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The protein folding problem and the notion of NP-completeness and NP-hardness are discussed. 
A lattice model is suggested to capture the essence of protein folding. For this model we present a 
proof that finding the lowest free energy conformation belongs to the class of NP-hard problems. 
The implications of the proof are discussed and we suggest that the natural folding process 
cannot be considered as a search for the global free energy minimum. However, we suggest an 
explanation as to why, for many proteins, the native functional conformation may coincide with 
the lowest free energy conformation. 

Introduction. 
Protein folding. The protein folding problem is one of the most important 

open problems in biochemistry. It can be stated simply: given the amino acid 
sequence of a protein, calculate the three dimensional structure of that protein. 
The two experimental methods of determining protein structure, X-ray 
crystallography and Nuclear Magnetic Resonance (NMR), are still very time 
consuming while sequencing has become routine and efficient. In the future the 
large gap between the number of known structures (hundreds) and the number 
of known sequences (tens of thousands) is likely to explode. Thus, the 
development of methods to calculate structure from sequence is more 
important than ever. That the computational problem is difficult is evident 
from the fact that in spite of extensive efforts during many years, no structure 
has been reproduced by calculation alone. While many developments have 
been reported, especially in the field of homologous modeling where new 
structures are predicted from the known structures of related proteins (see 
reviews by Blundell et al., 1987; Moult, 1989), the general problem is still 
beyond our capabilities. 
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Figure 1. A schematic view of a fragment of a protein chain. The chain runs from the 
N-terminal to the C-terminal and in this example includes three amino acids. Each 
amino acid consists of a backbone part and a side-chain. The backbone is essentially 
the same for all amino acids and consists of planar groups (forming the amide planes 
which are shaded in the figure) linked by C o atoms. There are 20 different side-chain 
types which may be attached to the C~ atoms. The sequence of these side-chains 
along the backbone determines the three-dimensional structure of the protein, 
which can be described by the values of the 4~ and ~ angles on either side of the C a 

atoms. 

A protein  is a chain of  amino  acids l inked by peptide bonds  (see Fig. 1). Each  

one of  the 20 different amino  acids consists of  a c o m m o n  main  chain part ,  

conta in ing  the a toms  N, C, O, C a and  two h y d r o g e n  a toms,  and  one of  the 20 

different side-chains. The side-chain branches  out  of  the b a c k b o n e  at the C a 

a tom.  The two dihedral  angles ~ and ~ on either side of  the C~ a t o m  are the 
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main degrees of freedom permitting the polypeptide chain to adopt different 
three-dimensional conformations. Actual values of these angles found in 
proteins are generally restricted to a few distinct domains in the ~ -~  space 
(Ramakrishnan and Ramachandran, 1965; Herzberg and Moult, 1991). The 
side-chains have additional degrees of freedom, allowing local fine tuning of the 
structure. 

Proteins are capable of folding into their essentially unique native structure 
without any additional genetic mechanisms. That is, the linear polypeptide 
chain contains all the information required for the folding process (Anfinsen et 
al., 1961). This observation is true at least for many small to medium size, 
soluble, single-chain globular proteins. Recently, a special class of proteins 
called chaparons have been shown to be involved in folding proteins in vivo in 
the cell environment (see review by Gething and Sambrook, 1992). Their role is 
still unclear, but it seems to be related to facilitating folding and transport in the 
complex milieu of the cell. Still, the fact that the sequence contains all the 
necessary information for folding has been demonstrated repeatedly by the 
ability to refold proteins in vitro without the need of any special folding 
mechanisms. 

