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We discuss in detail the behaviour of a model, proposed by Goldbeter et al. (1990. Proc. natn. 
Acad.  Sci. 87, 1461-1465), for intracellular calcium wave propagation by calcium-induced 
calcium release, focusing our attention on excitability and the propagation of waves in one 
spatial dimension. The model with no diffusion behaves like a generic excitable system, and 
threshold behaviour, excitability and oscillations can be understood within this general 
framework. However, when diffusion is included, the model no longer behaves like a generic 
excitable system; the fast and slow variables are not distinct and previous results on excitable 
systems do not necessarily apply. We consider a piecewise linear simplification of the model, and 
construct travelling pulse and periodic plane wave solutions to the simplified model. The 
analogous behaviour in the full model is studied numerically. Goldbeter's model for calcium- 
induced calcium release is an excitable system of a type not previously studied in detail. 

Introduction. Recently there has been much interest in the spatial and temporal 
behaviour of calcium ( C a  2 + ) inside cells. Although it has been known for many 
years that C a  2 + is an important intracellular second messenger, the complexity 
of Ca 2 + behaviour inside cells has only recently become apparent. In the tem- 
poral domain, C a  2 + exhibits a wide range of oscillatory behaviour in response to 
extracellular signals. Dependent on the type of stimulus, the oscillations range 
from sinusoidal to relaxation type and occur in a variety of non-excitable cells 
(Cobbold et al., 1991; Harootunian et al., 1991; Petersen et  al., 1991; Sauv6 et  al., 
1991: for reviews, see Berridge, 1990; Berridge and Galione, 1988; Tsien and 
Tsien, 1990; Tsunoda, 1991). Further, the oscillations can be extremely complex 
with high-frequency oscillations superimposed on higher amplitude, low- 
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frequency oscillations. It is clear that, to explain thoroughly even the temporal 
behaviour of C a  2 + inside cells, sophisticated models will be necessary. 

The behaviour of Ca 2 + in the spatial domain is also extremely complex. 
Intracellular and intercellular propagating waves of C a  2 + have been observed 
in a variety of preparations (Berridge, 1990, 1991; Busa and Nuccitelli, 1985; 
Charles et al., 1991; Gilkey et al., 1978; Sanderson et al., 1990; Thomas et al., 
1991), and, using the technique of confocal microscopy, spiral waves, target 
patterns and plane waves of Ca 2 + have been observed in vivo in the X e n o p u s  
laevis oocyte (Girard et al., 1992; Lechleiter et al., 1991a,b). It is this 
experimental data from the X e n o p u s  oocyte, demonstrating a wide array of 
complex spatial behaviours, that stimulates the present work. 

There is general agreement as to the initial steps of the process whereby an 
extracellular signal (agonist) stimulates intracellular Ca 2 + oscillations. The 
agonist binds to its receptor and initiates a series of reactions that results in an 
increased concentration of inositol 1,4,5-trisphosphate (IP3). IP 3 then causes 
the release of Ca 2 + from internal stores resulting in a rise in cytosolic Ca 2 + 
concentration (Berridge and Irvine, 1989; Cuthbertson, 1989; Tsunoda, 1991). 
Although this feed-forward pathway is generally accepted, there is considerable 
disagreement on the exact nature of the feedback pathway that causes the 
oscillations and a number of models have been proposed (Cuthbertson and 
Chay, 1991; Goldbeter et al., 1990; Meyer and Stryer, 1988; Parker and Ivorra, 
1990; Swillens and Mercan, 1990; reviewed by Tsien and Tsien, 1990). In 
general, they fall into two broad categories: (i) models in which oscillations in 
IP 3 are necessary for oscillations in Ca 2 +, and (ii) models in which Ca / + 
oscillations occur independently of IP 3 levels. In the first class of models, the 
feedback (whether positive or negative) affects the reactions before the 
formation of IP3, and in the second class of models, the feedback affects the 
reactions later in the chain. It is possible that Ca 2 + oscillations are controlled 
by different mechanisms in different cells (and thus all the models could well be 
correct), and probably a number of mechanisms operate simultaneously in 
some cells, resulting in the complex behaviour described above. 

One model that is particularly attractive for modelling regenerative Ca 2 + 
release is described by Goldbeter and coworkers (Dupont and Goldbeter, 1989; 
Dupont et al., 1991; Goldbeter et al., 1990) and involves the mechanism of 
calcium-induced calcium release (CICR). This mechanism does not require the 
oscillation of IP 3 to generate C a  2 + oscillations and is thus consistent with the 
evidence from several cells that suggests that oscillations in IP 3 are not necessary 
for the observed complex spatial behaviour (Girard et al., 1992; Lechleiter et al., 
199 la,b). Further, the observed spatial behaviour suggests that positive feedback 
is important, which is also consistent with Goldbeter's model. 

Calcium-induced calcium release was originally proposed as the mechanism 
governing the excitation-contraction behaviour of cardiac cells and skeletal 
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muscle fibres (Endo et al., 1970; Fabiato and Fabiato, 1975; Fabiato, 1983), 
and has since been used in a variety of models (Backx et al., 1989; Cannell and 
Allen, 1984; Cheer et al., 1987; Kuba and Takeshita, 1981; Lane et al., 1987; 
Murray and Oster, 1984; Oster and Odell, 1984). However, much of the 
modelling work is not mathematically rigorous; that which is (the papers by 
Cheer et al., 1987; Lane et al., 1987; Murray and Oster, 1984) relies on a 
phenomenological formulation of CICR, rather than a detailed biological 
construction. A mathematical formulation of CICR, in which the Ca 2+ 
dynamics is modelled in more detail, is therefore needed. As we shall show, such 
a formulation has surprising and interesting consequences. 

It is important to note that the present work does not depend on explicit 
knowledge of the site of CICR. Although it is known that, in some cells, CICR 
is governed by ryanodine receptors in the endoplasmic or sarcoplasmic 
reticulum, this is not necessary for the present model. CICR is simply assumed 
to indicate calcium-sensitive release from some store. This store may or may 
not be physically distinct from the IP3-dependent store--the basic structure of 
the model would remain the same in either case. 

