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We present a mathematical model of the cytotoxic T lymphocyte response to the growth of an 
immunogenic tumor. The model exhibits a number of phenomena that are seen in vivo, including 
immunostimulation of tumor growth, "sneaking through" of the tumor, and formation of a 
tumor "dormant state". The model is used to describe the kinetics of growth and regression of the 
B-lymphoma BCL 1 in the spleen of mice. By comparing the model with experimental data, 
numerical estimates of parameters describing processes that cannot be measured in vivo are 
derived. Local and global bifurcations are calculated for realistic values of the parameters. For a 
large set of parameters we predict that the course of tumor growth and its clinical manifestation 
have a recurrent profile with a 3- to 4-month cycle, similar to patterns seen in certain leukemias. 

1. Introduction. The immune response to a tumor is usually cell-mediated 
with cytotoxic T lymphocytes (CTL) and natural killer (NK) cells playing a 
dominant role. A number of mathematical models of the interactions between 
the immune system and a growing tumor have been developed (Thorn and 
Henney, 1976, 1977; DeLisi and Rescigno, 1977; Rescigno and DeLisi, 1977; 
Kuznetsov and Volkenshtein, 1978, 1979; Albert et al., 1980; Prigogine and 
Lefever, 1980; Look et al., 1981; Lefever and Erneaux, 1984; Grossman and 
Berke, 1980; De Boer and Hogeweg, 1985, 1986; Perelson and Macken, 1984; 
Hiernaux et al., 1986; Merrill and Sathananthan, 1986; Mohler and Lee, 1989; 
Dozmorov and Kuznetsov, 1988). The kinetics of cell mediated cytotoxicity in 
vitro have also been described by mathematical models (Thorn and Henney, 
1976, 1977; Thoma et al., 1978; Merrill, 1982; Perelson and Bell, 1982; Perelson 
and Macken, 1984; Macken and Perelson, 1984; Callewaert et al., 1988; 
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Kuznetsov, 1979, 1981, 1984; Lefever et al., 1992). With such models, 
numerical estimates of biologically significant parameters have been obtained, 
a number of phenomena interpreted, and predictions made. 

The dynamics of the anti-tumor immune response in vivo are complicated 
and are not well understood. Spontaneously arising tumors are known to be of 
low immunogenicity and usually grow out of control in an organism. The 
escape from immune surveillance has been linked with a number of different 
mechanisms, including the selection of tumor clones resistant to cytolytic 
mechanisms, the loss or masking of tumor antigens, the loss of MHC class I 
molecules, and tumor induced disorders in immunoregulation (Brondz, 1987; 
Nelson and Nelson, 1987; Tanaka et al., 1988). Nevertheless, cancer cells are 
attacked and killed by cells of the immune system (Hellstr6m and Hellstr6m, 
1969; Herberman, 1974; Greenberg, 1991), and thus immune surveillance of 
spontaneous tumors may be effective and important in keeping cancer 
incidence low. 

The main attempts at present to develop schemes for immunotherapy or its 
combination with other therapy methods are directed at lowering tumor mass, 
heightening tumor immunogenicity, and removal of immunosuppression 
induced in an organism in the process of tumor growth. Nevertheless, the 
majority of such attempts are not effective. One of the main reasons for this lies 
in the fact that even after a so-called "successful" and "clinically" complete 
removal of a tumor, a small quantity of "residual" tumor cells stay in an 
organism, which can grow into secondary tumors or "dormant" metastases 
(Mathe and Rejzenstein, 1986; Wheelock and Robinson, 1983; Yefenof et al., 
1993). 

Tumor dormancy is an operational term used to describe a state in which 
potentially lethal tumor cells persist for a prolonged period of time with little or 
no increase in the tumor cell population (Wheelock et al., 1983; Stewart and 
Wheelock, 1992; Yefenofet al., 1993). It is frequently presumed that tumor cells 
do not grow at a rapid rate during dormancy, say due to the absence of a factor 
needed for progressive growth into a tumor, but an alternative possibility is 
that rapidly growing cells are killed at a rate equal to that at which they 
generated (Uhr et al., 1991). Dormant  states emerge not only after a radical 
treatment of a tumor, but also at early stages of tumor progression. In fact, 
there is general agreement that in the human, neoplastic cells escape from a 
primary tumor very early in its development. The fate of these escaping neo- 
plastic cells will determine whether the patient lives or dies of cancer (Uhr et al., 
1991). The direct participation of CTL in the support of a tumor dormant  state 
has been shown in some experimental models (Wheelock and Robinson, 1983; 
Weinhold et al., 1979a,b). Besides CTL, other types of immune system cells, 
such as macrophages and NK-cells, may participate in the maintenance of a 
tumor dormant  state. Anti-idiotype antibodies may also play a role in inducing 
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the tumor cells into a dormant state (Uhr et al., 1991). Although considerable 
research has been carried out, our understanding of the mechanisms of immune 
surveillance and of the tumor dormant state is still quite incomplete (Stewart 
and Wheelock, 1992; Chen et al., 1990; Liu et al., 1990). 

