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A new approach for data assimilation, which is based on the adjoint method, but allows the 
computer code for the adjoint to be constructed directly from the model computer code, is 
described. This technique is straightforward and reduces the chance of introducing errors in the 
construction of the adjoint code. Implementation of the technique is illustrated by applying it to 
a simple predator-prey model in a model fitting mode. A series of identical twin numerical 
experiments are used to show that this data assimilation approach can successfully recover 
model parameters as well as initial conditions. However, the ease with which these values are 
recovered is dependent on the form of the model equations as well as on the type and amount of 
data that are available. Additional numerical experiments show that sufficient coefficient and 
parameter recoveries are possible even when the assimilated data contain significant random 
noise. Thus, for biological systems that can be described by ecosystem models, the adjoint 
method represents a powerful approach for estimating values for little-known biological 
parameters, such as initial conditions, growth rates, and mortality rates. 

1. Introduction. During the past several years there has been an increase in the 
use of data assimilation techniques to improve forecasts obtained with 
numerical models. The most obvious application of data assimilation has been 
in meteorology, where data assimilation is now a routine component  of 
numerical weather forecasting systems. More recently, improved data 
acquisition systems have resulted in the use of data assimilation techniques 
with numerical circulation models that have become more readily available in 
physical oceanography. Reviews of data assimilation methods as applied in 
meteorology and physical oceanography are found in Bengtsson et al. (1981), 
Lorenc (1986), Navon (1986), Haidvogel and Robinson (1989), and Ghil and 
Malanotte-Rizzoli (1991). Because of on-going advances in the technology 
associated with the acquisition, processing, and storage of large quantities of 
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data, data assimilation is becoming an important topic in many areas where 
mathematical models are used to study physical or biological systems. One 
such area is the field of biological oceanography where satellite systems and 
other continuously-recording instruments are providing large quantities of 
data (Dickey, 1991). 

Several methods, which include successive correction (Cressman, 1959; 
Bratseth, 1986), optimal interpolation (Gandin, 1963; Lorenc, 1981), Kalman 
filtering (Kalman, 1960; Kalman and Bucy, 1961; Ghil et al., 1981), and the 
variational method (Lewis and Derber, 1985; Derber, 1985; Le Dimet and 
Talagrand, 1986; Lorenc, 1988a,b; Courtier and Talagrand, 1987; Talagrand 
and Courtier, 1987; Thacker, 1987; Thacker and Long, 1988; Long and 
Thacker, 1989a,b), have been developed for assimilation of data into numerical 
models. The latter procedure, often referred to as the adjoint method, differs 
from the other data assimilation procedures in that it can be applied to linear 
and non-linear models, can be implemented in a straightforward manner, and 
typically requires fewer calculations. This method minimizes a predetermined 
cost function which defines differences between model-derived quantities and 
measured quantities. A set of so-called "adjoint equations", derived from the 
model equations, are used to map the predefined cost function into the gradient 
of the cost function with respect to the adjustable input variables of the model. 
The gradient is then used in an iterative gradient~lescent algorithm to 
progressively adjust the values of the input variables until they converge to 
values which maximize the agreement between model and observations (i.e. 
minimize the cost function). The result is an estimate of model parameters that 
give an optimal representation of the evolution of the state of the physical 
system being modeled. 

The objectives of this paper are threefold. The first is to introduce a technique 
for constructing the adjoint computer code directly from the model computer 
code. This direct construction greatly reduces the errors that are potentially 
associated with adjoint code construction, and is straightforward to apply, 
thereby often making data assimilation more feasible. The second is to 
illustrate the use of this technique by applying it to a simple predator-prey 
model as a model-fitting scheme. The final objective is to show the usefulness of 
this approach for recovering not only model initial conditions, but also 
optimizing model parameters, especially growth and mortality rates. This 
aspect of the modeling is particularly important because growth and death 
rates that appear in biological models are often difficult to measure. 

The focus of this study is on the use of the adjoint method with a biological 
model; not on the dynamics of the biological model. Hence, the predator-prey 
model used is simple. However, this model has the same basic structure as more 
complicated biological models, including marine ecosystem models. More- 
over, this basic predator-prey model is well known in the biological 
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community and therefore can serve as a prototype for illustrating data 
assimilation methods in the context of biological systems. 

The following section presents a mathematical description of the adjoint 
method, a discussion of the technique for constructing the adjoint code, and a 
description of how the adjoint technique is combined with optimization 
techniques. In the third section we discuss the application of the technique, 
beginning with a description of the predator-prey model, and follow this by an 
example of the adjoint code construction. The results obtained from the 
application are discussed in the fourth section. The final section is a discussion 
and summary. The appendix contains details related to the mathematical 
description of the adjoint technique and a description of a method for verifying 
the correctness of the adjoint code. 

