. The simplest way of achieving 
this is by translating the weighting functions w i of an oriented distance d i 
in a given direction, say y (the positivity and normalisation properties of 
the weighting functions obviously hold under such a displacement). Taking, 
as before, the limit L'  going to 0 (vegetation death js  considered to be a 
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local process), equation (12) then reads [1/  ] 
0,p(r, z) = 2 - ~  dr' e-Ct~'2+(Y'-q)~l/EL~/o(r + r ' ,  z)(1 + Ap( r  + r ' ,  ~-)) 

[ 1 f d r ,  e_ttx,~+(y, t2)21/2,p(r+r,,r)l_lxp(r,.r) ' (29) �9 1 -  

where t i (i = 1, 2) are two new dimensionless parameters which describe the 
magnitude of the displacement d i in units of the inhibition length L2: 

di (30) 
t i = L 2  " 

Positive (negative) values of t 1 correspond to situations where the plants 
reproduce preferentially in the positive (negative) y direction; positive 
(negative) values of t 2 correspond to situations where the plants inhibit 
more their neighbours in the positive (negative) y direction. 

The homogeneous steady states are unchanged, but their linear stability 
with respect to inhomogeneous perturbations now obeys the dispersion 
relation 

to k = -/~ + (1 - ps)(1 + 2Aps)cos(tlky)e -(Lzlkl2/2) 

- p~(1 + A p~) cos(t 2 ky )e -(Ik 12/2) 

+i[(1 -- p~)(1 + 2Ap~)sin(taky)e -(L21k12/2) 

- p s ( l  + Ap~)sin(tEky)e-(Ikl2/2)]. (31) 

The eigenvalues (31) associated to the Fourier modes have now an imagi- 
nary part, consequence of the broken symmetry r ,~, - r .  This property 
allows for the appearance of traveling patterns. 

The stability properties of the system, in particular the critical wave 
number of the first mode which becomes unstable, are fully determined by 
Reto k. One sees thatS: as in the isotropic case, the maximum density Ps = 1 
(/z -- 0) is always stable; small wavelengths corresponding to large values of 
[k[ are stable at all densities; the wave vector k = 0 is (un)stable for 
p~ = p(_)+ and (un)stable for Ps = 0 when /z( > ) < 1. Furthermore, the real 
part of the dispersion relation is invariant under the transformations 
t i ~ -ti ,  while the imaginary part changes sign. This means that the sign of 
the parameters t i can only affect the motion of the spatial pattern. 

Qualitatively, the influence of anisotropy on Reto k is best seen by 
considering separately the two c a s e s  t I 4: 0 ,  t 2 = 0 and t 1 = 0, t 2 4:0 illus- 

s Subject to the conditions [tiky[ < 7r/2 (i = 1, 2) which assure the positivity of the cosine factors and 
avoid artefacts due to the ansatz employed to model anisotropy. 
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Figure 7. Two independent behaviours of to k in the anisotropic case. (a) When 
the anisotropy in the y direction is acting only upon reproduction (/z = 0.9, 
L = 0.2, A = 1, t 1 = 0.5 and t 2 = 0), the unstable wave vectors (shaded regions) 
are preferentially aligned in the k x direction, giving rise to stripes parallel to the 
y direction, at least in the early stage of the evolution. (b) When the anisotropy 
affects only inhibition (/x = 0.9, L = 0.3, A = 1, t 1 = 0 and t 2 = 0.5), the unstable 
wave vectors (shaded regions) are preferentially aligned in the ky direction, 
giving rise to stripes orthogonal to the y direction. 

trated in Fig. 7. In the first case, Reoo k has two global maxima of the form 
k = ( + k x ,  O). In the second case, Reos k has two global maxima of the form 
k = ( 0 ,  + k y ) .  For  Ps = P+, at the bifurcation point, the critical wave vectors 
are k c = (+kxc, 0) when t 2 = 0 and k c = (0, q-ky) w h e n  t 1 = 0. Fur ther  in 
the instability domain, the fastest growing wave vectors are or iented in the 
k x and ky  directions; this means that close enough to criticality, the 
unstable wave vectors form two disconnected domains aligned in the k x and 
ky directions. Therefore ,  in the early evolution stage described by the linear 
analysis, depending upon whether  the anisotropy affects inhibition or 
reproduction, i.e., w 2 or wl, the orientation of the stripes is orthogonal or 
parallel to the direction of anisotropy. In order  to verify that this behaviour 
persists when non-linear terms become important  in the course of the 
system evolution, numerical  simulations have been performed.  Proceeding 
as explained in Appendix B for the isotropic case, the integro-differential 
equation (29) is approximated by expanding the densities in Taylor series. 
The following partial differential equation is obtained: 