As of now there is no accepted theory that explains how proteins fold to their 
unique native conformations. There are further arguments as to whether the 
native structure of a protein has the lowest free energy among all the possible 
conformations of the chain. In this paper we suggest that the native structure 
cannot be guaranteed to have the global free energy minimum. It is clear that 
searching for the global minimum in the entire exponential space by 
enumeration (i.e. scanning through all of the possible conformations) is not 
feasible. Even if we assume only very few allowed values for the q~ and 
dihedral angles, and using the most generous approximation as to how fast 
these angles can be rotated, it still would take 1027 years(!) to explore the whole 
conformational space for a single, 100 residues long protein (Levinthal, 1969). 
Generally, having a space that is too large to be searched by enumeration does 
not exclude the possibility of designing an efficient search algorithm. Here, we 
will show that the protein folding problem belongs to the class of NP-hard 
problems and thus no efficient mechanism can be devised to guarantee finding 
the global minimum. 

NP-completeness and NP-hardness. The notion of NP-completeness was 
invented to describe a class of problems that are "hard" to solve. For all of the 
problems in the class there exists an exponential time algorithm, but a 
polynomial time algorithm is not available for any of them. Consider for 
example the Hamiltonian path problem: Given a graph (e.g. a road map 
between n cities), is there a path that visits each node (e.g. city) exactly once? It 
is clear that by examining all of the exponentially many possible paths one can 
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decide whether a Hamiltonian path exists, but a polynomial time algorithm is 
not known. The terms exponential and polynomial measure the type of 
dependence of the running time of the algorithm (until a solution is found) on 
the size (based on a reasonable representation) of the data. The dependence is 
based on "worst case" analysis, namely the time that guarantees to bound the 
performance of the algorithm on every possible instance of the data. An 
algorithm is said to be polynomial if the running time can be bounded by a 
polynomial function in the size n of the problem, and exponential if the 
dependence is described by an exponential function of n. The distinction 
between exponential time and polynomial time solutions is crucial because of a 
very simple fact: exponential functions grow much faster than polynomial ones. 
While an algorithm that has a polynomial running time (even if the polynomial 
function is of a relatively high order) is feasible on modern computers even for 
big problems, exponential algorithms are useful only for very small "toy 
models". For example, if the size of the problem, n, is 100 an n s polynomial 
algorithm will take 101~ time units, which is feasible, but a 2" exponential 
algorithm will require about 103o time units, which is prohibitively long. If, for 
example, the time unit is a microsecond then the polynomial algorithm will 
take less than 3 hr while the exponential algorithm will require about 1016 
years(!). For a good introduction to the subject of NP-completeness and NP- 
hardness see the book by Garey and Johnson (1979). 

A problem is said to be in NP if we can show that it has a Nondeterministic 
Polynomial solution. In simpler terms this means that when a solution is given 
it can be varified in polynomial time. For example, in the Hamiltonian path 
problem when a path is suggested one can in polynomial time (actually in linear 
time) verify that the path visits each city exactly once. By the above definition 
every polynomial problem is in NP. To separate the difficult problems among 
those in the NP class we have the notion of the class of NP-complete problems. 
The problems in this class are (1) in NP and (2) they are the "hardest" in the NP 
class. 

To prove that a problem is NP-complete one has to show first that the 
problem is in NP, and second that some known NP-complete problem can be 
polynomially transformed to it. The logic behind the second requirement is 
that if the known NP-complete problem can be polynomially transformed to 
the new problem then the new problem must be at least as hard. If this was not 
the case and the new problem could be polynomially solved one could design 
the following polynomial procedure to solve the known NP-complete problem: 
Start with an instance of the known NP-complete problem, transform it, 
polynomially, to the new problem. Now solve the new problem in polynomial 
time. Since the composition of polynomial functions is a polynomial function, 
the whole procedure takes polynomial time. As this is impossible it follows that 
the new problem must be as hard as the known NP-complete problem. The first 
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problem that was shown to be NP-complete, the Satisfiability problem (Cook, 
1971), was of course proven by another method. 