2. The Adjoint Technique. The adjoint method of data assimilation consists of 
three components: the mathematical model with a cost function, the adjoint of 
the model, and an optimization technique. Values for the control variables are 
estimated and the model is implemented to provide a value of the cost function; 
the adjoint is then used to find the gradient of the cost function; the 
optimization technique makes use of the gradient to determine the direction 
and the optimal step size in that direction. Hence, the three components are 
used iteratively to adjust the initial estimates of the control variables (Fig. 1). 
These are discussed in the sections that follow. 

2.1. Description of the adjoint technique. Adjoint techniques have been used 
in a variety of forms in applications to data assimilation problems. One of the 
more difficult aspects of applying adjoint techniques is the development of the 
computer code for the adjoint model. Some adjoint methods include 
development of the adjoint from the original model equations and coding the 
adjoint model, linearizing the computer code for the model (called the linear 
tangent model) and constructing the code for the adjoint from the computer 
code for the linearized form of the model (Talagrand, 1991), and computer 
construction of the adjoint code from the model code (Giering, 1992, 1995). An 
additional approach, which is described below, is a method of constructing the 
adjoint code that is based on a scheme that uses Lagrange multipliers to 
simplify the calculation of the partial derivatives needed to find the gradient of 
the cost function. The strength of this approach is that it makes it possible to 
construct the adjoint code directly from the model code. 

Many mathematical models consist of a system of coupled equations, in 
which a set of control variables is required to determine a solution. The control 
variables may include those variables describing the initial state of the modeled 
system at the start of the assimilation interval, those representing parameters of 
the model, and those representing parameters of the forcing during the 
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Figure 1. Schematic of the steps involved in the data assimilation scheme. 

assimilation interval. The adjoint technique provides a method to find the best 
estimates of the control variables, which subsequently determine the evolution 
of the state of the physical system being modeled. These estimates are best with 
respect to the error statistics of the observations, and the model results using 
these estimates satisfying the dynamics of the model equations and the 
prescribed forcing. 

Let the vector x = ( x  1, . . . ,  Xm) denote the model control variables. The 
model can be thought of as a sequence of calculations, starting with arbitrary 
values assigned to the control variables, where each quantity calculated is a 
value of a model dependent variable. The model variables are given by the 
vector z =  (z  1 . . . . .  ZN) and the collection of observations, or data, are 
represented by the vector d = ( d l , . . . ,  dp). Similarly, let the output  of the 
model form a vector consisting of quantities to be compared with the data, 
called model equivalents of the data, and let it be represented by the vector 
a = ( a a , . . . ,  ap). A cost function is defined to provide a measure of the misfit 
between the model equivalents of the data and the data. The values of the 
control variables that give the minimum of the cost function will define the 
model state that best fits the data. A typical form for the cost function is a 
weighted sum of products of the differences between the model equivalents of 
the data and the data and can be written as 
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J =  �89  l ( d -  a). (1) 

The matrix A-  1 is ideally the inverse of the error covariance matrix for the 
observations. If A-  1 is approximated by a diagonal matrix, J becomes a 
weighted sum of squares. Since the goal of the assimilation process is to 
minimize the cost function with respect to the control variables, this technique 
is best described as a least-squares method when a cost function of this form is 
used. 

From the definition of the cost function, d depends on the vectors x and z 
through the output a, J =  d (x, z). For the construction of the adjoint model, it 
is helpful to express the cost function as the last of the variables to be calculated 
in the sequence of calculations that represent the model. The equation 
zN + 1 = J (x, z l , . . . ,  zN) states that the value in z n +,  is the cost dresulting from 
the model starting with the input x. Iff~, for i=  1 , . . .  N +  1, represent functions 
in the space of all possible values for the xs and zs, then the sequence of model 
calculations can be expressed as 

zl  = fx (x ) ,  Zn=L(x, z 1 , z 2 , . . . , Z n _ x )  , for l < n ~ < N + l .  (2) 

The adjoint technique uses the gradient of the cost function in the space of 
the control variables to determine a direction to change the values of the 
control variables in order to minimize the cost function. However, the cost 
function is typically not expressed explicitly in terms of the xs, and the gradient 
calculation would therefore require extensive application of the chain rule. In 
order to avoid this difficulty, Lagrange multipliers are introduced. Although 
the introduction of these variables increases the number of variables involved, 
the technique facilitates the calculation of the partial derivatives of the cost 
function with respect to the components of the input vector x. Hence, the 
Lagrange function, L, is introduced as 

N+I  

L(x, z, )~)=zN+l--)].l(Zl--/l(X))-- Z "~i(zi--fi( x, Z l , ' ' ' ,  zi-1)), (3) 
i=2 

where 2 =  (21, . . . ,  J~N+ 1) is the vector of Lagrange multipliers. As shown in 
appendix A. 1, at a saddle point of the Lagrange function, that is, a point in x, z, 
2 space where the partial derivatives of L vanish simultaneously, one obtains 
the model equations (2), the adjoint equations of the form, 

N+I c~fi 2 i, n = N ,  1 (4) )~N+I=I and 2 ,=  i=,+,~ ff~z, " ' "  

and expressions for the gradient of the cost function with respect to the initial 
inputs to the model 
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O L _ N + I  Of 2i, l<~k<~m. (5) 
Ox~ 2 - ~ x  k i=1  

It is the form of the Lagrange function given in (3) on which the technique for 
construction of the adjoint code is based, as discussed in the following section. 
The adjoint equations (4) can be used to find all of the Lagrange multipliers, 
which are then used in (5) to find the components of the gradient of the cost 
function. It is this gradient that provides the information on the direction to 
modify the control variables for the next step in the iterative process. 