Small dormant tumors, which after a long time begin uncontrolled growth, 
may escape from immune surveillance by the so-called "sneaking through 
mechanism" (Uyttenhove et al., 1983; Wheelock et al., 1981; Wheelock and 
Robinson, 1983). Sneaking through refers to a phenomenon in which animals, 
when challenged with a low dose of tumor cells fail to mount a successful anti- 
tumor immune response and progressive tumor growth results; challenge with 
medium doses of tumor cells leads to tumor rejection, and large doses break 
through the immune defenses and successfully generate tumors (Old et al., 
1962; Deichman, 1979). This effect has been reproduced in different 
experimental models (Deichman, 1979; Gatenby et al., 1981). Experimentally, 
"sneaking through" can be most easily manifested after a preliminary 
immunization with a subimmunogenic dose of tumor antigens (Gatenby et al., 
1981; Deichman et al., 1979). The time between initial immunization and 
injection of tumor cells is an important parameter (Alsabti, 1978; Deichman, 
1979; Deichman et al., 1979). The mechanisms responsible for sneaking 
through are not known and the phenomenon has been the subject of a variety of 
mathematical models (DeLisi and Rescigno, 1977; Rescigno and DeLisi, 1977; 
Grossman and Berke, 1980; De Boer and Hogeweg, 1985, 1986). 

Different host defense cells are able to suppress the growth of or destroy 
tumor cells. However, in a number of experimental and clinical cases it has been 
observed that stimulation of the immune system by immunotherapy results in 
the stimulation of tumor cell growth rather than suppression (Prehn, 1983; 
Colmeraver et al., 1980; Sampson et al., 1977). There are even cases of human 
or animal tumors being stimulated by the very lymphoid cells which may also 
cause their lysis. For example, immune CTL in small amounts have been 
shown to stimulate tumor cell population growth in vitro (Fidler, 1973; 
Jeejeebhoy, 1977), and in vivo after an injection of immune lymphocytes and 
tumor cells into lethally irradiated animals (Prehn, 1972, 1983; Umiel and 
Trainin, 1974). Accelerated growth of an allogeneic tumor in an animal first 
immunized against this tumor has been observed, immune T lymphocytes 
being responsible for this effect (Prehn, 1983). The mechanisms responsible for 
immunostimulation of tumor growth are not clear, but the very fact of their 
existence restrains the carrying out of immunotherapy. 

There are different explanations for the termination of a tumor dormant 
state, for sneaking through of tumors, and for immunostimulation effects. 
Often these explanations are based on the ideas of immunoselection, antigenic 
modulation, production by tumor cells of different types of immune cell 
blocking factors, generation of immunosuppressor cells, changes in auto- 



298 V.A. KUZNETSOV et al. 

regulatory networks in a tumor localization region, and other more complex 
ideas that are very difficult to prove or disprove experimentally. Here we 
propose that these phenomena may be the result of nonlinear dynamic 
interactions between the tumor and the immune system (also see Kuznetsov, 
1984, 1987, 1988, 1991). 

In this paper, we analyse a simple mathematical model of a cell mediated 
response to a growing tumor cell population. This model differs from most 
others in the literature in that it takes into account the infiltration of the tumor 
by effector cells as well as the possibility of effector cell inactivation. A variant 
of this model has been studied by Kuznetsov (1991). Here we focus on the 
qualitative behavior of the system using techniques from bifurcation theory. 
We apply the model to the analysis of the mechanisms of tumor dormancy and 
sneaking through. Interestingly, we find that a non-zero rate of effector cell 
inactivation is required to obtain sneaking through. We also find that sneaking 
through, tumor dormancy and the immunostimulation of tumor growth, 
effects which have been analysed separately, according to our model, may all be 
related. 

2. Mathematical Model. It has been found in numerous studies both in vivo 
and in vitro that the growth of a tumor cell population is exponential for small 
quantities of tumor cells but growth is slowed at large population sizes. The 
inhibition of growth may be caused by the competition of cells for metabolites 
and/or growth factors, or by growth inhibiting factors produced by the tumor 
cells. In many cases of non-exponential tumor growth, the kinetics are well 
described by the logistic or Gompertz equation (Emanuel, 1981; Swan, 1977). 

Consider a tumor whose cells are "immunogenic", and thus subject to 
immune attack by cytotoxic effector cells, e.g. CTL or NK cells. The interaction 
between effector cells (EC) and tumor cells (TC) in vitro can be described by the 
kinetic scheme: 

k-1 C k2 _ E + T *  
E + T ~ k  1 ~ E * + T  

where E, T, C, E*, T* are the local concentrations of effector cells, tumor cells, 
effector cell-tumor cell conjugates, inactivated effector cells, and "lethally hit" 
TC cells, respectively. Lethally hit tumor cell.s are destined to perish. They also 
have been called cells "programmed to die". The inclusion of inactivated 
effector cells is an unusual feature of our model. NK cells, and to a lesser extent 
CTL, in culture seem to have a limited ability to repeatedly kill target cells 
(Abrahms and Brahmi, 1988; Callewaert et al., 1988; Kuznetsov et al., 1988). 
This might be due to exhaustion of molecules responsible for the cytotoxic 
effect or other regulatory effects, possibly due to the release of molecules from 
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the tumor cell when the TC and EC are conjugated. The parameters k~, k_ 1, k2 
and k 3 are non-negative kinetic constants: k I and k 1 describe the rates of 
binding of EC to TC and detachment of EC from TC without damaging cells; k 2 
is the rate at which EC-TC interactions irreversibly program TC for lysis; and 
k 3 is the rate at which EC-TC interactions inactivate EC. 