We have shown that Goldbeter's model can qualitatively reproduce many of 
the experimental results obtained from Xenopus oocytes. In particular, we have 
numerically demonstrated the existence of spiral waves, target patterns and 
plane waves in Goldbeter's model (Girard et al., 1992). Here, we aim towards a 
better analytical understanding of Goldbeter's model. We show first that 
Goldbeter's model with no diffusion is analogous to the space-clamped 
Fi tzHugh-Nagumo system, and that excitability and oscillations in the model 
can be understood within the framework of generic excitable system theory. 
However, when diffusion is added, this convenient analogy breaks down. It is 
no longer possible to separate the fast and slow variables and previous work on 
excitable systems does not apply. 

It is difficult to gain an intuitive understanding of the behaviour of the model, 
so, as an aid to this, we consider a piecewise linear approximation to the model. 
For this approximation, we obtain an analytic expression for the travelling pulse 
(in one spatial dimension) and show that, as the time scales become widely 
separated and for a wide range of parameter values, the travelling pulse is unique. 
We also show that, for each travelling pulse, there is a one-parameter family of 
periodic wave trains, parameterized by the period, and obtain analytic 
expressions for these solutions. Further, we show that the travelling pulse is the 
limit of the periodic plane wave solutions as the period tends to infinity. 
Analogous results are obtained from the full model by numerical computations. 

Temporal Behaviour of the Model. 
The model equations. Goldbeter et al. (1990) have presented a set of 

equations that models CICR and predicts oscillations in Ca 2 + concentration of 
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a type similar to those observed in a number of experiments. Although it is clear 
that there are a number of different mechanisms that control the behaviour of 
C a  2 + inside cells, an understanding of how each mechanism works in isolation 
is essential for an understanding of C a  2 + dynamics in vivo. Thus, although 
CICR is probably not the complete explanation for the observed spatial 
behaviours in Xenopus oocytes, an in-depth analysis of the model will 
nevertheless prove valuable. 

Goldbeter's model is based on the assumption of two functionally distinct 
internal pools of calcium, called the IP3-sensitive (S) pool and the 
IP3-insensitive (I) pool, respectively. (Detailed presentations of the model have 
been given by Goldbeter et al., 1990; Berridge, 1989, 1991. We give only a brief 
description here.) When receptors at the cell membrane are stimulated by an 
agonist, they initiate a series of reactions, mediated by a G-protein, that results 
in increased levels o f IP  a in the cytosol. Since IP 3 releases a steady flux of Ca 2 + 
into the cytosol from the S pool, an increase in IP 3 concentration results in an 
increased flux of C a  2 + into the cytosol from the S pool. The model assumes 
that, in the absence of agonist stimulation, there is a small background flux of 
C a  2+ into the cytosol from outside the cell. The C a  2+ in the cytosol is 
sequestered into the I pool, but when the I pool has achieved a high enough 
level of C a  2+ it releases its store back into the cytosol. Hence the phrase, 
calcium-induced calcium release. Calcium balance is kept by pumps in the cell 
membrane that pump calcium out of the cell, and the S store is assumed to be 
kept at a constant concentration by direct interaction with the external 
medium. A diagram of the calcium fluxes involved in the model is given in 
Fig. 1. Different cells exhibit varying amounts of I and S pools. The I pool is 
probably small in Xenopus oocytes but larger in neurons. Alternative 
representations of the model are possible whereby the IP3-sensitive pool is 
dominant,  but release from it is modulated by the cytoplasmic calcium 
concentration (Finch et al., 1991; Bezprozvanny et al., 1991; Iino, 1990). 
Calcium kinetics are assumed to be cooperative and the C a  2+ pumps are 
assumed to be first order. Under these assumptions, the model equations are: 

dc  1 
- -  v - - k c  I - - ? ( c  1 ,  c2) 

dr 

dc2 - f ( c , ,  c2) 
dr 

f(c,,  Vlc"  
K"l +C7 

Gc;" \ /  cf \ 

where c 1 is the concentration of cytosolic calcium, c 2 is the concentration of 
calcium in the I pool, and r is time. The function f consists of a series of 
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Figure 1. Simplified diagram of the calcium fluxes and pools involved in the model. 
For a more detailed presentation of the model see Goldbeter et al. (1990). 

cooperative kinetic expressions; VlC'~/(K' ~ +c']) is the rate at which Ca 2+ is 
m m C p p pumped from the cytosol into the I pool, and { Vzc a/(K~ + c~')} x { 1/(K3 + el)} 

is the rate at which it is released through the calcium-dependent release 
mechanism. Clearly, the second rate depends on both c 1 and c2; a crucial 
aspect of this model is the fact that the rate at which Ca e + is pumped from the I 
pool into the cytosol increases as the concentration of Ca z+ in the cytosol 
increases. The constants k and kf govern the rate at which C a  2 + is pumped out 
of the cytosol and the I pool, respectively, and v governs the rate at which C a  2 + 

is released into the cytosol from the S pool. In general, v will depend on the level 
of agonist stimulation, and in the model is treated as a bifurcation parameter. 
When there is no agonist stimulation, v will be the low background Ca 2 + 
influx, and agonist stimulation will raise v. 

For  convenience, we nondimensionalize the equations. Set u=c , /K  1, 
v = c 2 / K 2 ,  t = z k ,  ~z=K3/K1, fl= V1/V2, 7 = K 2 / K 1 ,  ( ~ - k f K 2 / V 2 ,  IA=v/(I (K1) ,  

g.= kK2/V 2 to get:  

du  
d r -  ~ - u  7 v) (1) 

dv 1 
= f(u,  v) (2) 

dt 
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f ( u ,  V)=fl u - - ~  \ ~ )  \ ~ l #  -6v" (3) 

Note that if the kinetics of the exchange of Ca 2 § between the cytoplasm and the 
I pool are fast (i.e. V 1 and V 2 a r e  large), e will be a small parameter. For the 
values used in this paper, e ~ 0.04. In the nondimensionalized model equations, 
# is treated as the bifurcation parameter. 

Equations (1) and (2) actually describe an entire family of models dependent 
on the particular choice of the exchange function, f ( u ,  v), that describes the 
dynamics of Ca 2 + exchange between the cytosol and the internal Ca 2 + pool. It 
should therefore be kept in mind that, although we present results here for a 
particular choice of f ,  similar results obtain from exchange functions with 
similar qualitative properties. 

Temporal oscillations. The temporal behaviour of this model has already 
been well studied (Dupont and Goldbeter, 1989; Dupont  et al., 1991; 
Goldbeter et al., 1990). In this section we merely rederive some already existing 
results and express them in a convenient form. 