It should be noted that there are no restrictions put on the forms of the model 
equations as given in (2). In this equation any model variable, z i, can in theory 
depend on all of the previously calculated variables (as well as the control 
variables). However, in practice any model varible typically depends explicitly 
on only a few of the previously calculated variables, and hence the form of the 
equations is not as complicated as indicated here. Additionally, the functionsf~ 
need to be differentiable in some neighborhood of the cost minimum and the 
cost function must be differentiable with respect to its explicit arguments. It 
should be noticed that in practice the implementation of the adjoint equations 
(4) is performed in the reverse order than the operations for the model 
equations. 

2.2. Constructing the adjointfrom model code. In most applications of the 
adjoint technique, construction of the computer code for the adjoint model is 
from the continuous or discrete form of the model equations or relies on model 
equations that have been linearized in terms of the control variables. The first 
approach often requires difficult calculations. The second, referred to as the 
linear tangent model technique, requires the development of the computer code 
for the linear tangent model. The technique introduced here is not based on 
either of these techniques. This technique does not require the linearization of 
the model code, nor does it use a computer program construction of the 
adjoint. This technique provides a straightforward method of constructing the 
code for the adjoint model and is particularly useful when the model is not very 
complicated. Here the adjoint code is constructed directly from the model code, 
where one line of model code leads to one or more lines of adjoint code. Since 
this technique consists of applying rules to each line of model code, it provides a 
straightforward method of adjoint code construction, thereby greatly reducing 
the chance of introducing errors. 

For this technique it is useful to think of the model as a sequence of 
calculations and the computer code for the model as a description of those 
calculations. In this sense each line of computer code in the model can then be 
thought of a single calculation in this sequence. This means that there is an 
analogy between a model equation that can be written in the form 
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Zk =fk(X, Z 1, Z Z , . . . ,  Zk_ 1), (6) 

and a line of computer code that can be described as 

Y =  G(X, . . .). 

With this notation, the variable Y is redefined by a statement on the right side 
of the equation that involves the variable X and other variables. Notice in (3) 
that terms of the Lagrange function consist of products of Lagrange multipliers 
multiplied by differences between the left and right sides of the model 
equations. Hence, by thinking of each line of computer code as a model 
equation, a Lagrange function can be constructed in exactly the same form as 
the function given in (3). To illustrate this technique, let Xrepresent a control 
variable in the model equations, Y represent a dependent variable, and Z an 
intermediate variable that is used in the calculations. Two typical lines of model 
code can be represented by 

Y = G ( X ,  . . . )  

Z = F ( X ,  Y , . . . ) .  (7) 

For this example the Lagrange function would be of the form 

L = . . . - 2 r ( r - a ( x , . . . ) ) - - 2 z ( Z - - F ( X ,  Y , . . . ) ) +  . . . .  (8) 

Recall that in the description of the Lagrange function, (3), Lagrange 
multipliers were introduced for each model variable, z k . Hence, in the context 
of computer code Lagrange multipliers will be introduced for each variable, 
appearing on the left side in any line of code. Notice that it is not necessary to 
ever construct the Lagrange function, and it is only given here to show the 
connection between the Lagrange function that would be constructed from 
lines of code and the function given in (3). 

Requiring that the derivatives of (8) vanish with respect to the control 
variables, dependent variables, and the Lagrange multipliers yields the 
gradient of the cost function, the adjoint equations, and the model equations, 
respectively. For example, the partial derivative of L with respect to the 
Lagrange multiplier for Y, 2 r, vanishes when OL/02 r = 0, giving the original 
line of model code Y= G ( X , . . . ) .  However, the adjoint equations are derived 
from the equations for the partial derivatives with respect to the control and 
dependent variables (see appendix A.1 for details). The requirement that the 
derivative of (8) vanishes with respect to Y gives the following equation, 

0L 2r + 2z OF O y -  ~ + . . .  =0  (9) 

which is equivalent to 
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OF 
2y=2 z ~-~+ - . . .  (10) 

Thus, for the dependent variable Y, the line of model code, Z =  F(X, Y, . . . ) ,  
results in a contribution to the Lagrange multiplier of Y by the amount  
2zOF/O Y, where Z is the variable that appears on the left side of the equation. 
Since these terms must be accumulated for every equation where Y appears on 
the right side, the equation that appears in the adjoint code is 

OF 
2 r = 2 r + 2 z  0Y' (11) 

where care must be taken to initialize to zero the value stored in the variable 
names for the Lagrange multipliers. 

The rule for construction of lines of adjoint code for a dependent variable will 
also apply when the variable is a control variable, denoted in these equations 
for lines of code by X. Recall that the component  of the gradient of the cost 
function in the direction of X is the partial derivative of L with respect to X. 