The class of NP-hard problem contains the problems that are at least as hard 
as any NP-complete problem (namely they satisfy the second condition 
mentioned above), but are not shown to be in NP (the first condition above). 
Thus, the class of NP-hard problems is more general and contains the class of 
NP-complete problems. One source of difficulty in proving that a problem is in 
NP comes from limitations on the precision of some arithmetic calculations on 
a finite computing machine. 

Another source of difficulty arises from the fact that formally the NP- 
complete problems are "decision" problems, like the Hamiltonian path 
problem: "Given a graph, does it contain a Hamiltonian path?", for which the 
answer is either yes or no. Optimization problems, like the famous traveling 
salesman problem: "Given a road map between n cities, which is the shortest 
tour that will visit all of them?", are not directly considered within the NP- 
complete framework. Actually one can transform an optimization problem to 
its decision version. In the traveling salesman example the optimization 
problem can be transformed into a decision problem by introducing a 
parameter B and asking whether there is a tour shorter than B. This decision 
problem has been shown to be NP-complete. As the solution of the underlying 
optimization problem is at least as hard it has been shown accordingly to be an 
NP-hard problem. 

While there is still no proof that a polynomial solution is impossible for the 
NP-complete problems (the famous N P =  P problem), these are generally 
considered to be a set of problems for which an efficient algorithm cannot be 
found. We adopt this assumption and regard NP-complete and, of course, NP- 
hard problems as intractable. 

The long and frustrating experience with the protein folding problem 
indicates that we are dealing with a hard problem. In this paper we will show 
formally that the corresponding computational problem of finding the global 
free energy minimum is hard. We will prove that a reasonable discrete model of 
the problem belongs to the family of NP-hard problems. As will be elaborated 
in the discussion, the implication of the proof is that there is no way to 
guarantee that the native structure will always be the lowest free energy 
structure. 

The Model. It has long been known that the number of possible foldings of an 
n-long chain into a lattice (the number of self-avoiding walks on a lattice) is 
exponential in the length of the chain. This number is given by the following 
formula: Altnn ~, where A is a constant independent of n, ~ is dependent on the 
dimensionality and/~ > 1 is dependent on the type of the lattice (see review in 
Mazur, 1969). 
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In our model we consider a cubic three-dimensional lattice. Each amino acid 
in the chain is represented by one element which can occupy one cubic cell of 
the lattice. The model is self avoiding and thus only one element is allowed into 
each cell. The sequence is folded on the lattice such that two contiguous amino 
acids in the sequence must reside in two neighboring cells of the lattice. Cells 
are defined as neighbors if they have at least one lattice point in common.  Thus, 
each amino acid can have 26 possible neighbors. The growing chain can choose 
any unoccupied cell out of these for the next amino acid (at least one must be 
occupied by the previous amino acid); see Fig. 2. 

Figure 2. Lattice model of a folded protein. The sequence (in this example (sl, $2, 
�9  s8) ) is folded into a cubic lattice�9 Each sequence element occupies one lattice 
cell. As the model is self avoiding, only one element can reside in each cell. Two 
contiguous elements in the sequence must be in neighboring cells. Cells are 

considered neighbors if they share at least one lattice point. 

We would like to find the global minimum of some pairwise free energy 
function, which is dependent on the types of the amino acids in each pair and on 
the distance between the amino acids. Formally, the protein folding (PF) 
problem can be stated as: Given a sequence S = (s 1 , s 2 , . . . ,  s,) we would like to 
find a one-to-one "folding" function, f ( s i )~ I  3, that given the integer costs of 
interaction between sequence pairs cs,sj and a positive function g: I 3 ~ R  + of 
the three-dimensional distance components between the folded elements: 
g(Ax(t, k'), A,(t, E), Az(t, k)), where Ax(t, I, %(K ;)--I/,-k,I, 
Az(i, f )= l l~ -k z l  and i, k e I  3 are lattice coordinates, would minimize the 
function: 

E= i ~ %~jg(Ax(f(si), f(s~)), Ay(f(si), f(sj)), A~(f(si), f(sj))), 
i=1  j r  

such that Ax(f(s~) , f(si+~)), Ar(f(s~), f(s~+~)), Az(f(s~), f(s~+~))~<l, 



NP-HARD PROBLEM 1189 

i=  1, 2, . . . ,  n - 1  (this distance constraint forces contiguous elements to 
occupy neighboring cells). 