We propose the following system of differential equations as a model for the 
interaction between EC and a growing immunogenic tumor in vivo: 

d E  
- s + F(C, T)  - d a E -  k t E T +  (k_ ~ + k2)C, (la) 

dt 

dT 
dt  - aT(1 - b Ttot) -- k ~ E T +  ( k_ ,  + k3)C, (lb) 

dC 
dt  - k l E T -  (k_ a + k2 + k3)C, (lc) 

dE* 
dt - k 3 C - d 2 E * '  (ld) 

dT* 
dt - k z C - d 3 T * '  (le) 

where E, T, C are the number of unbound EC, unbound TC, and EC-TC 
complexes, respectively, located at the site of the tumor, say the spleen, and E* 
and T* represent the number of inactivated ECs and lethally hit TCs at the 
tumor site. The total population of unhit TC cells in the spleen is Ttot = T +  C. 

The parameter s is the "normal" (non-enhanced by TC presence) rate of flow 
of mature EC into the region of TC localization; and d~, d 2 and d 3 are positive 
constants representing the rates of elimination of E, E* and T* cells, 
respectively, resulting from their destruction or migration from the TC 
localization area. We assume that the tumor does not metastasize and thus that 
there is no migration of TC or EC-TC complexes. Such effects could be 
included in the model by incorporating an additional loss term in equations 
(lb) and (lc). The maximal growth rate of the TC population is a. This 
parameter incorporates both multiplication and death of TC. The maximal 
carrying capacity of the biological environment for TC (i.e. the maximum 
number of cells due, for example, to competition for resources such as oxygen, 
glucose, etc.) is b -~ 

The function F(C, T )  characterizes the rate at which cytotoxic effector cells 
accumulate in the region of TC localization due to the presence of the tumor. 
Both EC multiplication due to stimulation by TC and enhanced EC migration 
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into this region from surrounding tissues (e.g. nearby lymph nodes) may 
contribute to the process of EC accumulation. The analysis of Kuznetsov 
(1979, 1991, 1992) suggests the following explicit form for this stimulated 
accumulation of effector cells: 

F(C, T)= fC (2) 
g+T'  

wherefand  9 are positive constants. Note that this function depends on C, the 
concentration of EC-TC conjugates. (Below we argue that C~KET). This 
functional form is consistent with a model in which one assumes that the 
accumulation of effector cells is due to signals, such as released cytokines, 
generated by effector cells in conjugates. Further note that the rate of 
stimulated accumulation has some maximum value as T gets large. This is 
consistent with limitations in the rate of transport of effector cells to the tumor. 
The rate limitation could occur in the circulation, in the rate of exit from the 
circulation, or in the rate of movement through the tissue to the tumor. 
Kuznetsov et al. (1993) have recently shown that a function of this form also 
adequately describes the rate of lymphocyte accumulation into allogeneic 
tumor spheroids in mice when the concentration of infiltrating macrophages is 
constant or changes slowly. Also, De Boer and Boerlijst (1993) use a similar 
function to describe the rate ofT cell infection by HIV. In their analysis the rate 
of infection saturates at high viral burdens. 

Equations (ld) and (le) are "slaves" to equations (la-c) because the 
variables T* and E* have no effect on each other or the other variables in the 
system. In the remainder of this paper we analyse equations (la-c), which 
dictate the behavior of this system. 

The formation and dissociation of cellular conjugates C occurs on a time 
scale of several tens of minutes to a few hours. A time interval of this order is 
also observed before the lysis of lethally hit tumor cells (Fishelson and Berke, 
1981; Kuznetsov, 1981; Brondz, 1987). However, the multiplication as well as 
influx of effector cells into the spleen occurs on a much slower time scale, 
probably tens of hours. This motivates the application of a quasi-steady-state 
approximation to equation (lc) (i.e. dC/dt,,~O) which yields the following 
relation: 

c xEr, (3) 

where K=kx/(k  z+k 3q-k_a). Experimental observations (Brondz, 1987; 
Fishelson and Berke, 1981) indicate that EC-TC conjugates usually comprise a 
small portion of the total number ofeffector or tumor cells (up to 1-10%). This 
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motivates the approximation Ttot ~ T which, along with equations (2) and (3), 
simplifies equations (la) and (lb) to: 

d E  p E T  
- s + - -  - m E T - - d E ,  (4a) 

dt  g + T  

dT 
- aT(1  --  b T )  - n E T ,  (4b) 

dt  

where the parameters p = f K ,  m =  K k 3 ,  n =  K k 2 ,  and d = d ~ .  

3. Parameter Estimates. Experimental data that could serve as a basis for 
testing mathematical models of the immune response to tumors in vivo are 
scant. In order to examine if the model, given by equations (4a) and (4b), is 
adequate we have used the results of experiments on the dynamics of growth of 
a BCL 1 lymphoma in the spleen of chimeric mice (Siu et  al., 1986; Uhr et  al., 

1991), as well as some additional information referred to in the present study. 
A number of authors (Strober et  al., 1979; Krolick et al., 1979; Weiss et  al., 

1983; Siu et  al., 1986; Uhr et  al., 1991) have presented an accurate quantitative 
description of an experimental model for the interaction in vivo between 
cytotoxic EC and BCL1 tumor cells as a function of time. BCLx was the first B 
cell lymphoma described in mice (Slavin and Strober, 1978). It arose 
spontaneously in an elderly BALB/c mouse. The clinical characteristics of 
BCL~ resemble the prolymphocytic form of chronic lymphocytic leukemia in 
humans, and hence has been used as a model for that disease (Krolick et  al., 

1979). 
BCL~ has a number of advantages as a model tumor system. First, the cells 

having been derived from B cells still carry surface immunoglobulin, which can 
be detected with anti-idiotype reagents. Second, the tumor grows primarily in 
the spleen and thus studies of tumor growth and tumor-host interactions can 
focus mainly on this organ. Tumor cells in the spleen can be quantified by 
idiotypic analysis, and transfer of spleen cells from tumor bearing animals to 
syngeneic recipients leads to transfer of the tumor. In fact, transfer of a single 
viable BCL 1 cell causes progressive disease in about 50% of recipients (Krolick 
et  al., 1979). 

