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It is believed that the native folded three-dimensional conformation of a protein is its lowest free 
energy state, or one of its lowest. It is shown here that both a two- and three-dimensional 
mathematical model describing the folding process as a free energy minimization problem is NP- 
hard. This means that the problem belongs to a large set of computational problems, assumed to 
be very hard ("conditionally intractable"). Some of the possible ramifications of this result are 
speculated upon. 

1. Introduction. A protein is a sequence of amino acids, created as an 
essentially linear sequence from the well-understood genetic code inherent in a 
DNA chain, with semi-rigid bonds between pairs of amino acids which are 
adjacent in the linear sequence, and other, less rigid bonds between some other 
amino acids. The protein then folds into a complex three-dimensional native 
conformation, which determines its biological function. The folding mechanism 
is not known, but it is believed that the native folded conformation of a protein 
is its lowest free energy state (Anfinsen, 1973). Typically a protein consists of 
1000-20,000 atoms and has a "diameter" of 35-100 A (1 A = 10- 8 cm). 

One approach to model protein folding is to consider the protein to be a 
collection of hard impenetrable spheres (atoms) held together by elastic strings 
(covalent bonds). The atoms have electric charges that obey Coulomb's law 
(Levitt and Lifson, 1969). The electromagnetic force between any two atoms 
diminishes as d-2  and the potential energy as d-1,  where d is the distance 
between a pair of interacting atoms. The interaction is really between every 
atom of the protein and every atom in the universe! Yet within ca 1 sec the 
protein attains its final native three-dimensional conformation. Some chemical 
physicists simulate this system, where they will typically neglect forces between 
atoms at a distance > 6 A. Under  this simplifying assumption simulation of 
1 nsec  (10 - 9  sec) of the protein folding process still takes some 150 hr on a 
modern main-frame computer (Levitt and Sharon, 1988). For more informa- 
tion about protein folding see e.g. Gierasch and King (1990). 
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In Section 2 we give some background on computational complexity and 
NP-completeness and in Section 3 we present a two-dimensional model of 
protein folding and prove it to be NP-complete. The result has been announced 
in Fraenkel (1990). We also indicate how the proof can be extended to a three- 
dimensional model. In the final Section 4 we speculate about possible 
ramifications of this and other NP-complete models of fragments of nature. 
Recently Unger and Moult (1993) have shown a three-dimensional protein 
folding model to be NP-complete. 

2. Computational Complexity and NP-Completeness. The computational 
complexity of a problem is usually measured in terms of the number of "steps" 
or "time" to solve it, as a function of the problem's input size. A problem is 
called tractable if this function is polynomial; intractable otherwise. Thus, 
sorting n integers is tractable: it can be done in O(n log n) comparison steps. 
The following reasons motivate this convention: 

(1) Normally, only tractable problems can be solved on a computer in 
reasonable time. Suppose that each of the problems ~1, ~2 and ~3 has 
input size n and that the best algorithms (= "lower bounds") for solving 
them need n, rt 2 and 2" steps, respectively. If the rate of our machine is 
106 steps/sec then for n=  60, rc 1 requires 0.00006 sec for execution, rc 2 
0.0036 sec and rc 3 366 centuries! 

(2) The input size of a problem that can be solved in a reasonable fixed time 
is of practical value only for tractable problems. Thus, for say 5 hr of 
uninterrupted computation ~1 can have input size 18 x 109; 7z 2 has size 
13.4 x 104 and rc 3 only 34. Moreover, any 10-fold gain in speed that 
technological advances may yield increases the size of a problem with an 
O(n k) algorithm that may be solved in a fixed time by the factor 10 l/k, 
whereas the size of a problem with an O(c") algorithm is increased only 
by an additive amount of log c 10 (c> 1, a constant). 

(3) The most simplistic approach to solving a problem is to explore its entire 
"search tree", i.e. searching through all possibilities. Except for trivial 
problems, this search constitutes an exponential algorithm. Thus, a 
problem whose best algorithm is exponential has often no essentially 
better algorithm than to search through all or most possibilities. 