The steady state of equations (1)-(3) is given by: 

u o = # (4) 

f(/t, Vo) = 0. (5) 

The number of steady states depends on the shape of the curvef(u,  v)= 0, and 
its intersections with the line u = #. However, for the particular choice o f f  that 
we use, there is only one steady state. 

The linear stability of (Uo, vo) is governed by the roots of the equation: 

22 + 2 (?f,/e - s  + 1 ) -L /e  = O. (6) 

From (3) we see t h a t s  i.e. as the concentration of C a  2+ in the I pool 
increases, the rate of entry of c a  2 + into this pool decreases. It thus follows that 
the stability of (u 0 , Vo) is governed by 7f,(Uo, V o ) / e - s  o , Vo)/e + 1 = H, say. If 
H > 0  then the steady state is stable and if H < 0  it is unstable. Further, as H 
crosses zero, we get a Hopf bifurcation and the appearance (or disappearance) 
of small amplitude periodic orbits. Not surprisingly, this stability criterion 
yields the same result as the Bendixson criterion used by Dupont  and 
Goldbeter (1989). 

Thus, to investigate the existence of periodic orbits as the level of agonist 
stimulation varies (i.e. as/~ varies) we plot H vs # and look for where H =  0. 
Such a plot is given in Fig. 2a. It is clear that a Hopf bifurcation appears twice 
for this particular choice of exchange function, at/~1 and ~2 say. Using the 
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software package AUTO developed by E. Doedel (Doedel, 1986) we can track 
this bifurcation; from Fig. 2b we see that the two bifurcation points are 
connected by a branch of periodic orbits and that, since the Hopf bifurcations 
are supercritical, the periodic orbits are stable. Numerical solution of the 
equations confirms this bifurcation diagram. 
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Figure 2. (a) A plot of H =  7f,/e-s + 1 vs #. The parameter values used in this 
figure, and in all the figures in this paper, are k= 10 s 1, K1 = 1 #M, K2=2 #M, 
K3=0.9 #M, V l = 6 5 # M s  -1, V2=500#M s -1, k f = l s  1, m = n = 2  and p=4.  
Thus, ~ = 0.9, fi=0.13, 7=2,  ~ =0.004 and e =0.04. Similar behaviour obtains for a 
wide range of parameter values. As explained in the text, the model with no diffusion 
[-equations (1)-(3)] undergoes a Hopf bifurcation when H = 0. For these parameter 
values there are clearly two Hopf bifurcations. (b) The branch of periodic orbits 
connecting the Hopf bifurcation points of (a). This curve was computed by the 
software package AUTO. Direct numerical solution of the equations confirms that 
the Hopf bifurcations are both supercritical and lead to a branch of stable periodic 

solutions. 
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A typical oscillation is shown in Fig. 3, in both the phase plane and the time 
domain. It is a typical relaxation oscillation, with fast spikes separated by 
longer latent periods. The structure of the periodic solution in Fig. 3b is 
revealing. The fast spikes are due to the fast exchange of C a  2 + between the 
cytosol and the internal store. The slower portions of the curve are due to the 
influx of Ca 2 + from the IP3-sensitive store. Over this slow part both u and v are 
slowly increasing as the cell is "charged" with C a  2 + by the IP3-sensitive store. 
When a threshold (that depends on the level of Ca 2 + in the cytosol as well as the 
level in the Ca2+-sensitive store) is reached, the CaZ+-sensitive store 
discharges, releasing a large amount  of C a  2 + into the cytosol, giving the 
upward phase of the spike. The released C a  2 + is quickly taken up again by the 
Ca 2 +-sensitive store, resulting in the downward phase of the fast spike, the cell 
starts to recharge again, and the cycle repeats. 

Excitability. When/~</~1, i.e. before periodic orbits appear, the model 
exhibits excitable behaviour. Subthreshold perturbations from the steady state 
return to the steady state, superthreshold perturbations have a large transient 
excursion before returning to the steady state. Even when oscillations appear, 
excitability is retained; a superthreshold perturbation will cause a large 
transient excursion that decays to a stable oscillation. This behaviour is typical 
of an excitable system, a particularly well-studied example of which is the 
Fi tzHugh-Nagumo (FHN) model of the nerve impulse (Britton, 1986; Casten 
et al., 1975; FitzHugh, 1961, 1969; Hastings, 1974, 1976; McKean, 1970; 
Rinzel, 1976; Troy, 1976), and generally is the result of widely differing time 
scales in the model. The relaxation oscillations described in the previous 
section are also a typical feature of systems with fast and slow time scales. 

The present model is no exception. Since e is a small parameter, it is clear that 
equations (1) and (2) have a fast and a slow time scale. However, there is no 
separation of fast and slow variables, as u is both a fast and a slow variable. This 
is easily remedied. 

Let w = u + T v  to get the transformed system: 

d w  
- /~ - - (w--  7v) (7) 

dt 

d r _  
l f ( w -  yv, v)= _1 F(w, v). (8) 

dt e 

We now have clearly separated fast and slow variables. The nullclines and a 
typical solution trajectory are shown in Fig. 4. The nullclines, consisting of an 
"N-shaped" curve and a straight line, are qualitatively similar to the nullclines 
of the FHN equations. It is therefore clear that the model will behave like a 
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Figure 3. A periodic solution of the model when/~ = 0.4.  (a)  A typical periodic orbit 
in the ~ v  phase plane. The nullclines are also shown. (b) The periodic orbit of (a) 
shown as a function of t. Note the fast spikes separated by longer latent periods. This 
is typical relaxation oscillation behaviour and is the result of widely differing time 
scales in the model. A biological interpretation of the periodic orbit is given in the 

text. 

generic excitable system and its temporal behaviour (excitability, the existence 
of a threshold, the development of oscillations) can be understood by analogy 
with the FHN equations. 

Spatio-temporal Behaviour of the Model. 
In t roduc t ion .  We have shown previously (Girard et  al.,  1992) that 

numerical solutions of Goldbeter's model in two spatial dimensions agree 
qualitatively with experimental observations. All of these computations were 
performed on the model in the excitable, not the oscillatory regime. 