1 2 2 1 2 2 c~rp(t , T)  = [(1 -[- tlVy -1- ~ t  V + ~-t 1Vy )(  p(r, r)(1 + Ap(r, 7))) 1 

1 2 2 �9 [1 - (1 + , f l y  + �89 + ~t2V~ )p( r ,  7)1 

- ' 2 , VT)p(r.7) [(1 +tlVy)(p(r.r)(1 + Ap(r.  7)))]  J2Vy(3V + 

2 2 2 . 4V4) . ( r . 7 )  - p(r ,  7)(1 + A p ( r ,  7)) .~4 (3V 4 + 6t2Vy V + 

- / x p ( r ,  7). (32) 
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Typical examples of the patterns obtained by simulating equation (32) with 
the same domain shape and boundary conditions as in the isotropic case, 
are given in Figs. 8 and 9. Simulations a I and c a of Fig. 8 show stripes 
strictly parallel to the y direction of anisotropy; they model a situation 
where the anisotropy is only acting on reproduction, i.e., w 1. Simulations a 2 
and c 2 of Fig. 8 show what happens when the anisotropy influences 
inhibition, i.e., w 2, and has no effect on reproduction: one obtains undulat- 
ing stripes which are oriented at right angle w.r.t, the y direction and which 
furthermore move upward (in the positive y direction). In Fig. 9, the 
simulation shows the formation of arcs the main axis of which is orthogonal 
to the y direction. These arcs move upward; they are obtained when the 
anisotropy affects inhibition, i.e., w 2. 

Figure 8. Vegetation patterns in the anisotropic case. We have simulated the 
influence of anisotropy (in the y direction) on reproduction (patterns a~, cl 
obtained for t 1 = 1 and t 2 = 0), and on inhibition (patterns a2, c 2 obtained for 
t I = 0 and t 2 = 1). The simulations a i (i = 1,2) correspond (/x = 0.95, L = 0.1, 
A = 1), in the isotropic case, to a banded pat tern (cf. Fig. 6a). The simulations c i 
correspond (/z = 0.95, L = 0.1, A = 0.8), in the isotropic case, to a pattern of 
hexagonal symmetry (cf. Fig. 6c). Reproduct ion anisotropy selects stripes paral- 
lel to the anisotropy direction and inhibition anisotropy selects stripes orthogo- 
nal to that direction, independent ly of the spatial symmetry properties of the 
patterns obtained in the isotropic case for the same values of parameters. 
Parallel stripes are static, while orthogonal stripes are moving upward, i.e., in 
the positive y direction. 
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Figure 9. In the case of  anisotropic inhibition (in the y direction), arcuate 
patterns may appear (/~ = 0.995, L = 0.45, A = 1, tl = 0 and t 2 = 2). They 
consist of  arcs the main axis of  which is orthogonal  to the anisotropy direction 
and which move upward (positive y direction). 

These results explain several experimental facts not well understood until 
now. First, they show that roll-like vegetation patterns of both orientations, 
orthogonal and parallel to the ground slope (considered here as the main 
direction of anisotropy), as well as vegetation arcs orthogonal to that 
direction, may originate from the same population dynamics; they are 
different aspects of the same phenomenon. Second, they show that vegeta- 
tion patterns (wavy bands and arcs) oriented at right angle w.r.t, the slope 
of the terrain are moving in the direction of this anisotropy, while vegeta- 
tion patterns (straight stripes) parallel to that direction are, on the whole, 
static. 