(In reality the world is not so simple; mostly in the pessimistic direction: 
there are problems which are polynomial and still appear to be intuitively 
intractable in two different senses ! This is implied by the recent Robertson and 
Seymour (1988) theory in graph minors.) 

Many problems can be shown to be tractable, simply by producing a 
polynomial algorithm for them. Some problems can be proved to be 
intractable. However, for the bulk of interesting problems both tractability and 
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intractability appear  to be rather difficult to establish at present. For  a large 
subset of them we can do the next best thing, which is to establish completeness, 
such as NP-completeness.  For  the m o m e n t  we restrict at tent ion to decision 
problems, i.e. problems for which the answer is YES or NO.  

A decision problem rc is NP-comple te  if: 

(i) Given any solution for re, its validity can be verified in polynomial  time 
(but there may  not  be a deterministic polynomial  algori thm for finding a 
solution; we say that  the problem has a "nondeterminist ic" algorithm). 
So the P of N P  stands for Polynomial ,  N for Nondeterminist ic .  

(ii) If rc can be shown to be tractable then all NP-comple te  problems are 
tractable; if ~ can be shown to be intractable then all NP-complete  
problems are intractable. 

Since the best known algori thm for any NP-comple te  problem is at present 
non-polynomial ,  all NP-comple te  problems are presently "practically intrac- 
table" or "conditionally intractable". For  a thorough  t reatment  of NP-  
completeness see Garey and Johnson  (1979). 

A c o m m o n  way to prove that  a problem ~ is NP-comple te  consists of three 
phases: 

(a) NP-Membership. Show (i) directly. This is usually, but  not  always, the 
easy part  of the proof. 

(b) Construction. Select an NP-comple te  problem r(, consider an arbitrary 
generic instance x of re' and select a function f such that  f(x) is some 
instance of rc a n d f ( x )  is constructed in time which is polynomial  in the 
size of x. This phase is normally called the polynomial  construction. 

(c) YES-Equivalence. Show that  the answer to x is YES if and only if the 
answer to f (x )  is YES. 

Phases (b) and (c) together are called a reduction of re' to re. Notat ion:  rc'oc re. 
The intuitive meaning of (a) and (b) should be clear: given an arbitrary 

instance x of ~', it is t ransformed polynomial ly into a particular ins tancef(x)  of 
~z (Fig. i). If rc is polynomial  then, in particular,  f(x) can be decided in 

Figure 1. The intuitive meaning of a reduction. 

polynomial  time; the answer to f (x)  is YES if and only if the answer to x is YES. 
Thus,  the polynomial  algori thm for solving n and the po lynomia l fcons t i tu te  a 
polynomial  algori thm for solving re'. Equivalently, ~' intractable implies n 
intractable. 

Within the so-called Turing machine model  (see e.g. Garey and Johnson,  
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1979) it is customary to denote by P the set of all tractable problems and by N P  
the set of all problems whose solutions can be verified in polynomial time. Then 
clearly P ~_ NP.  A major unsolved problem in theoretical computer science is 
whether P = N P  or not. It is customarily conjectured that P # N P .  Any NP- 
complete problem belongs to the hardest problems in NP, in the sense that if 
P # N P  then the NP-complete problems are intractable. 

Consider the problem: 

Three-dimensional matchin9 (3DM). Given three sets, X, Y, Z, with the 
same cardinality [X[=[ Y [ = [ Z I = q ,  and a collection, R ~ X x  Y x  Z,  does R 
contain a matching, i.e. a subset Mc__R with IMI--q, such that for every two 
distinct triples (xa , Yx , zl), (x2, Y2, z 2 ) 6 M  we have xa # x z , y~ # Y2, z~ #z2? 

Example. X = { X l , X 2 } ,  Y={yl,y2},Z={zl,Zz},andR={rl=(xl,Yl,Z2), 
r z=(x l ,  Y2, Z1), r3=(x l ,  Y2, z2), r4=(x2, Y2, z1)}" Then q=2 ,  k = 4  and 
M =  {rx, r4}. 

Whereas two-dimensional matching (only two sets and R consists of ordered 
pairs of terms from these sets), also known as the Marriage Problem, is well- 
known to be tractable, the problem 3DM is NP-complete. See e.g. Garey and 
Johnson (1979). 