The corresponding decision protein folding (DPF) version introduces a 
parameter B and asks whether there exists a folding f such that E ~  B. 

This model captures the essence of the important components of the real 
protein folding problem. The discretization of possible directions of the chain 
at each point is justified by the fact that the real ~b and ~ angles are indeed 
constrained to specific domains. The modeling of each amino acid by only one 
point in the model is common (Levitt and Warshel, 1975) and it can be justified 
because it has been shown that from the set of C a coordinates (one atom per 
amino acid) one can generally build a reasonable model of the full protein (for 
example, see Holm and Sander, 1991). The form of the free energy function that 
we consider here is very simple, but it can serve as a good first approximation to 
many of the real terms. The internal energy of proteins in terms of a full atomic 
description of their conformation (for example, see Brooks et al., 1988) can be 
approximated with functions of that form. More relevant to our model are the 
empirical mean force functions, which are used to describe the free energy of 
lattice conformations and have the same form that we are discussing. These are 
based on a sum over all residue pairs as a function of residue types and distance. 
The free energy contribution of each pair is derived from analysis of distances 
between amino acid types in known protein structures. Such empirical mean 
force models have been shown to have low values for conformations close to 
the correct structures (Covell and Jernigan, 1990; Seetharamulu and Crippen, 
1991) and thus it is established that they represent the relative free energy of 
conformations appropriately. As the empirical mean force is derived directly 
from the coordinates of known structures it must reflect all the free energy 
components involved in protein folding, including van der Waals interactions, 
electrostatic forces, solvation energies, hydrophobic effects and other entropic 
contributions. Still, it is clear that our model is simplified. However, if we can 
show that this simple model is hard, solving more realistic models would be 
even harder. 

As mentioned above, to prove that the protein folding problem is NP-hard 
we have to show that some known NP-complete problem can be polynomially 
transformed to it. As a basis for the proof we use the "optimal linear 
arrangement" (OLA) NP-complete problem. We will show the polynomial 
transformation between the problems. Thus, if the decision version of the 
protein folding problem (DPF) could be solved polynomially then the "optimal 
linear arrangement" could also be solved in polynomial time, in contradiction 
to its known status as an NP-complete problem. This will establish the NP- 
hardness of the D PF  problem. Since solving the optimization PF problem 
would directly suggest an answer to the decision version it will follow that the 
optimization problem is NP-hard. 
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The "opt imal  linear arrangement"  (OLA) problem (Garey et al., 1976) is 
stated as follows: Given a sequence S ' =  (s 1 , s 2, . . . ,  s,), non-negative integer 
costs c' 1 ~< i , j  <<. n and a positive integer B', is there a one-to-one function f': SiSj ' 

(s 1, s 2 , . . . ,  n)--*{1, 2 , . . . ,  n} such that: 

E ' =  ~ 2 cL j l f ' ( s , ) - f ' ( s ) l<~B '?  
i = 1  j ~ : i  

This problem can be seen as a one-dimensional  mapp ing  assignment,  where 
every element in the sequence (s~, s 2 , . . . ,  s,) should be mapped  to a different 
cell on an n-long one-dimensional  lattice. The function that  we want  to 
minimize is a pairwise summat ion  of the costs of interactions between the 
elements times the distance between them. The difference between this problem 
and the protein folding problem is the connectivity requirement  of the latter 
(i.e. that  contiguous sequence elements must  be mapped  to neighboring lattice 
cells). 