5. Conclusion. The results obtained within the framework of this mean- 
field description of the evolution of plant communities support the idea 
that the mechanism of TB formation involves a symmetry breaking instabil- 
ity which leads to the establishment of a spatially periodic distribution of 
vegetation. This instability is an intrinsic property of the propagation-by- 
reproduction transport process which governs the spatio-temporal dynamics 
of plant communities. It appears as a consequence of the fact that the 
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inter-plant interactions which constitute the basic ingredients of this dy- 
namics are necessarily non-local phenomena: they operate over well-de- 
fined ranges, given by the parameters L/ associated to the weighting 
functions toi; it is the value of these interaction ranges which determines 
the characteristic length of the inhomogeneities which appear. For the 
instability to be possible, the range of inter-plant interactions described by 
the inhibition function F 2 must be greater than the cooperative inter-plant 
interactions described by the reproduction function F 1. 

In agreement with field observations, the wavelength predicted by the 
model for the patterns is a decreasing function of the vegetation density 
(Gavaud, 1966; White, 1970). This wavelength must be greater than the 
plant size and, therefore, the patterns are expected in poorly vegetated 
areas like arid regions where environmental stress is high. Under isotropic 
conditions, depending on the values of the parameters, the model predicts 
the emergence of either hexagonal or banded spatial structures and thus 
that TB may appear even on homogeneous, completely fiat territories. 
Though some authors assert that they have observed stripes of vegetation 
on fiat territories (Clos-Arceduc, 1956; White, 1969), more recent field 
investigations generally aim at showing that levelled grounds support spot- 
ted rather than banded vegetation patterns (Couteron, 1996). The predic- 
tion of the model, that TB can develop on virtually flat soils, is therefore 
not clearly corroborated (or refuted) by existing data. On the other hand, 
one could speculate that in some cases spotted vegetation patterns corre- 
spond to a hexagonal (or parallelogram?) pattern the spot distribution of 
which is perturbed by random soil irregularities. It would be interesting to 
investigate this possibility by Fourier analysing aerial photographs. 

Remarkably, the model predicts that the same dynamical mechanism can 
give rise to the two kinds of linear vegetation patterns, parallel and 
orthogonal to the ground slope (main source of anisotropy), which have 
been observed in situ (Macfadyen, 1950b; White, 1969), and which are 
traditionally considered to be distinct phenomena (Greenwood, 1957; Boaler 
and Hodge, 1962; Hemming, 1965). Stripes of vegetation parallel to the 
ground gradient have been seldom recorded, only in Jordan and Somaliland 
to our knowledge. The interest taken in these vegetal structures rapidly 
decreased after their discovery, probably because a clear explanation of 
their origin, even unformalised, was missing. The model interprets the two 
types of stripe as distinct aspects of the same vegetation dynamics. Indeed, 
we have seen here that the presence of an anisotropy can, depending on 
which kind of inter-plant interactions it affects, either select a pattern 
constituted of straight stripes parallel to the direction of anisotropy or, on 
the contrary, select a pattern constituted of undulating bands and arcs 
orthogonal to that direction. More precisely, if the anisotropy affects 
reproduction, vegetation patterns of the first type are favoured, while if the 
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anisotropy affects the inhibition processes, patterns of the second type are 
favoured. The model predicts also, in contrast with a widespread opinion 
(Greenwood, 1957), that ground curvature is not a necessary factor to 
produce vegetation arcs, since they can be obtained for constant ground 
gradient. Furthermore, it explains why, while vegetation structures parallel 
to the direction of anisotropy are globally static, patterns orthogonal to that 
direction may be moving. On a sloping ground, inter-plant inhibition is 
more important in the upslope direction because plants located downslope 
can consume some amount of water flowing downward which would be 
beyond their reach otherwise. This situation has been modeled by translat- 
ing the inhibition weighting function in the positive y direction represent- 
ing the upslope direction (the negative y direction corresponding to the 
downslope direction). We thus find that the patterns obtained in the 
simulations, which migrate in the positive y direction, correspond in reality 
to upslope migrating patterns. This behaviour is in agreement with experi- 
mental observations (Worrall, 1959; Hemming, 1965; Cornet et al., 1988; 
Tongway and Ludwig, 1990; Montafia, 1992). 

The authors are deeply grateful to Prof. M. Lepage (Ecole Normale 
Sup6rieure, Paris) for his interest in this work and for very stimulating 
discussions. 