Le t t ing  the component  of the gradient be stored in the variable name of the 
Lagrange multiplier for X, 2 x, the line of model code Z = F(X, Y , . . . )  leads to a 
line of code in the adjoint of the form 

0F 
2x=2x+2z OX" (12) 

Notice that this is exactly the same rule that was used when the variable was a 
dependent variable, rather than a control variable. The difference here is that 
the value stored in the 2 x is, in fact, the component  of the gradient of the cost 
function in the direction of the control variable X. This means that the repeated 
application of a single rule is all that is necessary to construct the adjoint code 
with the components of the gradient being equal to the Lagrange multipliers of 
the control variables. Again, it is important  to realize that the computations in 
the adjoint equations are done in the reverse order of those in the model. Hence 
this line-by-line generation of the adjoint code must be done by reversing the 
order of the calculations in the model code. Details on how to check the adjoint 
computer code construction for errors are given in appendix A.2. 

2.3. Combinin9 the model, adjoint, and optimization. In the scheme 
described in the above sections, one output  from the model is the value of the 
cost function, which gives a measure of the misfit between the model-derived 
values and the measured values. The adjoint equations then transform these 
misfits into the gradient of the cost function. The gradient is then used to find 
the direction to adjust the model control variables in order to decrease the 
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difference between the model output and the data. Once the direction is found, 
the step size, that is the size of the change in that particular direction, must be 
determined. After the variables are adjusted by the calculated step size and 
direction, the model is again applied and the process repeated. Hence the 
iterative procedure consists of a model run, an adjoint run, and a step size 
calculation (Fig. 1). For linear models with a cost function of the form 
presented in (1), the number of iterations required to converge to the minimum 
of the cost is theoretically equal to the dimension of the vector of control 
variables, x. However, most models of physical phenomena are non-linear and 
require many more iterations. 

The step size calculation, referred to as a line search, is usually done with 
standard optimization packages based on methods such as steepest descent 
and quasi-Newton. For the results presented here, a variable-storage quasi- 
Newton optimization procedure was used. This routine, N1QN3, is based on a 
technique described by Nocedal (1980), which has been further developed by 
Gilbert and Lemar+chal (1989). This procedure incorporates past history to 
determine the direction in which to modify the control variables in order to 
minimize the cost function. Other optimization packages were tested and these 
yielded no significantly better results. For comparison studies of various 
optimization packages see Gilbert and Lemar6chal (1989) and Zou et al. 
(1993). 

3. Predator-Prey Model and Data Assimilation. The predator-prey model 
used in this study is given by 

d x  
dt - x(al +azx  +a3y) (13) 

dy 
-- y ( a  4 + a s y  -t- a6x) ,  (14) 

dt 

where x represents the concentration of the prey and y represents the 
concentration of the predator, given in number m - 2. The model coefficients are 
defined in Table 1. For this model, once the values for the coefficients and 
initial conditions are specified (Table 1), the solution is completely determined. 
This predator-prey model is standard and the properties of the solution to this 
model are well known. From an initial condition, the predator and prey 
concentrations converge to an equilibrium solution (Fig. 2a) after an initial 
adjustment (Fig. 2b). For the purpose of this study, (13) and (14) were solved 
numerically using an Euler scheme with a time step of 0.001 d. 

Identical twin numerical experiments, that is, experiments where data are 
generated by the model, were used to test the data assimilation method. For the 
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Table 1. Definitions and values of the coefficients used in the predator-prey model. The 
solution obtained for this set of parameters is shown in Fig. 2 

Variable Definition Units Value 

x Prey concentration Number m-2 Calculated 
y Predator concentration Number m-2 Calculated 
a~ Prey specific growth rate d- a 4 
a 2 Prey density dependence (Number m- 2) - 1 d- 1 - 2 
a 3 Prey loss rate (Number m- 2 )  - 1 d- ~ -- 4 
a 4 Predator specific loss rate d- a - 6  
a 5 Predator density dependence (Number m- 2)- 1 d- 1 2 
a 6 Predator growth rate (Number m- 2)- 1 d- 1 4 
x~ Prey initial concentration Number m -2 1 
y~ Predator initial concentration Number m-2 1 

fo rm given in (13) and  (14), the con t ro l  variables  consist  of  the coefficients ai, 

1 ~< i ~< 6, and  the initial condi t ions  x 1 and  y l .  In  te rms of  the n o t a t i o n  used in 
the discussion above ,  we are choos ing  the vector  of  con t ro l  var iables  x = (a~, 
a2, �9 �9 �9 , a6, x l ,  Yl). T h e  dependen t  mode l  variables  and  the m o d e l  equivalents  
of  the da t a  are the same quant i ty ,  which  is the concen t r a t i on  of  the two species 
as a funct ion  of  time. P a r a m e t e r  values and  initial condi t ions  for  the model  
were specified (Table  1) and  the t ime-dependen t  concen t ra t ions  of  the p r ed a to r  
and  p rey  were compu ted .  These  t ime-dependen t  d is t r ibut ions  were then  
subsampled  to ob ta in  a da t a  set. The  mode l  was then  re run  wi th  a rb i t ra ry  
values specified for mode l  coefficients a n d / o r  initial condi t ions .  T h e  da ta  for  
the p r e d a t o r  and  p rey  concen t ra t ions  were then  input  in to  the da ta  
ass imilat ion scheme in o rder  to  recover  the or iginal  values of  the mode l  
coefficients a n d / o r  initial condi t ions .  Ident ica l  twin exper iments  p rov ide  a self- 
consis tent  da t a  set for  da t a  ass imila t ion and  are used rou t ine ly  to  test da ta  
ass imilat ion procedures .  