The OLA is a one-dimensional  problem. We will take advantage of the two 
addit ional  dimensions in the D P F  problem to transform any instance of an 
OLA to a corresponding D P F  instance, as follows: We will "pad" each element 
in the original OLA sequence S ' =  (s 1, s 2, . . . ,  s,) by 3 n + 2 x s  (where x is a 
special element not  in S') to obtain: 

S =  x x x  . . . x x  x x  . . . x x x  s 2  x x  . . . x x x  . . . x x  . . . x x x  s . .  
y - - ' ~ y  - - ' ~  y 

3 n + 2  3 n + 2  3 n + 2  3 . + 2  

The costs will be: 

(Cos if s i, sj �9 S'; isj 

Cs'sj = otherwise. 

We will use the parameter  B = B' to bound  the function E. 
The pairwise dependence on the three-dimensional distance will be: 

lAx( r, k)l if Ay(~, ~), Az(r, k ) = 0 ;  

g(Ax(/, k~, Ay(r, k'), A~(r, k ) )=  B +  1 otherwise, 
C 

where C is the smallest, nonzero cost among the cs,sj. 
An original OLA solution can be extracted from a D P F  solution simply by 

omit t ing all the xs and leaving all the elements of the original sequence S'. 
The combinat ion  of the above transformations will guarantee that  an 

accepted solution (i.e. conformat ion for which the energy is below the limit B) 
of the D P F  is actually an accepted solution for the original OLA problem: The 
costs were chosen in such a way that  only the original elements of S' can effect 
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the energy and the additional xs will not contribute to the sum. The 
dependence on the distance was constructed in such a way that elements of S' 
that are mapped to lattice cells other than those of the original one-dimensional 
stripe will make the energy too high. When a solution maps even a single 
element out of the original stripe its energy will be at least B +  1 (note that 
because g is a positive function and the c' of the OLA are non-negative 
numbers, the energy will never decrease) and the solution will be rejected. 

We have to show that the answer to the constructed D P F  problem is yes 
exactly when the answer to OLA is yes. To see that we will show the following 
two points: (1) That  every possible conformation for the original OLA problem 
has a corresponding (same energy level) conformation for the D P F  problem. 
(2) That an accepted solution of the D P F  problem corresponds to an accepted 
solution of the OLA problem. To see the first point we show that given any 
mapping f', the 3n + 2xs between each contiguous pair of original elements are 
sufficient to connect them. As can be seen in Fig. 3 the original elements are 
connected, alternately below and above the plane of the original stripe. These 
connecting chain segments can be built in a way that will ensure that they will 
not collide with each other, as follows: Each connecting chain will be assigned 
to a different horizontal plane, so we use n -  1 additional planes. Elements s i, 
si + 1 will be connected on plane + (for odd i) or - (for even i) i in the following 
way: The chain will go down from si (alternately, go up) vertically to the 
horizontal plane i, then leave the vertical plane through the original stripe, 
complete the turn on its horizontal plane, come back to the point below si+ 1 
and then go up to the original point s~+ 1. The chains avoid each other because 
all the vertical movements are done in the vertical plane containing the original 
stripe and each chain segment is using different columns in this plane going 
vertically up or down through the original elements. The horizontal 
movements for the different connections are done in different horizontal 
planes, avoiding the vertical plane in which the vertical movements are made. 
The length of the stretch of xs, 3n + 2, is long enough to connect any two 
elements in this way, as in the worst case we would need to go up and down to 
the nth plane and then connect elements that are at most n units apart. The 
additional 2 xs guarantee that movement  out of the vertical plane is always 
possible. In most cases the chain will be longer than necessary, but we can 
always accommodate  the extra chain in its designated horizontal plane without 
a risk of collision, simply by increasing the distance traveled from the vertical 
plane containing the original stripe. Diagonal movements can be used to 
connect original elements regardless of whether the distance between them is 
odd or even. 