There has been much work done on the spatial behaviour of self-oscillatory 
systems that are linked by diffusion; it has been shown that periodic plane 
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Figure 4. Nullclines and a typical solution trajectory in the transformed phase plane 
(i.e. w - v  coordinates). The dotted line is a solution trajectory for/~ =0.25. Note that 
the nullclines consist of an N-shaped curve and a straight line. Hence the behaviour 
of the model is analogous to the FitzHugh Nagumo system. With this interpreta- 

tion, v is the fast variable, and w is the slow variable. 

wave, spiral and pacemaker solutions all exist (Cohen et al., 1978; Duffy et al., 
1980; Hagan, 1982; Kopell and Howard, 1973, 1981; Neu, 1979). However, we 
feel it is un][ikely that the observed behaviour is a result of self-oscillatory 
dynamics. In the first place, the external signal that stimulates the waves is 
localized to the cell membrane. This signal stimulates oscillations by raising/~ 
past the bifurcation point. Experiments indicate that ~ is increased in a region 
local to the stimulus only, rather than that it is increased homogeneously 
throughout a large part of the cell. In other words, while the C a  2 + dynamics are 
oscillatory in a localized region of the cell, the remainder of the cell is in a non- 
oscillatory but excitable regime. The local oscillations are then transmitted to 
the rest of the cell by the excitable dynamics. This can be tested by measuring 
the spatial distribution of the stimulus and provides an elegant way of 
distinguishing between models involving excitability and those involving only 
self-oscillatory dynamics. In the second place, we have found the spatial 
behaviour generated by excitability to be considerably more robust than that 
generated by self-oscillatory dynamics. For these reasons we believe that the 
observed spatial behaviour is the result of excitable rather than self-oscillatory 
dynamics. Thus, the excitable nature of the C a  2 + dynamics is just as important 
as the oscillatory behaviour in the transmission of C a  2+ signals. The 
importance of excitability in the transmission of C a  2 + signals has not been 
emphasized in previous studies of the spatial behaviour of Goldbeter's model. 

Travelling waves. When diffusion is introduced into the equation for the 
cytosolic Ca 2§ (Ca 2§ in the I store is assumed to be spatially restricted), 
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appropriate initial conditions stimulate propagating waves of constant 
amplitude (Fig. 5). However, the simple analogy with the FHN equations 
breaks down. The model equations with diffusion can be written as: 

eu,= e2uxx + u ) -  Tf (u, v) (9) 

F.U t =f(u,  v), (10) 

where we have rescaled x by ~ e / D ,  D being the diffusion coefficient ofcytosolic 
C a  2 +. It is important to note that, due to the presence of the e in (10) these are 
not the equations of a generic excitable system (Britton, 1986; Keener, 1980, 
1986; Murray, 1989), and that, due to the diffusion term, transformation to w, v 
coordinates does not help. Therefore, previous results on the behaviour of 
excitable systems cannot necessarily be applied. 
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0 8 -  
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i I I I 
3 4 5 

i I I 
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Figure 5. A travelling pulse of the model with diffusion calculated with the N A G  
library routine D03PGF.  Here,/~ = 0.25. The pulse is shown here in travelling wave 
coordinates, and u and v are shown on the same graph. Note the lack of a sharp 

trailing wavefront. 

To look for travelling wave solutions, we transform to travelling wave 
coordinates, (4, t), where ~ = x + ct and c is the speed of the travelling wave, and 
look for solutions that depend only on 4. Thus: 

e2u" - ecu' + u) - ? f ( u ,  v)  = 0 (11) 

ecv ' - f (u ,  v)=O, (12) 

where a prime denotes differentiation with respect to 4. In (u, u', v) phase space, 
a travelling pulse solution corresponds to a non-constant trajectory that tends 
to (u o, O, Vo) as t o  +_ oo, i.e. a homoclinic trajectory. Such orbits are not easy 
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to find analytically in three dimensions as phase plane techniques cannot be 
used. Later, we shall consider the bifurcation diagram of the travelling wave 
equations, but before we do this, we present a simplified version of the model 
that helps in our understanding of the full model. 

A piecewise linear model. As an aid to understanding the behaviour of 
equations (9) and (10) we consider a simpler, piecewise linear model, that 
retains many of the qualitative features of the full model. This approach was 
pioneered by McKean (1970) and Rinzel and Keller (1973), who considered a 
piecewise linear version of the FHN system. The present approach is more 
similar to the work of Peskin (1976). 

We do not linearize the function f(u, v) directly, but instead consider the 
curvef(u, v) = 0. This curve is shown in Fig. 6a. Since, in a qualitative analysis, 
it is not the actual expression forf that  is important but rather the shape of the 
curve f = 0 ,  we replace f by a piecewise linear function, 9, such that g = 0  
approximates the curve f =  0. Thus, we replace f by: 

g(u, v)=~ fllu-v' u<~a (13) 
( u>a' 

where fil >0,  fi2(0 and a > 0  are constants. A plot of g(u, v)=0 is given in 
Fig. 6b. Note that the equations have been shifted so that the steady state is 
now at (0, 0). Thus, in effect, the constants ill, f12 and a depend on the 
bifurcation parameter #. The form of the piecewise linear function, g, has a clear 
biological interpretation. Recall that g is the rate at which C a  2 + is transferred 
from the cytosol to the internal, IP3-insensitive, pool. Equation (13)just says 
that: (1) as the concentration of Ca 2 + in the internal pool increases, the rate of 
calcium sequestration into that pool decreases; and (2) there is a threshold 
value of cytosolic calcium concentration (= a) such that, when the concentra- 
tion reaches; the threshold, the calcium flow into the internal pool suddenly 
reverses and the pool starts to dump its load into the cytosol. 

Travelling pulse solution. We now look for a solution to: 

G2b/" - -  ~;CU' "q- ,~ ( / , / - -  U) - -  ~ g ( U ,  V) = 0 (14) 

ecv'-O(u, v)=0 (15) 

with the form given in Fig. 7. By translating ~ we are able to fix u(0) = a, and we 
also set u(~ l )=a ,  where 41 is a constant to be determined. The ~-axis is thus 
divided into three regions, in which there are different solutions for u and v: 
region I, ~ ~< 0; region II, 0 ~< ~ ~< ~1 ; and region Ill,  ~1 ~< 4. The solutions in the 
three regions are then joined by continuity and smoothness constraints. 