In normal mice, tumor growth can be detected in the spleen at 3 weeks; 
growth plateaus by 6 weeks and by 3 months all mice succumb to the tumor 
(Siu et  al., 1986). However, what appears to be a protective immune response 
can be generated by appropriate experimental manipulation. BALB/c mice can 
be made chimeric by first having their bone marrow destroyed by lethal 
irradiation, and then having bone marrow derived from mice of a different H-2 
haplotype transferred to restore immune system function. As shown in Fig. 1, 
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the BCL~ tumor first grows and then regresses in chimeric mice, and by 
12 weeks tumor cells are no longer detectable by anti-idiotypic antibody 
staining and fluorescence activated cell sorter (FACS) analysis. The initial 
growth kinetics of the tumor in chimeric animals are very similar to those found 
in the case of normal BALB/c mice. However, the data in Fig. 1 suggest that in 
chimeric mice the introduction of large doses of tumor cells invokes a gradually 
developing strong immune response that leads to the elimination of tumor 
cells. 

The data shown in curve 1 in Fig. la describe the growth of the BCL~ 
lymphoma in non-chimeric animals. We assume that this represents the normal 
growth of the tumor in the absence of an immune response. In this case the 
model reduces to: 

d T  
dt  - aT(1  - b T ) .  (5) 

This equation represents a logistic growth model. Values ofa = 0.18 day-  1 and 
b = 2.0 x 10 9 cells 1 give a predicted growth curve that closely approximates 
the data (see Fig. 1). 

The other parameters of the model have been estimated as follows. First 
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Figure 1. Growth of BCL 1 tumor in the spleens of chimeric mice as determined by 
Siu et al. (1986). Control BALB/c mice received 0.5 x 10 6 viable BCL 1 cells (curve 1 
in (a)). Chimeric mice received: 5 x 105 (curve 2 in (a)); 5 x 106 (b);  and 5 x 10 v (c) 
viable BCL1 cells. Experimental data (�9 D, A, x ) represent the mean of two 
experiments except in (b) where only one experiment was performed. Theoretical 
predictions [ - - ]  are for 3.2 x 10 s initial effector cells at the parameter values 

presented in the text. 
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consider s, the normal rate of influx of effector cells into the region of tumor 
localization. The spleen of a BALB/c mouse contains approximately 108 
splenocytes. The frequency of CTL precursors reacting to alloantigens forms 
several tenths of a percent of the total number of lymphocytes (Brondz, 1987). 
We thus assume that the number of CTL precursors reactive to the tumor, 
Ep = 3.2 x 105 cells. The lifetime of T lymphocytes from the spleen and the 
blood is not known precisely but can be estimated to be approximately 30 days 
or more (Reynolds et  al., 1985; Gray and Leanderson, 1990). We assume that in 
the absence of a tumor the initial number of CTL, E(0) ~ E o . We further assume 
that a steady state is established, so that from equation (la), s ~ Epd = 1.3 x 104 
cells day-  1. The other parameters, p, g, m, n and d, have been estimated from 
the experimental data given in Fig. 1, using a direct integral method 
(Yermakova et  al., 1982) to obtain a good initial guess for the parameters 
followed by a non-linear least squares fitting to the data using the Hooke and 
Jeeves (1961) optimization method (Kuznetsov, 1991). With a = 0.18 day-  1, 
b=2.0 x 10 - 9  cells -1, and s=  1.3 x 104 cells day 1, we estimate: 

p=0.1245 day -1, 9=2.019 x 107 cells, 

m=3.422x10  -1~  -1cells -1, n=1 .101x10  .7 day 1cells-1 

and d = 0.0412 day-  1. 

Parameter estimates are given to four significant places because, as we show 
below, the initial condition for the experimental data given in Fig. lc lies close 
to the separatrix (see Fig. 3) and very small changes in the parameters give 
noticeable differences in the predicted tumor growth curve. Thus, even though 
there are not enough data to statistically justify parameter estimates of this 
degree of precision, we have elected to prescribe parameters to four place 
accuracy. 

The theoretical curves predicted by equations (4a, b) with these parameter 
values approximate the experimental values (see Fig. 1). Because all three 
experimental curves are fit with one set of parameter values no single 
experiment is fit optimally. Also, it is interesting to note that the predicted 
regrowth in the tumor population seen in Fig. lb at 100 days has been observed 
in recent experiments in which 106 BCL 1 cells were injected into BALB/c mice 
(Uhr et  al., 1991). 