In this construction all of the original elements lie on the original stripe and 
thus make the same pairwise contribution to E as in the OLA problem. All of 
the xs do not contribute anything as their c is zero. Thus, the energy of this 
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Figure 3. The transformation of the one-dimensional optimal linear arrangement 
problem to the three-dimensional protein folding problem. The original elements 
(in this example (sl, s2, . . . ,  ss) ) of the OLA problem are connected by the 
additional xs. The connecting chain starts from s 1 , goes vertically up to the 
horizontal plane + 1, then leaves the vertical plane that goes through the original 
stripe, completes the turn by horizontal movements in plane + 1, comes back to the 
point above s 2 and goes vertically down to s 2 . A similar trajectory is used to connect 
the next pairs of elements, going alternately above and below the original stripe. 
Note that movements in the two additional dimensions in this way guarantees that 
the connecting chain will be self-avoiding. Diagonal horizontal moves are used to 
permit connections between elements with an odd number of cells between them. 

D P F  c o n f o r m a t i o n  is exact ly  equa l  to the or iginal  energy  of  the O L A  instance.  

T o  see tha t  any  accep ted  so lu t ion  for the D P F  has  a c o r r e s p o n d i n g  accep ted  
so lu t ion  for the or iginal  O L A  p r o b l e m  we jus t  have  to no te  tha t  any  D P F  
solu t ion  which  m o v e s  any  of the or iginal  e lements  of  the O L A  out  of  the 
or iginal  s tr ipe c a n n o t  be  accep ted  as its energy  is at  least  B +  1. Any  o the r  
accep ted  D P F  so lu t ion  (clearly, there  are  m a n y  such solut ions)  m u s t  have  all 
the or iginal  e lements  on  the s t r ipe wi th  an  energy  level be low the limit. Thus ,  it 
is an  accep ted  so lu t ion  for the or iginal  O L A  p rob l em.  
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The expansion in the size of the original OLA problem when transformed to 
the DPF  problem is polynomial, 3n + 2, and thus if the DPF  problem has a 
polynomial solution then we have seemingly achieved a polynomial solution to 
the OLA problem, which is NP-complete. The only flaw is our assumption that 
the DPF  can be solved in polynomial time, which thus must, therefore, be 
wrong. Thus, the D P F  is shown to be as hard as the OLA NP-complete 
problem. As was mentioned above this implies that the underlying optimiza- 
tion problem "For the given model find the lowest energy folding" is NP-hard. 

Discussion. Our proof is based on utilizing the function g to simulate the 
behavior of the one-dimensional, optimal linear arrangement problem on the 
three-dimensional lattice of the protein folding problem. 

To achieve the simulation we used a discontinuous function. While we had to 
introduce the discontinuity as part of the formal proof, we note that 
discontinuity is inherent in protein folding. On the most fundamental quantum 
level free energy functions are not continuous. Moreover, limitations on the 
values of the dihedral angles in proteins (Ramakrishnan and Ramachandran, 
1965) and restrictions on contiguous pairs of dihedral values (Unger et al., 
1990) result in making some positions in space virtually unavailable to some 
atoms, making the corresponding free energy function effectively disconti- 
nuous. 

In our model we have used a general pairwise free energy function. One can 
argue that the "real" free energy function is a special case under which the 
problem can be solved efficiently. This is very unlikely. The most realistic free 
energy functions, which are based on theoretical studies, analysis of small 
molecules and direct experiments probing isolated components of the free 
energy, are complicated and don't  lend themselves to simple solutions. It has 
been shown in molecular dynamics simulations that under these functions the 
free energy surface is very "rugged" and not simple (Levitt, 1983a). 