3. NP-Completeness of Protein Folding. We consider the following two- 
dimensional model for protein folding. 

Minimum free energy conformation of  protein (MEP). Given a graph 
G =  (V, A) (with vertex set Vand edge set A), V c  7/x 7/(i.e. Vconsists of lattice 
points in the plane), A = A 1 w A 2, A 1 c~ A 2 = 0, a function C: V ~  { - 1, 0, 1 } (the 
charges), K~7/- (energy bound) and LcT/+ (maximum distance). Is there a 
rearrangement V' of Vwith V' c Z • 7/which preserves d(a, f) for all (tL f) e A l ,  
such that E~< K, where E =  ZC(~)C(f)/d(~, f), summed over all vertices t~-- (Xx, 
Yl), t~= (X2, Y2) with (tL ~)r and d<<.L, where d is the discretized Euclidean 
distance [-((x 2 - x 1)2 + (Y2 - Yl )2) 1/2q? 

Our purpose is to show that the decision problem MEP is NP-complete. The 
corresponding optimization problem--where we ask for min(E) rather than 
only E~< K--is then clearly not any easier than MEP. In general, if a decision 
problem 7~ 1 is NP-complete then its corresponding optimization problem 7r 2 is 
said to be NP-hard. We note that NP-hard problems are not any easier to solve 
than the NP-complete problems they correspond to. 

The NP-membership of MEP follows from the observation that, given any 
solution to MEP,  we have only to check that d(2, y) is preserved for all (2, 
)7) E A 1 and that E~< K, both of which can be done in time which is a polynomial 
in the input size of G. 
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We show 3 D M o c M E P .  Let X = ( x , , . . . ,  xq} ,  r = ( y , , . . . ,  yq}, Z = ( z , ,  
� 9  zq} and R =  { r ~ , . . . ,  rk} ___Xx Yx Z be an instance of 3DM. We have to 
construct  in polynomial  time a graph G = ( V ,  E ) ,  VeT/2, K, LeT/+ and a 
function C: V ~  { - 1,0, 1 } such that  R contains a matching M c_ R if and only if 
there is a rearrangement  V' of Vwith  V'  c 7/2 which preserves d(2, 37) for all (2, 
)7)EA1, such that  E < , K .  

The basic building block for constructing G is a "square" subgraph G 1 
(Fig. 2), consisting of four vertices on the corners of a unit  lattice square, 
connected by four edges in A 1, forming a circuit. The charges on the vertices are 
indicated in the four corners, where - denotes - 1 and + denotes 1. 

Figure 2. The  basic bui lding block G 1 . 

Using G 1 we construct  the larger subgraphs of G: the bed,  k rods  and k - q  
caches .  The bed consists of a b e d s t e a d  composed of two parallel horizontal  
bedstead rails, each of length 4(k + 3q) + 1, the left part  encasing the mattress of 
length 12q, consisting of 3q + 1 vertical cross  bars ,  part i t ioning the mattress 
into 3q p i l lows .  The right part  of the bed consists of the b e d p o s t  of length 4k + 1, 
containing k vertical c h e s t s  of heights 10+ 3i (14  i 4  k), measured from the 
upper  bedstead rail. The k (vertical) rod hand le s  have matching lengths. Each of 
the k (horizontal) rod blocs  contains three copies of G1, whose locations reflect 
ra , . . . , r k �9 Order  X w  Y w Z  as follows: 

X w  Y w Z =  { x l  , . . . , xq ,  Y l  , �9 �9 �9 , Yq, z l  , �9 �9 �9 , zq}. 

If r i = (xn,  y j ,  Zl) (1 ~< h , j ,  l<. q),  then the copies of G 1 on  the bloc of rod R i are at 
distances: 

( 4 ( k + 3 q - i + l - h ) + l ,  4 ( k  + 2 q - i +  l - j ) +  l ,  4 ( k  + q - i +  l - l ) +  l )  

from the rod handle o fR  i (1 ~ i ~< k). Each rod handle contains two copies ofG 1 , 
in addit ion to one copy of G~ (with four 0-charges) at the intersection of each 
rod handle with its rod bloc. 