4. Non-dimensionalization. We non-dimensionalize equations (4a, b) by 
choosing an order-of-magnitude concentration scale for the E and T cell 
populations, E 0 and To, respectively. As suggested from the experiments 
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discussed above: E o = T o = 1 0  6 cells. Time is scaled relative to the rate of tumor  
cell deactivation; i.e.z = nTot.  Then the model can be re-expressed as: 

d x  p x y  
- a + - -  - # x y -  3 x ,  (6a) 

dz  t 1 + y 

vd, = ~y(1 - fly) - x y ,  
d~: 

(6b) 

where 

E T s p 
9 , , , 

X - Eo y To a n E  o T  O P n T  O 

= g  m - k 3  6 -  d = a 

r/ To, P - n k 2 n To c~ n To 

and f = b T  o. 

Values for these seven non-dimensional parameters are obtained from the 
dimensional parameter  values estimated in Section 3 to be approximately: 

a=0.1181,  p =  1.131, q=20.19,  #=0.00311, 

6=0.3743, ~ =  1.636 and f = 2 . 0  • 10 -3. 

5. Steady States. Let us consider the steady states of the reduced model 
described by equations (6a, b). Solutions of practical interest will have non- 
negative populations x and y. We assume that the parameters are also non- 
negative. Information regarding both the vector field and the steady states of 
equations (6a, b) can be obtained by examining the nullclines; i.e. the curves 
along which d x / d t  = 0 and d y / d t  = 0. There are steady states for the system at 
the intersections of these nullclines. There is a single nullcline for equation 6 (a). 

o" 
x = = f ( y ) .  (7) 

a+uy-  
q + y  

There are two nullclines for equation 6(b). One is y = 0 .  The other can be 
expressed as: 

x = ~(1 -- fly) - g(y).  

For f > 0, this is simply a straight line with a negative slope. A steady state with 
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coordinates (x, y) = (o-/6, 0) is given by the intersection off(y) and y = 0. The 
stability of this steady state depends upon the relative values of the parameters 
for the system. Depending upon the relation off(y) and 9(Y) there may be from 
zero to three additional steady states for the system (see Fig. 2). Setting f (y)  
equal to 9(Y) yields a third-order polynomial for the y values of these steady 
states: 

C3Y 3 + C2y 2 + Cly + C o =0, (8) 

where 

(:) Co=~t - 6  , 
o- 

c1  = - + + 6 /L 

and C 3 =#~. 

In order for equation (8) to have three real roots, it follows from Descartes' rule 
of signs that there must be three sign changes among the coefficients. Sturm's 
method (cf. Beaumont and Pierce, 1963) provides more precise conditions for 
the number of real, distinct roots of equation (8). Table 1 presents a summary of 
the number of steady states as determined by the signs of the coefficients of 
equation 8 and the signs of the key quantities appearing in the Sturm sequence 
of equation (8). 

6. Phase Space. For the parameter values estimated in Section 4, there are 
four steady states predicted by the model. The phase portrait is shown in Fig. 3. 
The four steady states are indicated and denoted A, B, C and D. The variable x 
is the non-dimensional effector cell population and y the non-dimensional 
tumor cell population. The steady states labeled B and D are both stable. 
Steady state B is characterized by a relatively low TC level and we refer to it as 
the "dormant tumor" steady state. On the other hand, steady state D, 
characterized by a relatively high tumor and low effector cell level, corresponds 
to relatively "uncontrolled" tumor growth or "tumor escape". The one- 
dimensional stable manifold of steady state C partitions the basins of attraction 
for each of these attractors. Initial conditions beginning below and the right of 
this separatrix (e.g. initial conditions (i) and (iii) in Fig. 3) asymptotically 
approach the dormant tumor steady state B. For initial conditions above the 
separatrix (e.g. initial conditions (ii) and (iv) in Fig. 3), the tumor escapes 
immune regulation. Thus the model is capable of explaining both tumor 
dormancy and escape from immunoregulation. In the next sections we 
delineate the parameter regimes in which these behaviors, as well as "sneaking 
through" can be expected. 
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7. Bifurcation Analysis. N a t u r a l l y ,  the  p a r a m e t e r  va lues  s tud i ed  a b o v e  are  
o n l y  es t imates .  In  this sec t ion  we e x p l o r e  cr i t ica l  p a r a m e t e r  va lues  w h e r e  the  
qua l i t a t i ve  b e h a v i o r  p r e d i c t e d  by  e q u a t i o n s  (6a, b) changes .  

y, 
(a) 

(iii) 

D 

. . . . . . . . . .  ~ .  , : - - - ~ - (  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  y~ 

................... : ] .  

0 

y~ 
(b) 

II 

X 

y Y 
(c) ~ A  (d) 

t x ~ x 

5 .................................................. 

< 
Figure 2. Four qualitatively different forms forf(y) are depicted. These cases are for 
parameter values such that: (a) p/> ( ~  +. ,~)2;  (b) ( ~ -  ~ ) 2  < p < ( ~  + 
, ~ ) 2  and 0 > ~ ;  (c) ( , f ~ + , f ~ ) 2 < 0 < ( , , ~ + ~ ) 2  and p<t/#; and (d) 
p ~< ( ~  + . ~ ) 2 ,  respectively. The horizontal asymptotes Yl and Y2 for f (y) in  (a) 
and (d) are given by: 

p - q# -- c5 _+ x/(P -- r/# -- c5)2 _ 4r//t6 
YL2 - 2/~ 

Three possible orientations for 9(Y) in relation tof(y) are labeled (i), (ii) and (iii) in 
(a) which lead to zero, one and three additional positive steady states, respectively. 
Labeling:f (y) [--] ;  9(Y) ~ ~ ;  horizontal asymptotes forf(y) [---]; and steady 

states [O].  
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The  D u l a c - B e n d i x s o n  cr i ter ion (cf. Wiggins,  1990) can  be used to show tha t  
there  are no  closed orbi ts  for  the system of  equa t ions  (4a, b) for  posi t ive values 
of  E and  T. To  il lustrate,  consider  the funct ion M =  1 / x y  and  calculate:  

c3 ( M  d x \  c3 

Since the pa rame te r s  are posit ive,  L < 0 over  the d o m a i n  of  interest  and  the 
D u l a c - B e n d i x s o n  cr i ter ion is satisfied. It  follows then  that  there  are no  limit 
cycles or  homocl in ic  connec t ions  observed  for the system. Similarly,  no  H o p f  
bi furcat ions  giving rise to limit cycles occur.  