It is easily seen that: 
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Figure 6. (a) A plot of the curvef(u, v) = 0. The steady state for/~ = 0.25 (i.e. when the 
model is in the excitable regime) is shown by the cross. (b) A plot of the curve 9(u, 
v)=0.  The function 9 was chosen so that the curve 9 = 0  is a piecewise linear 
approximation to the curve f =  0, and is used in the construction of a piecewise linear 

approximation to the model. 

u 1 = A e x p ( 2 3 ~  ) ) 

/~IA I'~-<0 
vl - 1 + ec23 e x p ( 2 3 ~ )  

UlI = 9 2 exp(2 , ;~)  + B 3 e x p ( 2 s ~  ) 

/~2-'bB1 exp( - ~'~ /211 = 
\ e c )  

} ljc2 
, 0 ~  
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U 

& 

Figure 7. A qualitative picture of a travelling wave of the piecewise linear model, 
translated so that the steady state is at u = 0. Note that u(0)= a = u(~ 1). This wave is 

moving from right to left. 

Uln = D 1 exp(21 ~) + D 2 exp(22~) ) 

fllD1 exp(21~)q fllD2 l '~  <~' 
UIIl - -  1 + ec2~ 1-1-  e c 2  2 exp(22~) 

where  A, B~, B 2 , B 3 , D~, O2, c and  ~ 1 are cons t an t s  to be de te rmined ,  and  where  
we used the fact  tha t  the so lu t ions  m u s t  be b o u n d e d  at  + oe. The  e igenvalues  

2 1 < 2 2  < 0 < 2 3  are the roo t s  of: 

ceZ23 + e22(1 - c 2) - 2(c + c(e + 7fll )) - 1 = 0 (16) 

and  24 < 0 < 2 s are the roo t s  of: 

G22 - cA - 1 = 0. (17) 

N o t e  tha t ,  for e small  enough ,  (16) will have  three  real  roo ts .  
The  eight  u n k n o w n  cons tan t s  are d e t e r m i n e d  f rom the fol lowing cons t ra in ts .  

u,(0)  = ui i(0)  

ull(~. 1) = u i i , (~ l )  

ul(0) = uii(0) 

v . ( G )  = v,.(~x). 

Continuity: 

Consistency: 
u~(O) = a 

u~( G ) = a. 
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Smoothness: 
u' , (0 -  ) = u'ii(0 + ) 

U',I(~ 1 ) = U'III(~ ? ). 

We have constrained v, but not v', to be continuous at 0 and ~ ,  while, since u 
diffuses, both u and u' are continuous there. 

These eight constraint equations result in the following equations for the 
unknown constants. 
Conditions at ~=0:  

A=a 

- -  - -  f l 2 - l -  B 1  1 + ec23 
7B~ 

B2+Ba l_e+l / c  2 - A  
7Bx 

~c24B2 + ec25B3 + 1 - e + 1/c 2 - 8c)~3A" 

Conditions at ~ = ~ :  

(18) 

/~2 ~1- BI exp - l~cec21 
fl l D2 - -  exp(21~l) -~ exp(22~x) 

1 + ee22 

B2 exp(24~l)+B 3 exp(25~l) 1 - e +  1 /c  2 exp 

=D1 exp(21~l)+D2 exp(22~x) 

D1 exp(2x~l)+D 2 exp(22~l)=a 

24B2exp(2,~l)+2sB3exp(25~)+(1)/ 7B1 "~ //--~1 '~ ~ l - - ~ - l / c 2 ) e x p ~ c  ) 

=2~D 1 exp(2~x)+2zD 2 exp(22~1). (19) 

It is not possible to get an analytic solution to these equations. However, as 
e~0  the system becomes considerably simpler. In this limit we have: 

" ' l - - cZ  [ - 1 +  ~/1-~ 4c2(1+7fll)1~ 
s 2 1 ~ 0 - = m l n ~ 2 ~ - c "  - ( i - - c ~  J J  

--1 
)~2--* c(1 + ~ 1 )  
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f 1 - - r  +__N/1 -+ 4c2(1 +Yfl~)]~ 
e23-+O+=max~27~c  " [ - 1  ~ - j j ,  

and 

1 
C 

~)~5 ---~ C. 

If we assume that (i) B3~0  and D 1 ~ o e  at such a rate that B 3 exp(2s{1)---,B3 
and D l exp (21 {1)--'/)1, where/73 and/5,  are constants; and (ii) B 1 , c and 41 stay 
bounded as e---,0 then we get the following simplified system as e---,0. 
Conditions at { = 0: 

A = a  

f l l  a 
-- f l 2 +  Ol l + c 0 +  

7B1 
92 1 q- 1/C 2 = a 

7B1 - acO +. (20) 
1 + 1/c 2 

Conditions at { = ~1" 

fl l /51 t- fl l D 2 e x p ( i ~fl ) = f12 l+cO_ c(1 ,) 

exp - - ~  . B2exp(--~I/C)+B3=JDI+D2 (c(1 +7fll)) 

0+/ 3 = 0_/51. (21) 

Equations (20) can be solved to give: 

f l l  a 

l + c 0 +  
' (22) 
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which determines the wave speed, c. Using the fact tha t  cO 2 +0+(1- -C2)  - 

c(1 +7/31)=0,  we can write (22) in the more  convenient  form: 

- f i2 (1  +cO+) = a_ [(c2 + 1)(cO+ + l)-k- c27/31]. 
7 

Define: 

q~(c)= - / ~ 2 ( l + c 0 + )  a _  [(c2 + 1)(c0+ +1)+c27//1]. 
7 

Then,  ~b(0) = - / ~ 2 - a / 7  and  q~-, - oo as c-~ o0. Thus,  a sufficient condi t ion  for 
at least one positive root  is - / 3  2 - a/7 > 0. A plot of qS(c) is given in Fig. 8, f rom 
which it is easily seen tha t  there is a unique travelling pulse solut ion for the 

0 .5 -  

0.0- 

9- 

05 - 

-10 - 

0.0 0.5 i 0 1.5 2.0 25 
C 

Figure 8. A plot of ~b(c). As e.~0 the travelling wave speeds of the piecewise linear 
model are given by the roots of this equation. We used the parameters, fll =2.6, 
~2 = -0.4, and a=0.1. In this case, there is a unique travelling wave when e=0. 