The k - q caches are placed to the left of the left end of the bedstead rails, at a 
distance which is larger by 1 than the sum of the lengths of all the k rod blocs 
and handles from that  left end. The charges are distributed as indicated in 
Fig. 3, which describes the global construction,  which is complete by put t ing 
L =  1 and: 

K =  - 8 ( 2 k + 3 q ) .  
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~. 4(k+Sq)+1 

Figure 3. The global construction for the example at the end of Section 2. 

Note that each of the three G~-copies on the rod blocs has two + 1 and two - 1 
charges, distributed as shown in Fig. 3. The pillows have a complementary 
charge distribution, so that each G 1-copy of a rod bloc, when embedded in the 
center of a pillow, will contribute a minimum of - 8  to the energy. 
Analogously, the charge distribution on any rod handle is such that if it is 
embedded in a chest of the bedpost or in a cache it will also contribute - 8 to 
the energy. 

In Figs 2, 3 and 4 edges drawn horizontally or vertically belong to A 1, so they 
indicate that distances between their endpoints are preserved, whereas the 
other edges belong to  A 2. Vertices connected by edges in A 2 and any pair of 
nonadjacent vertices (i.e. there is no edge between them) can move around to 
form V', subject to the constraints imposed by A~-edges emanating from the 
pair to other vertices. Note that whereas V and V' are both embeddings in the 
planar lattice, the corresponding graphs are not necessarily planar. Thus, edges 
of A~ may overlay. See e.g. Fig. 4, which describes the folded version of the 
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Figure 4. The folded version. 
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protein, where, e.g. edges of rod blocs overlay edges of cross bars and edges of 
rod handles overlay some edges of the caches. 

Suppose that the given instance of 3DM has a matching M =  {ril, . . . ,  
riq} _ R. The locations of the G 1-copies on the bloc of rod R~ realize the three 
coordinates ofr~. Thus, the rods R ~ , , . . . ,  Req can be embedded in the bed such 
that each pillow embeds precisely one G 1-copy and their handles are embedded 
precisely in the interiors of their matching chests. (In Fig. 3, R1 and R 4 can be 
"lowered" and embedded in the bed in this way; the result is seen in Fig. 4.) 

Each G~-copy in a pillow or in a chest interior contributes - 8 to the energy, 
so the contribution of the embedded R e , , . . . ,  R~, is - 40q. The handles of the 
remaining k - q  rods can be embedded in the k - q  caches so as to contribute 
- 1 6  each. These handles thus contribute - 1 6 ( k - q )  to E. The total energy 
contribution is, therefore: 

-- 4 0 q -  16 (k -  q) = - 8(2k + 3q) = K. 

Now suppose that there is a rearrangement V' of V with V'__ 7/2 such that 
E4K. A rod whose bloc is embedded in the pillows and whose handle is 
embedded in its matching chest contributing - 4 0  to E, such as Rx in Fig. 4, is 
said to be properly embedded (in the bed). Each of the k - q  rod handles, tucked 
away in the k - q  caches (Fig. 4), contributes - 16 to E. Some or all of these 
k - q  rod handles can be placed in some of k - q  chests, without their blocs 
necessarily occupying the pillows, also contributing - 16 to E. A rod placed in 
a cache or in a chest such that the rod's handle contributes - 16 to E is said to 
be properly placed. 

If q rods are properly embedded and k -  q rods are properly placed then the 
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total free energy is precisely K, as we saw above. Moreover, the proper 
embedding of the rods Ril, . . . ,  Riq in the bed clearly implies that R has a 
matching M =  { r h , . . . ,  riq }. It suffices, therefore, to show that the free energy of 
any other rearrangement of V is larger than K (less than K in absolute value). 

The proof is based on the observation that each vertex u ofG 1 with a nonzero 
charge on a rod can contribute at least - 2 ,  and that this lower bound is 
attained if and only if u is at distance 1 from 2 opposite charges at right angles 
from u, which, if adjacent to u, must be adjacent via edges ofA 2 . Since a rod has 
20 nonzero charges, the minimum free energy it can possibly contribute is thus 
- 4 0 ,  which is attained in a properly embedded rod. Since a rod handle has 
eight nonzero charges, the minimum free energy it can possibly contribute is 
- 1 6 ,  which is attained in a properly placed rod. 