Table 1. The number of positive steady 
states (SS) as determined by the signs of 
the coefficients of equation (8) and the 

signs of the quantities S= C2C 1 - 9C3C 0, 
T =  2 C 2 S / R -  3 C 3 3 2 / R  2 - C 1 and 

R = 2C 2 - 6C3C 1 from the Sturm sequence. 
Blank entries correspond to coefficients 

which may take positive, negative or zero 
values 

S S  C o C 1 C 2 S T R 

+ 

1 + + - -  + + + 

2 --  + 

+ 

+ + + 

4 - + - - + + 

3 + + - - + + 
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Figure 3. Phase portrait for the model at the dimensionless parameter values 
presented in Section 4. Here x is the non-dimensional effector cell population level 
and y is the non-dimensional tumor cell population. Portrait (a) is redrawn with a 
logarithmic ordinate in portrait (b). Labeling: stable steady states [0] ,  saddle 
steady states [O], one-dimensional stable manifold of steady state C [ ], one- 
dimensional unstable manifolds of steady states A and C [---],  initial conditions 
for transients [+]  (denoted (i~(iv), and the evolution of transients in time 

increments of 1 day [" �9 -]. 

To better understand the behavior predicted by equations (6a, b), we have 
mapped out qualitatively different regions of behavior as a function of the 
parameters 6, the effector cell "death rate", and or, the baseline effector cell 
"source rate", at the fixed values of the other parameters. These results are 
presented in Fig. 4a. Curves in this diagram represent codimension-one 
bifurcations which partition parameter  regions of qualitatively different 
dynamic behavior. Representative phase portraits for regions 1-5 are depicted 
in Figs 5a-e, respectively. The transcritical bifurcation curve and the saddle- 
node bifurcation curve involve different pairs of steady states. They appear to 
intersect in Fig. 4 only because the solution x parameter  (R2x R 2) space is 
being projected onto a plane. 

The loci of saddle-node and transcritical bifurcations presented in Fig. 4 are 
termed "local" bifurcation curves because they are characterized by a 
qualitative change in the linearized stability evaluated at the steady state. A 
qualitatively different codimension-one bifurcation which is not observable 
from the local linearization forms the transition between regions 3 and 5. This 
"global" bifurcation is a heteroclinic connection where one side (the lower-left 
portion) of the one-dimensional stable manifold of steady state C and the non- 
negative portion of the one-dimensional unstable manifold of steady state A 
coincide. The effect of this bifurcation is to radically change the territory 
claimed by competing attractors and is illustrated schematically in Fig. 6. This 
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bifurcation has biological significance (see below) and has been previously 
called a "vital barrier" (Kuznetsov, 1983, 1988). 

Parameter estimates place our system in region 3 (marked �9 in Fig. 4). In 
this region, all trajectories beginning with high numbers of effector cells, x, and 
low numbers of tumor cells, y (corresponding to the unshaded region in 
Fig. 6b) asymptote to the dormant tumor state. 

Our parameter estimates place the system close to the global bifurcation 
boundary between regions 3 and 5. Thus, with a slight change in parameters the 
system can be in region 5. Interestingly, many experimentally observed 

t~ 
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.4 
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Transition Brief description 

15 ,  4-3 
1~4, 2-3 
2-5 
3 5  

Transcritical bifurcation involving steady states A and B 
Saddle-node bifurcation involving steady states C and D 
Saddle-node bifurcation involving steady states C and B 
Heteroclinic connection involving steady states A and C 
Associated with a significant change in the basins of attraction 
for the attractors. 

Figure 4. The two-dimensional transition structure (including both local and global 
bifurcations) as a function of 3, the effector cell death rate, and ~, the effector cell 
source rate, at the fixed values of the other dimensionless parameters presented in 
Section 4. The two-parameter diagram contains five distinct regions, labeled 1 5. 
The table summarizes the transitions between each of these regions. Figure 5 shows 
a representative phase portrait for each of these regions. Labeling of bifurcation 
curves: saddle-node [ - - ] ;  transcritical bifurcation [---]; and heteroclinic connec- 