The  cost funct ion  tha t  measures  the differences be tween  the m o d e l  o u tp u t  
and  the da ta  was def ined to be 

J =  1 + 
2 i  

(15) 

where  x i and  Yi are the mode l -de r ived  est imates  and  xi and  33i are the d a t a  values 
for  the prey  and  p reda to r ,  respectively.  The  s u m m a t i o n  is over  indices i which 
c o r r e s p o n d  to t imes for which da ta  exist. Since the cost  funct ion  given in (15) is 
quadra t i c  in form,  the assimilat ion p rob l em  is essentially a least-squares  
op t imiza t ion  p rob lem.  This fo rm of  the cost  funct ion  is equiva len t  to the 
def ini t ion of  the cost funct ion  given in (1) where  the covar iance  m a t r i x  is t aken  
to  be the ident i ty  matr ix .  
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Figure 2. (a) Phase plane representation of the solution to the predator-prey model. 
Dashed lines are the predator and prey isoclines. Solid line is the trajectory of the 
solution. (b) Time domain representation of the solution to the predator-prey 

model. Time is in days. 

3.1. Construction of the adjoint code. Given the code for the model, the 
method outlined above is easily applied to obtain the code for the adjoint. The 
following is an example of the application of this method in which a single line 
of model code is used to generate the lines that appear in the adjoint code. 

In the development of this code a(1), . . . ,  a(6) are used for the model 
coefficients, x(n), y(n) are used for the x and y concentrations at time step n, and 
nmax denotes the maximum number of time steps. The computer code labels 
for the Lagrange multipliers are given by the model variable name preceded by 
an 'a'. For example, the Lagrange multiplier for a(1) is aa(1 ) and that for x(n) is 
ax(n). Recall that Lagrange multipliers will be used for each of the original 
coefficients, for the x and y values at each time step, and for the cost J. 
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The following lines of model code 

do 13 n = 1, nmax-1 

x(n+ 1) = x(n) ,  (1. +dr ,  (a(1)+a(Z),x(n)+a(3),y(n))) 

13 enddo 

produce the following statements in the adjoint code: 

do 23 n=nmax-l ,1 , -1  

aa(3)=aa(3)+dt , y(n),  x (n) ,ax(n+ 1) 

aa(2)=aa(2)+dt , x(n) ,  x (n) ,ax(n+ 1) 

aa(1)=aa(1)+dt , x (n) ,ax(n+ I) 

ay(n) = ay(n) + dt �9 a(3) �9 x(n) �9 ax(n + 1) 

ax(n)=ax(n)+dt ,a (2) ,  x (n) ,ax(n+ 1) 

ax(n) = ax(n) + (1. + dt * (a(1) + a(2) �9 x(n) + a(3) �9 y(n))) �9 ax(n + 1) 

23 enddo 

It is important that the variable names that store the Lagrange multipliers be 
initialized to zero upon entering the adjoint code. Also the construction of the 
adjoint code is done by following the model code in the reverse order of the 
calculations. 

4. Results. 
4.1. Basic predator-prey model. The most rigorous test of the data 

assimilation procedure was to attempt to recover values for all of the model 
coefficients and initial conditions. For this case, initial choices for the model 
coefficients and prey and predator initial conditions were made (Table 2) and 
data on the prey and predator concentrations were assimilated. The data set 
used for assimilation consisted of every other predator and prey concentration 
from the first 500 time intervals of the total data set (Fig. 2), which gave 250 
data points. (The trajectory shown in Fig. 2 consists of 15,000 time intervals, 
that is, 15 days.) The recovery of all six model coefficients and initial prey and 
predator concentrations for these conditions is shown in Fig. 3. 

The initial conditions were essentially recovered within the first 20 iterations 
(Fig. 3c). Once these values were found, the model coefficients were recovered 
with the recovery of the actual values of the prey coefficients (Fig. 3a) slightly 
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Table 2. Summary of the initial parameter values that were chosen for the data assimilation 
experiments. Also given are the modifications made to the basic predator-prey (PP) model  
given by (13) and (14) for the different cases and the prey (Pr) and predator (Pd) data  that 

were assimilated. The results from the different cases are shown in the indicated figures 

Case a~ a 2 a 3 a 4 a 5 a 6 x 1 Y l  Model  form Data  input Results 

C a s e I  1 0 0 - 1  0 0 2 2 PP  P r a n d P d  F i g s 3 a n d 4  
Cone. 