The only charged vertices at right angles which can interact with a charged 
vertex at distance 1 from them are in the pillows, chests and caches. Thus, the 
only rearrangement which can possibly attain E is to have the k rods interact 
with the pillows and the interiors of the chests or caches. This already excludes 
interaction of any two or more rods outside these interiors, although in a 
configuration of, say, three rods, a right angle with the above charge property 
yielding - 2 to E can be made for some of the vertices on these three rods. 

The geometry of the construction implies that the only way for a rod to 
contribute - 40 to E is to be properly embedded. Therefore, it suffices to show 
that if q rods are properly embedded then the k -  q remaining rods, if properly 
placed, cannot be rearranged to contribute less than - 16 each. 

The point here is to observe that the bloc of a rod properly placed in a chest 
cannot interact with the rest of the chest to lower E. This follows from the fact 
that the charge distributions on the handles and on the blocs are complemen- 
tary to one another. Thus, only the proper embedding ofq rods and the proper 
placement of k - q  rod handles can contribute K to the free energy; and the 
proper embedding of the q rods in the 3q pillows implies that R has a matching 
M. This ends the proof. 

Perhaps the graph of Fig. 3 does not appear to be very "linear" relative to the 
"folded" version of Fig. 4. However, the rods could have been drawn in Fig. 3 
with all their blocs on one straight line, to the left of the bedstead rails. For 
elucidating the nature of the construction it was, however, more advantageous 
to draw the graph in a more compact form. 

Our result holds also for a three-dimensional model of protein folding, 
defined the same way as MEP, except that V, V ' c  7/3, ~i= (xx, Yl, Zl), if= (X2, 
Y2, z2) and d=[-((xz-xl)2+(y2-y1)2+(z2-z1)2)l/2-]. The changes in the 
construction are straightforward: the rods are cubic with square cross section; 
the bed and caches are also three-dimensional, with two-dimensional 
projections shown in Fig. 3, but open on top so the rods can enter. The proof 
then goes through with L =  1 and K=  - 1 6 ( 2 k +  3q). 
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4. Speculations About Ramifications. Whereas the first part of this paper was 
concerned with a proof of the NP-completeness of a decision problem, this 
section is nothing but a very brief speculation about nature. The immediate 
justification for indulging in this is nature's uncanny apparent ability to solve 
difficult problems. Here is one view: 

(A) Nature can solve NP-complete problems in polynomial time. The 
following is but a small fraction of the supporting evidence. 

Each amino acid in a protein can adopt, on average, eight different 
conformations (Privalov, 1979). A relatively small protein, consisting of 100 
amino acids, can thus potentially assume 81~176 conformations. Yet nature 
attains the native conformation in about 1 sec. (Note that the claim that nature 
assumes the global minimum free energy conformation in 1 sec is not 
equivalent to saying that it explores all the 81~176 potential conformations in 
1 sec!) 

The double helices of DNA become knotted and linked in the course of 
biological processes such as replication. There are methods for realizing given 
knots and links on DNA chains (Wasserman and Cozzarelli, 1986). Moreover, 
the untying mechanisms follow topological transformations, so we can tell at 
the end of the process whether the unknot is a knot or not. The complexity of 
this question is a major unsolved problem in mathematics; see e.g. Welsh 
(1993). 

In statistical mechanics many models have been studied to explain phase 
transitions (Baxter, 1982). Among them is the spin glass model: Given positive 
integers H, L and W, the three-dimensional grid graph G=(V, A) whose 
vertices are the integer-coordinate points (x, y, z) with 1 ~<x ~< H, 1 ~<y ~<L, 
1 ~<z ~< W, and whose edges connect each pair of vertices that are adjacent in 
one of the three directions, an integer interaction weight J(a)e { -  1, 0, 1} for 
each edge aeA and an integer K. Is there an assignment of a spin s(r)e { -  1, 1} 
to each vertex v e V such that the "ground state spin energy" E is ~< K, where 
E= -~(,,v)~A J(u, v)s(u)s(v)? This problem has been shown to be NP-complete 
by Barahona (1982). Special cases are polynomial; see Bieche et al. (1980), 
Barahona (1982) and Barahona et al. (1982). Nature usually manages to 
accomplish the phase transitions without a hitch and very fast. 