tion [--  - -]. The estimated parameter values for our model: [ 0 ] .  
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phenomena are characteristic of the behavior predicted in region 5. In region 5 
transients beginning with high effector cell levels, i.e. high x levels (e.g. initial 
condition (ii) in portrait 5e) quickly approach an apparent dormancy where the 
tumor presence is reduced but not eliminated. However, the tumor level 
persists over time as the effector cell level gradually drops. Eventually the 
tumor escapes and the system approaches steady state D. This is an illustration 
of the "sneaking through" phenomenon. An external stimulation to an immune 
system in region 5, which may seem intuitively to aid the immune response 
(immunostimulation, e.g. perturbing from initial condition (i) to (ii) in Fig. 5e) 
can actually be detrimental. In addition, sufficiently small tumors (below the 
separatrix in portrait 5e) are predicted to eventually escape immune regulation. 
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Figure 5. Representative phase portraits for each of the regions in Fig. 4. Recall x is 
the non-dimensional effector cell level and y is the non-dimensional tumor cell level. 
Portraits (a~(e) (which represent regions 1 5, respectively, are at (~, a) values of 
(0.1908, 0.318), (0.545, 0.318), (0.545, 0.182), (0.009, 0.045) and (0.545, 0.073), 
respectively. Portrait (e) is redrawn with a logarithmic ordinate in portrait (f). 
Labeling: stable steady states [O] ,  steady states with saddle stability [ �9  one- 
dimensional stable manifolds of saddles [ - - ] ,  one-dimensional unstable manifolds 
of saddles [ - - - ] ,  initial conditions for transients [ + ] ,  and the evolution of 

transients in time increments of 1 day [" - "]. 

8. Discussion. Given the limited data  of Fig. 1, the numerical estimates of the 
model parameters for the response to BCL 1 cells should only be regarded as 
preliminary. However, we have some confidence in our estimates of the 
parameters c~ and fl characterizing tumor growth in the absence of an immune 
response, since the logistic model is biologically reasonable and the two 
parameters that need to be estimated from the data  determine the slope and 
asymptote of the tumor  growth curve. As shown in Fig. 1, the logistic curve 
with our parameter  estimates fits the data well over a wide range of initial 

Figure 6. Representative phase portraits: (a) before, (b) during, and (c) after; the 
heteroclinic connection between steady states A and C. Portions of the basins of 
attraction for attractors B and D are the white and shaded regions, respectively. 
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tumor cell concentrations. If independent measurements of other parameters 
were available, they could help guide interpretation of the processes of 
interaction between the host immune system and a growing tumor.  However, 
most of the relevant parameters have not been measured in vivo and thus we 
have used bifurcation theory to study the behavior of the model as parameters 
are varied. 

Using our parameter  estimates, we can make a number of biologically 
interesting predictions about the interactions of the immune system with a 
growth tumor. In Fig. 3 a phase portrait  of the system is presented at the 
parameter  values estimated in Section 4. Transients in the vicinity of steady 
state B exhibit decaying oscillations. A time series for an initial condition in this 
neighborhood is presented in Fig. 7. The result is of interest from the 
standpoint of predicting the behavior of the tumor over greater time-scales 
than those measured in Siu et  al. (1986). Cyclic fluctuations in the number  of 
leukocytes has been found in a number of cases in the development of chronic 
human myeloid leukemia (Menta and Agarwal, 1980) and chronic bovine 
lymphoid leukemia (Kukain et  al., 1982). This pattern of spontaneous relapse 
and remission is reminiscent of observations in non-Hodgkin's  lymphona 
(Krikorian et  al., 1980). It is also interesting that the predicted time scale of 
oscillations in the model, 3 or 4 months,  is in rough agreement with the time for 
recurrent clinical manifestations of certain human leukemias. In addition, 
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Figure 7. The time course ofBCL 1 leukemia y [---] and effector x cell levels [--] in 
chimeric mice, illustrating a decaying oscillation to the dormant tumor state. The 
dimensionless initial number of leukemia cells is y = 50 and the dimensionless initial 
number of effector cells is x = 5. Dimensionless parameter values are those presented 

in Section 4. 
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recurrent patterns of tumor remission and regrowth have been seen in the 
BCL 1 system for mice challenged with 106 BCL 1 cells (Uhr et al., 1991). 

Another prediction of the model follows from Fig. 3. In a mouse with a 
typical effector cell concentration of 0.5 x 106 (x=0.5), when more than 
approximately 1.5 x 108 tumor cells (y-- 150) are injected into the animal, our 
model predicts that the resultant tumor growth should not be controlled by the 
immune system. However, if fewer tumor cells are injected, then tumor growth 
is predicted to be controlled. This prediction of an "immunological barrier" 
value can be easily checked experimentally. 

In reports by Strober et al. (1979) and Weiss et al. (1983) data are presented 
that suggest that immunological mechanisms induce the formation of a 
dormant  state of BCL1 tumor in chimeric mice. In this state potentially lethal 
tumor cells persist in the animal with little or no increase in their population. 
Our model predicts the existence of a dormant  state (steady state B in Fig. 3). 

In certain animals it is not possible to detect leukemia cells several months 
after the administration BCL 1 cells, even if 106 splenocytes from these regressor 
mice are transplanted into non-chimeric BALB/c mice (Weiss et al., 1983). In 
this regard it is of interest to note that total regression may be obtained with the 
model given by equations (6a, b) only when there is a sufficiently pronounced 
change in the parameters from our estimated values, for example, a six-fold 
increase in the ~/6 ratio. In this case the rate of growth of the tumor cell 
population will be less than their death rate (e > a/~) and solutions emerge in 
which the tumor cell population y approaches zero. 