CaselI 1 0 0 -1  0 0 2 2 PPscaledby PrandPd Figs5and6 
a t Conc. 

CaseIII I 0 0 -I 0 0 2 2 PP PrConc. only No 
convergence 

Case IV 1 0 0 -1  0 0 2 2 PPwith PrandPd Fig. 7 
a 3 = -- a 6 Cone. 

C a s e V  1 0 0 - 1  0 0 2 2 P P w i t h  P r C o n c .  only Fig. 8 

a 3 = _ a 6 
C a s e V I  1 0 0 - 1  0 0 0.1 0.1 PP  P r a n d P d  Fig. 9 

Cone. with 
random noise 

preceding the recovery of the predator  coefficients (Fig. 3b). In all cases, the 
exact original values (to four significant figures) were recovered. The value of 
the cost function rapidly decreased during the recovery of the initial conditions 
(Fig. 3d) and again later in the recovery process when the exact values of the 
coefficients were found. The pattern of initial adjustment of the initial 
conditions followed by the adjustment of the model coefficients was observed in 
all of the numerical twin experiments, suggesting that the initial values 
contribute more to the data misfits than the model parameters. 

Additional numerical twin experiments (not shown) resulted in the recovery 
of all six model coefficients and initial values with as few as five data points of 
both predator  and prey concentrations (1 point per 100 model time steps). 
However,  the number  of iterations required for convergence was much larger. 

The ability to recover model coefficients and initial conditions and the 
iterations needed for the recovery are dependent on the structure of the cost 
function. For  a nonlinear model, this structure can be quite complex and, for 
some cases, multiple minima are possible, which can result in nonunique 
solutions. In the present study, the cost surface is a function of all six model 
coefficients and two initial concentrations. A representation of the cost 
function would require an ability to plot in a nine-dimensional space. However, 
limited views of the cost surface are possible, such as the two-dimensional 
subspace representation of the logarithm of the cost function shown in Fig. 4. 
The prey growth and density dependent  coefficients were varied and the other 
six parameters were fixed at their true values. This cost surface has a distinct 
min imum that corresponds to the true values of the coefficients a I and a 2 . 
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Figure 3. Recovery of the model coefficients for the (a) prey equation, (b) predator 
equation and the (c) predator and prey initial conditions for the basic predator-prey 

model, and the (d) logarithm of the cost function. 

4.2. Modified predator-prey model. Modifying the structure of the 
predator-prey model from that given in (13) and (14) can alter the shape of the 
cost surfaces and thus the characteristics of the recoveries. To demonstrate this, 
the predator-prey model was written in the mathematically equivalent form 

d x  
~[ = b~x(1 + b2x + b3y ) (16) 

dy 
dt - b4y(1 + bSy + b6x)' (17) 

where b 1 = a l ,  blb2=a2, etc. Using initial choices for the coefficients that 
correspond to the base case and the same data resolution (Table 2), it is still 
possible to recover all six model coefficients (Fig. 5a,b) and initial conditions 
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Figure 4. A representation of the structure of the logarithm of the cost function from 
the basic predator-prey model in the two-dimensional subspace (a t, a2). 

(Fig. 5c). However, there is an increase in the number of iterations required for 
recovery. 

This result can be explained by examining the structure of the logarithm of 
the cost surface in the subspace bl,  b 2 (Fig. 6). Unlike the surface from the basic 
predator-prey model, the axes of the contours in parameter space are no longer 
along straight lines. For a steepest descent technique (movement in the 
negative of the gradient) convergence is most rapid if the gradient lies on a line 
passing through the point at which the minimum cost is obtained. Although the 
optimization routine used in the present study was based on a quasi-Newton 
method, and the descent directions are not simply the negatives of the gradient, 
the curved nature of the axis of the trough in the cost surface contours results in 
a less rapid convergence. 

4.3. Data availability. For some biological systems, it may not be possible 
to obtain simultaneous measurements of predators and prey. For example, 
concurrent measurements of zooplankton and phytoplankton in marine 
systems are difficult to obtain, especially for time scales of more than a few days. 
This would correspond to having observations for either x or y, but not both. 
In marine systems, observations for phytoplankton (prey) are usually available 
and this is also the quantity that can be measured from satellites. Hence, several 
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Figure 5. Recovery of the model coefficients for the (a) prey equation, (b) predator 
equation and the (c) predator and prey initial conditions for the modified 

predator-prey model, and the (d) logarithm of the cost function. 

numerical experiments were done in which only prey observations were used 
for the data assimilation (Table 2). These data were input at different time 
resolutions. For all cases, it was not possible to consistently recover values for 
the six model coefficients and prey and predator initial conditions. This would 
seem to present a problem, then, for using satellite-derived measurements with 
predator-prey models. 