Deutsch (1985, 1989) argues that "quantum computers" (computers based 
on quantum physics theory) can be constructed that can carry out in 
polynomial time computations which require exponential time. Bennett and 
Brassard (1989) proposed and implemented practical protocols--realizing an 
idea of Wiesner (1983)--and constructed a quantum counter for a certain 
public key cryptography application. See also Brassard (1988), Brassard and 
Cr6peau (1990) and Bennett et al. (1992a,b). 

In the cryptography quantum computer, polarized photons are used to 
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transmit digital information. Single photons (with high probability) are 
transmitted over a communication channel in one of four polarizations. There 
is no complexity gain in this device, yet it makes a dent in the Turing machine 
model: a Turing machine M can, by eavesdropping, learn the secrets being 
exchanged by two interactive Turing machines M 1 and M2,  without M1 and 
M 2 knowing that M has learned their secrets. However, no machine can 
eavesdrop on two interactive quantum machines without being detected with 
high probability, assuming Heisenberg's uncertainty principle, which implies 
that eavesdropping to single photon transmission is tantamount to tampering 
with it. 

Due to reasons of this type it was suggested in Fraenkel (1990) to try and 
reverse our usual scientific endeavor: in addition to modeling nature, studying 
the models, solving them or proving them to be NP-complete, etc., try to use 
devices of nature, such as proteins, quantum apparatus, DNA-chains, etc. as 
black boxes, to which we input instances of NP-complete problems and output 
solutions in reasonable time. One of the problems to be faced here is the design 
of efficient input/output interfaces to proteins and to other devices of nature. 
This is a problem even for the large DNA chains (containing some  10 9 

nucleotides). 
The opposite view is: 

(B) Nature functions within the Turin9 machine model. How then can 
nature's apparent capability of solving NP-complete problems be explained 
without being forced to conclude P =  NP? There are different answers to this 
question. 

(i) Nature does not necessarily achieve 91obal optimization. To this we 
may add, however, that often also a good stable local optimum is of 
interest to us. 

(ii) NP-completeness is an asymptotic property, whereas the Universe 
seems to be finite. Moreover, it seems that once a protein is sufficiently 
large it is subdivided by nature into units of smaller size, say up to 200 
amino acids per unit, which fold independently! See e.g. Privalov (1982) 
and Janin and Wodak (1983). 

(iii) A problem ~ is polynomial if it is universally polynomial, i.e. if all its 
instances can be solved in polynomial time; it is NP-complete if some of 
its instances are NP-complete, although some of them may be solvable 
in polynomial time. In fact, NP-completeness reflects worst case 
behavior, but the average case behavior, under the assumption of some 
probability distribution, may be polynomial. Processes of nature are 
not necessarily universal. Thus, perhaps the natural selection of nature 
may help to preserve proteins with polynomial folding mechanisms and 
reject the others. Indeed, experiments show that some synthesized 
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p ro te ins  m a y  fail to fold in to  a s table  c o n f o r m a t i o n .  Similar ly,  p e r h a p s  

na tu r e  creates  on ly  very  few k n o t  types  in D N A  helices. 
(iv) The  p ro te in  folding m e c h a n i s m  m a y  be encoded  in the p ro te in ' s  a m i n o  

acid sequence,  a n a l o g o u s l y  to the genetic  code  of  a D N A  chain,  bu t  the 
code  is still u n k n o w n .  I f  this is the case then  folding is no t  a search 

process  and  there  is no  issue of  complex i ty .  

1 en joyed  conve r sa t i ons  wi th  Michae l  Levi t t  du r ing  1990, when  this w o r k  was  

done ,  and  wi th  El isha H a a s  in 1992, when  it was  wri t ten  up. 
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