Similar behaviour was obtained for a range of parameter values. 

given parameters .  F r o m  Fig. 8 it appears  that ,  if q~(0)<0, there might  be two 
solutions to ~b(c)= 0. However ,  this is no t  the case, since q~(0)~< 0=~q~(c)< 0 for 
all c as can be easily seen. Once c is determined,  (20) and  (21) are solved for the 
other  constants .  The corresponding solut ion is: 

U l ~ 0  

U I ~ 0  

Utl = B 2 exp( - ~/c) 

UII ~ / 3 2  



0 .8 -  

eXP(c I  I ) 

a plot of which is given in Fig. 9. 
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Figure 9. The travelling pulse solution to the piecewise linear model when ~=0. 
Here, c=2.06, B 1 =0.43, 92=0.8, D 2 =  --0.1 and ~1 =2.27. The other parameters 

are as in Fig. 8. 

Equations (18) and (19) can be solved numerically for small but non-zero e, 
and the corresponding solution is given in Fig. 10. The values for the constants 
are similar to the values obtained for e = 0 and the analytic solution agrees well 
with the solution obtained by direct numerical solution of the differential 
equations. We were not able to find any other solutions to (18) and (19) which 
suggests that the uniqueness of the travelling pulse solution when e = 0  still 
obtains when e is small but non-zero. 

A plot of wave speed vs a (for e = 0.04) is given in Fig. 1 la. Note that varying 
a is qualitatively similar to varying p in the full model: an increase in a 
corresponds to a decrease in #. By considering the case e = 0 this curve may be 
given a simple intuitive explanation. From the expression for ~b(0) we see that, 
as a increases, q~(0) decreases. Noting that, for fixed c = c  o,  d 4 ) ( C o ) / d a < O  it 
follows that the root  of q~(c) = 0 will decrease as a increases. Further,  for a large 
enough, the travelling pulse solution disappears. We therefore expect that, in 
the full model, as p decreases, the travelling pulse solution slows down and 
eventually disappears. This is indeed found numerically; we discuss this 
behaviour in more detail later. 
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Figure 10. The travelling pulse solution to the piecewlse linear model when e = 0.04. 
The solid curve was calculated by solving the nonlinear equations (18) and (19) and 
the dashed curve was calculated by direct solution of the piecewise linear model 

using forward Euler integration. 

Periodic  plane  wave  so lut ions .  Periodic  plane wave  so lut ions  are periodic  
so lut ions  of  the travell ing wave  equat ions:  

e 2 U  " - -  C.CU' q -  e(]. l  - -  U )  - -  7g(u, v) = 0 

ecv'-g(u, v)=O. 

We can construct  such so lut ions  in the same way  that  we constructed a 
travell ing pulse so lut ion.  We look  for a periodic  so lut ion  on  [~1,  ~2], 
~1 < 0 <  ~2 such that u<~a on [~1,  O] (region I) and u>~a on [0, ~2] (region II). 
The constraints  at ~ = 0 are: 

and at the endpoints  are: 

u,(O) = a 

U l ( O )  = U l I ( O )  

u',(o )=u'u(o § 

v,(o) = v.(o) 

u,(G)=a 

u',(r u'.(~;) 

v,(G)= v.(G). 
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Figure 11. (a) Speed of the travelling pulse in the piecewise linear model vs a for the 
case e--0.04. As a increases (which is analogous to # decreasing in the full model), 
the pulse speed decreases. We expect to see similar behaviour in the full model. This 
is an important  model prediction which should be amenable to experimental 
verification. (b) Dispersion curves (period vs wave speed) for periodic plane wave 
solutions of the piecewise linear model. For  each value of a, as the period tends to 
infinity, the wave speed tends to the speed of the travelling pulse corresponding to 
that value of a [given in (a)]. Note that, for fixed c, as the period increases, a 
increases. Thus we expec t  that in the full model, for a fixed wave speed, as the period 
increases, # decreases. This is indeed found, and is shown in Fig. 13b. From the 

curves shown here, it appears that, as T-+0, c-~ 1 for each value of a. 

We restrict ourselves to looking for periodic solutions of this particular form, as 
this is consistent with numerical results from the full model. However, periodic 
solutions of a different form are not necessarily excluded. 

We do not give the details here, but it turns out that the differential equations 
result in nine unknown constants (including c, 41 and ~2), to be 
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determined by the eight constraint equations. For each travelling wave speed, 
there is a family of periodic plane waves parameterized by the period. Further, 
we can show that in the limit as ~1~ - oo with ~2 held fixed (i.e. as the period 
goes to infinity), the periodic solution is just the travelling pulse solution found 
in the previous section. 

Summary of piecewise linear behaviour. The results of the two previous 
sections are summarized in Fig. 11. In Fig. 1 la, the wave speed of the travelling 
pulse is plotted against a; an intuitive explanation of the shape of this curve was 
given before. When e ~ 0  this travelling pulse is unique; when e is small but non- 
zero, the travelling wave solution is close to the solution for e = 0, and appears 
to be unique. In Fig. 1 lb, the wave speed of the periodic plane wave solutions is 
plotted against period, T, for varying values of a. As can be seen by comparing 
Fig. 1 la and b, for each a, as T--, oo, the wave speed tends to the speed of the 
travelling pulse for that value of a. Further, for a fixed wave speed, c, as T 
increases, a increases. All of these results can be reproduced in the full model. 
As yet we have done no analysis on the properties of the dispersion curves as 
T- ,0 .  Computational  results indicate that the dispersion curves for all values of 
a tend towards 1 as the period becomes small. As yet we have not proved this 
analytically, and neither have we proved the existence of periodic wave 
solutions as T--,0. The question of how the dispersion curves begin is the most 
important question left unanswered in the present work and is discussed 
further when the dispersion curves for the full model are discussed. 

Numerical study of the full model. Our two principal tools for the numerical 
study of the full model are the NAG software library subroutine D03PGF,  
which solves a nonlinear system of parabolic equations by the method of lines 
and Gear's method, and the software package AUTO for continuation and 
bifurcation problems (Doedel, 1986). 

In the piecewise linear model we saw that, for a fixed value of the bifurcation 
parameter a, the travelling pulse solution arose as the limit of a one-parameter 
family of periodic plane waves (parameterized by the period) as the period went 
to infinity. In the full model, we expect the behaviour to be similar. Thus, 
although we are ultimately interested in travelling pulse solutions to the full 
model, we begin by looking for periodic plane wave solutions and then 
investigate their behaviour as the period becomes large. 