However, if it is assumed that the prey and predator are linked by a common 
process, which is manifest in the mathematical model as a common coefficient, 
then parameter recovery is possible. For example, when a 3 = - a  6 the 
coefficients on the coupling terms of the model equations are such that there is 
strong feedback between the prey and predator. Using this convention, 
parameter recoveries were done where data were input for the  prey and 
predator (Fig. 7) and the prey only (Fig. 8). Initial choices for the parameters 
are given in Table 2 and the predator and prey data sets were constructed as 
done for the basic model (Fig. 3). 



DATA ASSIMILATION TECHNIQUE 609 

Figure 6. A representation of the structure of the logarithm of the cost function from 
the modified predator-prey model in the two-dimensional subspace (b 1 , b2). 

Comparison of the parameter recovery from the two cases indicates that the 
primary difference is the large increase in the number of required iterations 
when data are available only for the prey. An order of magnitude increase 
occurs in the number of iterations, which greatly increases computat ion time, 
However, in spite of this, it is encouraging that all of the model coefficients and 
initial conditions can be recovered. It is interesting to note that when no 
measurements are available for the predator, the data assimilation scheme just 
adjusts the initial value for x and then adjusts the value for y and the model 
coefficients simultaneously. In this regard, the value of y is treated as simply 
another model parameter. 

4.4. Data noise. For the numerical experiments described in the previous 
sections, the data input for data assimilation were assumed to be perfect, i.e. 
random and measurement errors were not  allowed. However, data sets 
acquired for biological systems are not perfect and have a level of uncertainty 
associated with them. To investigate the effect that non-perfect measurements 
can have, numerical experiments (Table 2) were done in which normally 
distributed random noise with varying amplitude was added to the input data 
sets. The percentage of noise that was added to any data value varied between 1 
and 20% of the value. Hence, these experiments simulated uncertainty that is 
inherent in data. 

In general, the addition of noise to the data results in convergence to model 
parameters and initial conditions that are different from those of the true values 
(Fig. 9). The amount  by which the recovered parameters are perturbed from 
the true values is related to the amount  of noise in the input data. However, for 
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Figure 7. Recovery of the model coefficients for (a) prey equation, (b) predator 
equation and the (c) predator and prey initial conditions when the prey and 
predator are coupled through a common coefficient, and the (d) logarithm of the 

cost function. 

the predator-prey model used in this study, the amount  of displacement from 
the true values was small, even for a high percentage of noise. The density 
dependence coefficient in the prey and predator equations was the coefficient 
most affected by noise in the input data. Predator and prey initial conditions 
appeared to be equally affected by noise. 

5. Discussion and Summary. A straightforward method of constructing the 
adjoint model code has been introduced that can be used to simplify the 
application of data assimilation schemes. The results obtained with this 
approach illustrate that this technique can be used with predator-prey type 
models to recover values for model coefficients and initial conditions. This is a 
powerful technique for biological systems where values for growth and 
mortality rates and initial conditions are often difficult or impossible to obtain. 
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equation and the (c) predator and prey initial conditions when data are input for the 

prey only, and the (d) logarithm of the cost function. 

By having some information on species concentration or abundance over time, 
these rates can be obtained, assuming that the structure of the biological model 
is appropriate. For the cases presented, recovery of model coefficients was 
possible for all situations. Recovery of initial conditions was possible for all 
situations, except when the initial choices were in regions where one or both 
species increased without bound,  i.e. the predator and prey systems were 
decoupled. However, for initial choices that were within the range of the true 
value as determined by biological and physical contraints, parameter recovery 
was always possible. This is not a severe limitation for most biological systems. 
Even the addition of noise to the input data sets did not significantly alter the 
ability to recover values from the data assimilation. 

Perhaps the most encouraging result from this study is the ability to recover 
parameter values and initial conditions when data are available for only part of 
the biological system. However, when limited data are available the structure 
of the biological model needs to be carefully considered. In particular the 
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Figure 9. The effect of noise in the predator and prey data sets input for data 
assimilation on the values recovered for the (a) prey and (b) predator coefficients 
and (c) initial conditions. In each panel the differences between recovered and true 

values normalized by the true value are shown. 

processes that couple ecosystem components must be well formulated because 
it is these forms that transfer information from the observations to the other 
model components. Thus, one use of the adjoint technique is to investigate the 
structure and dynamics of marine ecosystem models, as opposed to using data 
assimilation as a forecasting tool. 

With advances in technology, the array of data types and the frequency at 
which measurements are made will continue to increase. Within the 
oceanographic community, more emphasis is being placed on satellites, 
acoustic and optical instruments to provide measurements of marine food web 
components. The data streams from these instruments are enormous. Hence, 
the development of models with data assimilation capability are an essential 
part of the management and analysis of these data (GLOBEC, 1991; Abbott, 
1992). In particular, the availability of ocean circulation models and satellite- 
derived distributions of biological quantities, such as the pigment distributions 
associated with marine phytoplankton distributions derived from the Coastal 
Zone Color Scanner (Yoder et al., 1988), have resulted in an interest in 
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improving coupled circulation-ecosystem models by the use of data assimila- 
tion. 