Our model is a representation of real proteins. However, we note that from a 
theoretical point of view and for the purpose of testing search algorithms there 
is also interest in simpler models, for example, a two-dimensional lattice which 
allows only straight (non-diagonal) movements (Covell and Jernigan, 1990; 
Dill, 1990) and a simple energy function counting only one type of neighboring 
interaction. Our experience with such models suggests that finding their lowest 
energy is as hard as the full three-dimensional lattice. However, in the 
framework of the current proof we could not show that these simple models 
belong to the NP-complete or NP-hard classes. In our proof we use the two 
additional dimensions to guarantee that the connecting chains have a collision- 
free path. We further use the diagonal movements to enable connection 
between original elements regardless of the parity of their distance. 

Using the three-dimensional matching problem Fraenkel (Fraenkel, 1993) 
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shows that a general two-dimensional model (which is extendable to three- 
dimensional) based on Coulomb energy minimization in NP-hard. Recently, 
Ngo and Marks (1992) published an NP-hard proof for a three-dimensional 
polymer structure prediction, using reduction from the partition problem. 

The principal implication of our proof is very striking. As there is no general 
efficient feasible way to find the lowest free energy conformation of a protein we 
cannot assume that the native state is at the free energy global minimum. 

The general question of the relationship between theoretical computational 
considerations and the actual behavior of natural systems has not been fully 
explored. While Church's hypothesis (Kleene, 1952) seems to bind any natural 
device to computational limits, it has been suggested recently that exponential 
computational barriers can be overcome by using natural physical systems as 
the core of computational devices (Fraenkel, 1990). Although one can argue 
about the general significance of computational complexity results to the 
analysis of natural systems, in the protein folding case the consequences of the 
proof appear unavoidable. Possible mechanisms for real protein folding seem 
to be transferable to computations that can be performed on a computer. The 
most realistic computational folding process, molecular dynamics (see for 
example Levitt, 1983b; and a review in Brooks et al., 1988), is still restricted by 
the NP-hardness proof. In this model each atom is assumed to have some 
internal thermal energy and then is bound to move in the direction of the vector 
of the forces applied to it by all the other atoms in the system. To simulate a 
continuous behavior the forces and thus the resulting accelerations and 
velocities are recalculated at very short (10 -15 sec) time intervals. This 
computation is of a parallel nature, but can (and is, on conventional 
computers) be simulated by a sequential algorithm. The speed-up of this 
process that the natural system can achieve is only polynomial, considering 
each one of the n atoms to be a separate "processor", or even each of the n 2 

interactions as a separate "processor", and thus this mechanism uses a 
polynomial amount  of resources and therefore cannot be guaranteed to find the 
global minimum. 

Several arguments have been advanced to support the idea that the 
functional conformations of proteins are at the global free energy minima: 
Denaturation/renaturation experiments, when they work, always lead to the 
same fold (Anfinsen, 1973). In the few cases where proteins have been produced 
by peptide synthesis they have also adopted the same conformation as the 
biologically produced material (for example, see Wlodawer et al., 1989). No 
protein has been found to be in more than one conformation (excluding those 
induced by functional changes), even when crystallized under quite different 
conditions (many examples can be found in the PDB data base, Bernstein et al., 
1977; for a specific example see Svansson et al., 1991; or observed in solution by 
NMR, for example, Clore and Gronenborn,  1991). 
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Actually, these observations demonstrate that each protein has a unique 
functional conformation; they do not show directly that this conformation 
must always be the global free energy minimum. So, these observations only 
show that the properties of proteins are consistent with their functional 
conformation being at the free energy global minimum, but they do not prove 
it. There is another mechanism by which the same conformation can be found 
under a variety of conditions, in spite of the size of the conformational space, 
and that is by the existence of pathways from any accessible conformation to 
the functional minimum. That is, "entry points" to the pathway must be present 
everywhere in the populatable conformational space. Several pathways with 
this property have been proposed (Wetlaufer, 1973; Karplus and Weaver, 
1976; Moult and Unger, 1991). These all depend on the notion that although 
the exponential search of the conformational space of the full protein is too 
large to be the mechanism, such a search of small fragments on an appropriate 
time-scale is possible. Wetlaufer argued that the maximum size of such 
fragments for an exponential search is c a  16 residues. Thus, short regions of the 
polypeptide chain are postulated to have preferred conformations, which 
although not the only populated ones early in folding, are present in high 
enough amounts to drive the subsequent pathway. The later events may be 
either propagation of the folded structure out from these folding initiation sites 
(Wetlaufer, 1973) or the association of such sites (Karplus and Weaver, 1976) 
in their folded form to produce the next level of structure. As such initiation 
sites are based on contiguous residues of the chain they are always accessible in 
the search space. In denaturation/renaturation experiments once the native 
conditions are restored these local interactions immediately become effective 
and lead the folding again towards the native structure. 