Hopf bifurcation to periodic waves. Periodic plane wave solutions result 
from a Hopf  bifurcation in the travelling wave equations (11) and (12). The 
linear stability of the critical point is governed by the cubic 

2 3 - A 2 2 - B 2 + C = 0 ,  

where 
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and where 

= -  -)-C 

B=IH_ 

C_L 
~2 c 

H =  ?f~ + l___f_ ~ 
g 

Note that H is just the Hopf parameter from a previous section (Temporal 
oscillations), and recall that the model with no diffusion undergoes a Hopf 
bifurcation when H =  0 (cf. Fig. 2). 

The conditions for a Hopfbifurcation in the travelling wave equations are (i) 
AB= C and (ii) B<0.  Thus, a Hopf bifurcation can only occur in the travelling 
wave equations if the ordinary differential equations are in the oscillatory 
regime, i.e. H < 0 .  Solving the equation AB= C for c gives: 

c 2 = 

H 

The locus of Hopf bifurcation points in the # - c  plane is shown in Fig. 12 and 
labelled in the Hopf curve. 

Travelling and periodic plane waves. Included in Fig. 12 is a curve of 
travelling pulse solutions (solid circles joined by lines), determined by 
numerical solution of the differential equations. Clearly, as predicted from the 
piecewise linear model, the speed of the travelling pulse increases as # increases. 
Further, for # small enough, we are unable to find a travelling pulse solution, 
also as predicted. 

Just for now, ignore the open squares in Fig. 12. In order to facilitate 
understanding of the relationship between the piecewise linear model and the 
full model, it is helpful to consider what we shall call the dispersion surface. In 
general, the period of a periodic travelling wave train, T, is a function (not 
necessarily single-valued) of both the bifurcation parameter, #, and the speed of 
the wave train, c. Thus, T= T(/~, c) can be thought of as a surface in #, c, 
T-space, the dispersion surface. The dispersion surface lies above the/~-c plane 
shown in Fig. 12. By fixing #, and taking a cross-section of the dispersion 
surface we obtain the dispersion relation for that value of/t, i.e. c as a function 
of T for that value of ~ (cf. Fig. 14). This is the way the dispersion curve is 
usually presented. Similarly by fixing c and taking a cross-section of the 
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Figure 12. The solid curve (Hopf curve) is the locus of Hopf bifurcation points of the 
travelling wave equations (11) and (12). At these points we get a bifurcation into 
periodic plane wave solutions of the model. The solid circles joined by lines are 
travelling pulse solutions of the full model computed by the NAG subroutine 
D03PGF. The open squares are approximate travelling pulse solutions computed 
by AUTO. They are described in more detail in the text and in the caption to 
Fig. 13. The approximate location of Ccrit is shown by a dashed line. Computations 
indicate that ccrit is approximately located at the place where the line of travelling 

pulse solutions (filled circles) intersects the Hopf curve. 

dispersion surface we may obtain # as a function of Tfor that fixed value ofc  (cf. 
Fig. 13). It is clear that the dispersion curve (c vs T) corresponds to taking a 
"vertical " slice in Fig. 12, while the curve p vs T corresponds to taking a 
"horizontal" slice. 

To demonstrate the shape of the dispersion surface for the full model we shall 
present a series of both vertical and horizontal slices, for varying values o f#  and 
c. We do not  intend to present an exhaustive and rigorous demonstrat ion of the 
shape of all branches of the dispersion surface, but  merely wish to point out 
some salient features. 

The first point to note is that the line denoted by filled circles (corresponding 
to a one-parameter family of travelling pulse solutions, parameterized by either 
/~ or c) corresponds to a line of singularities of the dispersion surface; along this 
line T becomes infinite. Secondly, we reiterate that a Hopf  bifurcation to 
travelling wave solutions occurs along the smooth curve labelled the Hopf  
curve. 

Using AUTO,  we can determine the fate of the bifurcating periodic waves. 
Let ccrit denote the value of c where the line of travelling pulse solutions (solid 
circles, Fig. 12) intersects the Hopf  cuve. Here, %it ~ 1. F rom the numerical 
results presented in Figs 12 and 13 it appears that, for c>c~rit, the two Hopf  
bifurcation points are connected by a branch of periodic orbits (Fig. 13a). For  
c > c~r~t there are no travelling pulse solutions. However,  for c < c~it the branch 
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Figure 13. Cross-sections of the dispersion surface for various fixed values of c (i.e. 
horizontal slices in Fig. 12). (a) When c>ccri,, the Hopf bifurcation points in the 
travelling wave equations are connected by a branch of periodic plane wave 
solutions, as shown here. These branches of periodic orbits connect the right and left 
branches of the Hopf curve shown in Fig. 12. (b) When c<Grit, the branch of 
periodic plane wave solutions originating at the right branch of the Hopf curve 
terminates in a wave of infinite period i.e. a travelling pulse, as shown here. These 
travelling pulses are denoted by open squares in Fig. 12 and correspond to the 

travelling pulses obtained by direct integration of the equations. 

of  periodic orbits emanating from the right hand H o p f  bifurcation point 
terminates in a periodic orbit of  infinite period, i.e. a travelling pulse, as shown 
in Fig. 13b. N o t e  that the curves given in Fig. 13a and b correspond to cross- 
sections of  the dispersion surface for fixed c, as described above.  Approximate  
values of  c and # for the infinite period solutions shown in Fig. 13b are shown 
as open boxes in Fig. 12. They appear to correspond to the previously 
computed travelling pulse solutions.  Hence,  just as in the piecewise linear 
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Figure 14. Cross-sections of the dispersion surface for two fixed values of #; when 
# = 0.3 the model is in the excitable regime, and when # = 0.4 the Hopf  bifurcation 
has been crossed, the steady state is unstable, and the model is oscillatory. The 
symbols were determined by the intersection of the line # = 0.4 (or # = 0.3) with the 
curves given in Fig. 13. Note  that, when # = 0.3, T becomes infinite at a finite value 
of c, corresponding to a travelling pulse solution. This travelling pulse solution lies 
on the line denoted by the filled circles in Fig. 12. When # = 0.4 no such travelling 
pulse solution exists and c and T appear to be approximately linearly related. The 
#=0 .3  curve for the full model is analogous to the curves in Fig. l l b  for the 

piecewise linear model. 

model, the travelling pulse solutions are the limit of a branch of periodic wave 
trains with fixed wave speed, as the period tends to infinity. 