APPENDIX A 

The dispersion relation (17) has a unique zero 

/ 21n/x 
k o = V L - - ~ - - - L  2 , 

when the parameters /~, L, L '  satisfy the condition 

In/x 
L, 2 _ L--------- ~ > 0, or equivalently (1 - / z ) ( L  - L ' )  > 0. 

Since the function (17) is continuous in k, the requirement that 

lim to k < 0, 
k--* or 

reduces in this case to the condition 

do) k / 21n/z 
d k  (k~ -- VL'-T-- L 2 

(L '2 - L 2 ) I z  L2 /(L2-L'2) < O, 

(A1) 

(A2) 

(A3) 

(A4) 



ON THE ORIGIN OF TIGER BUSH 291 

which amounts to asking that L > L ' .  On the other hand, when the parameters Ix, L, L '  
fulfill the condition 

(1 - Ix)(L - L')  < 0, (A5)  

the dispersion relation considered has no zero and, by continuity, keeps its sign for all values 
of k. Condition (A3) is thus also equivalent to 

oak(0) = 1 -- Ix < 0, (A6) 

which, taking inequality (A5) into account, implies L > L ' .  

A P P E N D I X  B 

Referring to isotropic environments, this partial-differential-equation version of the 
model must necessarily be invariant under symmetry operations of rotation. In particular, 
the symmetry r ~ - r  must be conserved, so that terms corresponding to odd derivatives 
must cancel out after integration. On the other hand, the dispersion relation describing the 
linear stability properties of this approximate model has the same properties of invariance in 
the conjugate space k. Because of the equivalence V n ,--> (ik) n through the Fourier trans- 
form, this new dispersion relation is a polynomial in k 2. It is nothing else than the Taylor 
expansion in k at 0 of the dispersion relation (19). Clearly, this approximate dispersion 
relation must be a polynomial of at least fourth order in k to recover the instability 
predicted by equation (12). In other words, it must be of the form c~ + i l k 2 +  yk'~; 
remembering that the instability corresponds to the existence of a finite band of unstable 
modes, we must have 3' < 0, a < 0 and /3 > 0. The agreement between the exact and 
approximate behaviour can be checked by comparing the dispersion relations for the 
integral equation with that of its Taylor expansion. We first consider the linear stability of 
the trivial steady state P0- For  the integral equation, it is given by relation (17), where we 
have set L '  = 0: 

Its Taylor expansion is 

oak = e - ( L 2 k 2  /2 )  --  Ix" (B1) 

oak = 1 - tx - �89 2 + ~L4k 4 + O(k6). (B2) 

From relation (B1), we see that the modes corresponding to large wave numbers k (or, 
equivalently, to small wavelengths) are stable: oak -o - ix  < 0 for k ~ +oo. But in the 
fourth-order Taylor approximation (B2), there is instability for the same condition, i.e. 
oa k -o +oo when k -o - ~ .  We also note that this instability is avoided if the expansion is cut 
at the second order. Next, we consider the linear stability of the non-trivial stationary states 
Ps = P_+- For the integral equation, it is given by relation (19), whose Taylor expansion is 

to k = (1 - ps)(1 + 2Aps)(1 1 2 2 -- ~L  k + ~L4k 4 + O(k6)) 

_ ps(1 + A p s ) ( 1 . 1  2 1 4 ~k + - - ps)(1 + ~k + O(k6)) (1 Aps ) .  (B3) 
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In relation (19), short wavelengths (large wave numbers) are always stable since to k 
-(1 - psX1 + Aps) < 0, for k ~ ~. But in relation (B3), if both developments are stopped at 
the fourth order, this stability holds only for certain values of the parameters, those for 
which the coefficient of k 4 is negative. This restriction is dodged if the first development is 
cut at second order. Since the first terms of relations (B1) and (19) come from the first 
integral in equation (12), we shall thus retain only the second-order terms of the Taylor 
expansions of the integral representing plant dissemination. In brief, the approximation goes 
as follows: the development is stopped at second order in the first integral, to have a correct 
behaviour of the steady state stability, and at fourth order in the second integral represent- 
ing inhibition effects, to stabilise the large values of k. In making the product of the two 
integrals, terms are retained up to the fourth order. Within this framework of approxima- 
tions, we finally obtain equation (28). 
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