We propose an evolutionary argument which strongly suggests that the 
functional conformation will coincide with the global free energy minimum for 
many proteins. We know that the functional conformations of proteins are 
characterized by a very high level of organization of the individual atomic 
interactions--they are well packed, buried polar and charged groups interact 
with other such groups, and non-polar cores provide much of the free energy to 
stabilize the structures (for a review, see Dill, 1990). To be competitive any 
lower free energy conformation must also exhibit these features. Random 
mutations of the sequence over time will tend to disrupt such intricate 
arrangements. For the functional conformation mutations which destabilize 
the structure significantly will also disrupt function and thus will not be 
accepted, whereas stabilizing mutations are likely to be accepted. So the free 
energy of the functional conformation will tend to become lower. Assume that 
originally the functional structure was not the global minimum, but rather a 
stable local minimum. Then, for the original, nonfunctional, global minimum 
there will be no constraints to prevent a drift upwards in free energy, so that the 



1196 R. UNGER AND J. MOULT 

conformation will in time cease to be the global minimum. Thus, eventually the 
functional conformation will become the one with the lowest free energy. 

In conclusion we want to present our views on the different theoretical 
considerations of the folding process. As we see it there are three possible 
alternatives: (1) The "Strong thermodynamic hypothesis": Proteins are 
physical systems and as such reach the global energy minimum. Thus, folding is 
a universal process and every amino acid sequence (natural or random) will be 
folded to its global minimum. (2) The "Weak thermodynamic hypothesis": 
Nature has selected only proteins for which the native conformation is in the 
global minimum. These natural proteins have the property that for them there 
are more efficient ways to find the global minimum. (3) The "Kinetic 
hypothesis": The native conformation is largely dictated by the folding 
pathway and is not necessarily the global free energy minimum. 

The NP-hard proof can rule out possibility (1), but it cannot help us to 
determine between possibilities (2) and (3). Actually, the evolutionary 
argument discussed above suggests a mechanism by which most current 
proteins have been converted from the "kinetic hypothesis" to the "weak 
thermodynamic hypothesis", closing the practical gap between the two 
possibilities. Still, there is a theoretical difference between the two possibilities. 
The "weak thermodynamic hypothesis" means that the folding process is a 
global free energy optimization process that deals with "easy" instances. The 
"kinetic hypothesis" means that the final conformation of a protein is 
determined by events along the folding pathway. The "kinetic hypothesis" is 
more consistent with mutation data (Serrano et al., 1992) and quenched NMR 
data (Udgonkar and Baldwin, 1988) that demonstrate the existence of some 
specific pathway events during the folding process. 

The important practical implication of the proof is that there is no universal 
algorithm which can find the global free energy minimum conformation for all 
given sequences. Combined with recent data on the importance of the kinetic 
process, it follows that algorithms that attempt to determine the conformation 
of proteins from the amino acid sequence should be based on the specific 
mechanisms that are employed by real proteins, rather than on general search 
methods. That is, they must in essence mimic the pathway mechanism used by 
proteins themselves. 

We would like to thank Amihood Amir and Yossi Matias for helpful discussion 
about the proof. This work was supported in part by NIH grant GM 41034 to 
JM. 
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