We may also consider vertical slices of the dispersion surface, i.e. cross- 
sections of the dispersion surface for fixed #, and two sample curves are given in 
Fig. 14. For  fixed # out of the oscillatory regime (#=0.3), there is a family of 
periodic wave trains such that, as the period increases, the speed of the wave 
train also increases, terminating at the travelling pulse solution corresponding 
to that value of#. The ~=0.3  curve in Fig. 14 is analogous to those in Fig. l l b  
for the piecewise linear model; the behaviour of the two models in this regime is 
qualitatively similar. For/z within the oscillatory regime (# = 0.4), the period of 
the travelling wave increases as the speed increases. The piecewise linear model 
has no dispersion curve analogous to the ~ = 0.4 curve in Fig. 14 as it has no 
Hopf bifurcation; as a decreases, instead of a Hopf bifurcation occurring, the 
dispersion relations merely tend to a bounded, increasing curve (cf. Fig. 1 lb). 

We emphasise that this is not meant to be an exhaustive analysis of the 
dispersion surface. A number of questions yet remain unanswered. Firstly, the 
dispersion surface probably has more than one branch when c <ccrit. The 
reader will have noticed that, for a fixed c < ccrit, we discussed the fate of the 
branch of periodic waves originating at the right Hopfbifurcation point but did 
not discuss the behaviour of the branch of periodic waves emanating from the 
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left Hopf  bifurcation point. This left Hopf  point probably contributes a second 
branch to the dispersion surface but as yet we have not studied this branch at 
all. Secondly, as # increases, what happens to the line of travelling pulse 
solutions denoted by the filled circles? We do not know exactly. Numerical 
computations indicate that the line of travelling pulse solutions terminates 
when it intersects the Hopf curve (at Ccrit ) but more work is required on this 
question. Thirdly, it is not clear how the dispersion curve for # = 0.4 in Fig. 14 
terminates as c--* oc. Although it would seem reasonable to postulate that T 
does not become infinite for finite c (i.e. that travelling pulse solutions do not 
exist when/~ is in the oscillatory regime) we have not checked this. Finally, and 
perhaps most importantly, it is not clear how the dispersion curves in Fig. 14 
begin. By analogy with the piecewise linear model one might expect that, for 
/~ =0.3, as T- ,0,  c tends to a nonzero value, but we do not know this for sure. 
Clearly, a considerable amount  of further work on the detailed structure of the 
dispersion surface is needed in order to answer these questions. 

Despite these unanswered questions, we may still conclude that the 
behaviour of travelling pulse and periodic plane wave solutions in the full 
model is similar to that in the piecewise linear model, and thus an intuitive 
understanding of the full model may be obtained by considering the simplified 
model. 

Discussion and Conclusions. We have shown that Goldbeter's model is an 
excitable system of a type not previously studied. Although the model with no 
diffusion behaves analogously to the Fi tzHugh-Nagumo equations, the 
behaviour of the spatially dependent model is unexpected and surprising. The 
behaviour of the full model was shown to be qualitatively similar to that of a 
piecewise linear simplification of the model. We demonstrated the existence of 
a travelling pulse in the simplified model and it appears to be unique (although 
we did not prove that). Further, the travelling pulse is the limit of a family of 
periodic plane wave solutions as the period tends to infinity. These results differ 
from those obtained by Rinzel and Keller (1973) for the F H N  equation, which 
has two travelling pulse solutions, one stable and one unstable. We have not 
analysed the stability of the periodic plane waves in the simplified model. 
Computations indicate that some of the periodic plane waves are stable but we 
have not done a detailed investigation. 

It is interesting to compare these results with those obtained by Dockery and 
Keener (1986). These authors have shown that, when the slow variable in the 
F H N  equations is assumed to diffuse with diffusion coefficient D~, the 
bifurcation diagram changes qualitatively as D S increases. When Ds = 0 there 
are two travelling waves, the slower one being unstable; this is the case analysed 
by Rinzel and Keller (1973). However, as D~ increases, the slow branch of 
travelling waves may temporarily disappear, resulting in a situation similar to 
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that described in this paper, with a unique stable travelling wave. A detailed 
bifurcation analysis of Goldbeter's model as the diffusivity of v varies has not 
been performed. Given the work of Dockery and Keener, it is possible that such 
an analysis will demonstrate a greater qualitative similarity between Gold- 
beter's model and the FHN equations than is presently apparent. 

The present analysis is just a realization of the results of Maginu (1985) who 
has performed a detailed analysis of the bifurcation of periodic travelling waves 
in a general reaction-diffusion system. Although some of the results presented 
here are unexpected for an excitable system, they are nonetheless consistent 
with the general theory. 

Preliminary computational results indicate that the model in two spatial 
dimensions has unexpected properties. As expected, the geometry of the wave 
front influences the normal speed of propagation, but the usual formula, 
N =  c-~tr where N is the normal wave speed, tc is the curvature of the wave 
front, and c is the plane wave speed (Keener, 1986; Zykov, 1980), does not 
always apply. More work yet remains to be done on this question. If further, 
more detailed, investigation confirms this surprising property, it will have 
important implications in the study of biological excitable systems. 

In summary, our results indicate that the behaviour of biological excitable 
systems can not always be completely understood by analogy with the FHN 
equations. Goldbeter's model, which is plausibly derived from current theories 
of the mechanisms underlying Ca 2 + oscillations, exhibits excitable behaviour 
of a type not previously studied in detail. In the past, mathematical work has 
concentrated on the behaviour of systems with separate fast and slow variables, 
and much is known about the behaviour of such systems in the spatial domain. 
However, Goldbeter's model exhibits excitability in a rather different form. 
The mathematical study of this excitable system is just as important from a 
biological viewpoint, but is far less advanced. The present paper makes a start 
in this direction. Further, the present work, in demonstrating how a more 
detailed and realistic model has unexpected properties, emphasizes the 
importance of knowing the physiological details of the system under 
investigation in the construction of mathematical models. In particular, it will 
be important to characterize, for each cell type, the contribution of ryanodine, 
and IP 3 receptor gated calcium pools, the modulation of these receptors by 
coagonists, the types and regulation of calcium pumps and the buffering of 
calcium by intracellular elements. 
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