The first attempt at using satellite-derived ocean color distributions with a 
coupled circulation-ecosystem model consisted of simply replacing the 
simulated phytoplankton fields with the ocean color fields whenever such data 
were available (Ishizaka, 1990; Ishizaka and Hofmann, 1993). This study 
showed clearly that insertion of data for even a part of the marine ecosystem 
significantly improved the reliability of the simulated distributions. This 
approach was also useful in narrowing the range of values for several of the 
model parameters, such as phytoplankton growth rates. However, simply 
overwriting the model predicted fields with existing data (i.e. data insertion) 
has several problems associated with it. The results are never more accurate 
than the last data inserted, it is not possible to average redundant or similar 
information to reduce random effects of errors, and the model can be 
dynamically unbalanced due to injection of information into evolving 
solutions. This latter problem is especially acute for marine ecosystem models 
where inserting observations on one ecosystem component requires adjusting 
the other ecosystem components for which there are usually no measurements 
(Ishizaka, 1990, 1993). Hence, general application of data insertion is limited 
by available measurements and by knowledge of population parameters such 
as growth rates. The adjoint technique described here provides an alternative 
approach for assimilation of data into marine ecosystem models. The results of 
this study are a first step in this process. 
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A P P E N D I X  

A.1. Lagrange Function. The model equations (2), the adjoint equations (4), and the 
components for the gradient of the cost function (5) are obtained by finding a saddle point of the 
Lagrange function (3), that is, a point  in x, z, ). space where the partial derivatives of L vanish 
simultaneously. At a saddle point 

c~L 0L 0L 
- -  = 0 and - - 0, 
0x k 0z. 82. 
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where k=  1 . . . . .  m and n =  1 . . . .  , N +  1. The requirement that 0L/82,=0, for n = 1 , . . . ,  N +  1 
simply returns the model equations (2). The condition that 

8L 
- 0  

~ZN + I 

gives 

•N+,=I. 

From (3) the partial derivatives of L with respect to the dependent variables give 

OL _ 2, + ~ ' 2~ = 0 for n = N, . . . 1 
~Z n i = n + l  

which implies that 

N+I c~fi 21, n=N,  2,=,=,+1Z ~ . . . .  1. (A1) 

Knowing 2N+ ~ = 1 it is possible to use this equation to calculate the remaining Lagrange 
multipliers. Notice that the calculations are done in the reverse order of those in the model 
equations. Finally, the equations that result from the condition that the partial derivatives of L 
with respect to the control variables vanish give the equations 

8 L _  "2i, l~<k~<m. (A2) 
~Xk i = 1 

That these give the components of the gradient of the cost can be seen as follows. Restricted to 
regions in space where the model equations are satisfied, a saddle point of L corresponds to a 
point where the gradient of the cost function Jis zero, that is, VxJ= 0. Using (3) it can be seen that 
for x ,z  where the model equations are satisfied L=ZN+I=J, SO that VxJ=VxL. Since 
L=L(x,  z, 2) and z and 2 depend on x, by the chain rule 

8L N+I [8L Oz i t?L t?2i\ 

But at a saddle point for L we have 8L/Sz~=OL/O2i=O for l <~i<~N+ 1 so that 

8L 

Hence (~7xJ)k = 8L/(~X k or VxJ= OL/Sx. The values of the Langrange multipliers are found by (A 1) 
and then used in (A2) to calculate the components of the gradient of the cost function. Hence the 
adjoint equations map the cost function to the gradient of the cost function using the Lagrange 
multipliers as intermediate variables. 

A.2. Verification of the Adjoint Model. Errors that may be introduced during construction of 
the adjoint code can be detected by perturbing the input vector, x, by an amount sa, where u 
denotes the direction along which x changes and s, a scalar, is the amount of the change. This 
change in the input will produce a change in the model output a to a value a' where 6a = a ' -  a. 
For a fixed direction u, the cost is a function of the scalar s and changing s by 6s = ds = So, the 
change in the cost function is given by 
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dj_-ffds= dJ 
ds ds s~ 

However, thinking of the cost as a function of x, the change in the cost can be approximated by 

dJ,~ VIJ" dx = VIJ' (SoU) = soV~l". = so(VxJ) TU. 

Hence 

(VxJ) ru = d J  
T~ 

Using the form of J given in (1), the change in the cost function can be written as 

~ =(d-a)rA-l(-~ss) .  
\ 

However, for very small step sizes s o, we have da/ds~6a/fis=6a/s o. Substituting into the 
equation above gives 

d_J = _ ( d - a ) T A  - i  ~a  = (VxJ) ru. 
ds s o 

Hence in the limit as s o goes to 0 we have 

lim - ( d - a ) r A - 1 6 a  1. 
solO so(VxY)~. 

The numerator of this equation is determined from the model while the denominator is found 
using the adjoint. If there are no errors in the adjoint code this ratio should approach 1. It is 
possible to use for the vector u the gradient of the cost function. Although there are no restrictions 
to the choice of the vector u this scheme will not detect errors in directions of variables that are 
orthogonal to the vector u. 
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