As a body ages the probability of transformed cells arising is thought to 
increase and the reliability of immune surveillance mechanisms probably 
decreases. Within the framework of our mathematical model such changes may 
be interpreted as: (1) an increase in the initial number of tumor cells at the time 
the immune system encounters the tumor, and a reduction of the threshold for 
its macroscopic growth, or (2) the reduction of the area in parameter space that 
corresponds to the total elimination of a primary tumor (i.e. where solutions y 
tend to 0) and the growth of areas in which either the system is in dynamic 
balance or the tumor is not controlled by the system. In either of these variants 
of the system even a single tumor cell may develop into a small "dormant" 
tumor. The number of such tumors is thus expected to increase with the 
organism's age until some stochastic event causes a change in the tumor growth 
rate, access to lymphocytes, or some other parameter changes such that a 
bifurcation border is crossed and the uncontrolled tumor growth begins. In this 
regard it is interesting to note that the experiments of Yefenof et al. (1993) 
suggest that a mutat ion causes a change in dormant  BCLt cells that allows 
them to escape the dormant  state. 

It follows from our bifurcation analysis that at certain parameter values 
solutions are possible that can be interpreted as tumor sneaking through and 
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Figure 8. A typical phase portrait for # slightly greater than 0.005014. For this 
portrait /~=0.0055 and the other dimensionless parameter values are those 
presented in Section 4. Portrait (a) is redrawn with a logarithmic ordinate in 
portrait (b). Labeling: stable steady states [O] ,  saddle steady states [O] ,  one- 
dimensional stable manifold of steady state C [ ], one-dimensional unstable 
manifolds of steady states A and C [ - - ~ ,  initial conditions for transients r + ], and 

the evolution of transients in time increments of i day [-- "]. 

1 
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immunostimulatory effects. Sneaking through refers to a phenomena in which 
low doses of tumor cells can escape immune defenses and grow into a large 
tumor, whereas larger doses of tumor cells are eliminated. Numerical 
continuation has shown that the parameter values we have estimated for the 
system lie close to what has been called a "vital barrier" transition (Kuznetsov, 
1983, 1988). On one side of the barrier sneaking through is possible, whereas on 
the other side it is not. The possible behaviors of our model are very sensitive to 
the parameter /~= ks /k  2. For example, as /~ increases the one-dimensional 
manifolds of steady states C and A cross in a heteroclinic connection at 
/t = 0.005014. After the heteroclinic connection, the phase portrait of the system 
(e.g. for/~ = 0.0055 in Fig. 8) is qualitatively similar to portrait 5e and exhibits 
the phenomena of sneaking through and immunostimulation leading to tumor 
escape. On the other hand, the possibility of tumor escape is lost as # decreases 
since steady states C and D collide in a saddle-node bifurcation at/t = 0.002633. 
After the saddle-node, the phase portrait of the system is qualitatively similar to 
portrait 5b (e.g. for #=0.0021 in Fig. 9). 

It is clear that small fluctuations of parameter values take place in vivo. 
Neither the effector cell nor tumor cell populations are homogeneous. Differing 
subpopulations will have different parameter values characterizing their 
behavior. Because of the sensitivity of the model's behavior to parameter 
values, we predict the ultimate instability of the dormant  state for BCL 1 . 
Moreover, we predict that the times of clinical manifestation of tumor  growth 
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Figure 9. A typical phase portrait for/~ slightly less than 0.002633. For this portrait 
/~=0.0021 and the other dimensionless parameter values are those presented in 
Section 4. Labeling: stable steady states [ t l ] ,  saddle steady states [O] ,  one- 
dimensional unstable manifold of steady state A [ - - ~ ,  initial conditions for 
transients [ + ], and the evolution of transients in time increments of 1 day [- . .] .  

should be stochastic. From our numerical experiments, shown in Fig. 6, we see 
that small changes of initial conditions in the sneaking through region lead to 
very large differences in the time period needed for the appearance of large 
tumors. These results correspond to observations on the emergence from the 
dormant state for BLC 1 lymphoma (Krolick et al., 1979; Strober et al., 1979; 
Siu et al., 1986; Uhr et  al., 1991) as well as for other experimental models of the 
tumor dormant state (Weinhold et al., 1979a,b; Uyttenhove et al., 1983; 
Hiernaux et al., 1986). 

The above observations make it clear that # is a critical parameter in the 
model. Our estimate,/~ = 0.003, is sufficiently small to make one wonder if in 
the biological system # is not actually zero. Recall that/~ = k3/k 2, and hence/~ 
small or zero implies that k 3 ~- 0, where k 3 is the rate at which effector cells are 
inactivated due to interaction with the tumor. Thus with small/t,  our model 
predicts that BCL 1 tumors do not efficiently inactivate effector cells. The 
argument given above, however, shows that the phenomena of sneaking 
through and immunostimulation of tumor growth depend on # being above 
0.002633. Thus, according to our model, a rather small rate of effector cell 
inactivation is needed to generate the phenomena seen in vivo. Our model thus 
suggests that it would be worthwhile to accurately monitor the ability of 
different tumors to inactivate effector cells and correlate that ability with 
observation of sneaking through and immunostimulation. 

The mathematical model presented here shows that the phenomena of 
sneaking through, immunostimulation and the presence of dormant tumors 
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may be related effects. We have used the term effector cells in our presentation. 
These cells may be CTL, NK cells, macrophages, the effector cells of antibody 
dependent cellular cytotoxicity reactions, or any other cell involved in immune 
surveillance against tumors. Thus, we believe the detailed mechanisms leading 
to the phenomena of sneaking through, immunostimulation and dormant  
tumors may be rather diverse. For particular tumors it is still necessary to 
determine the prevailing effector mechanism(s) leading to the stabilization and 
regression of a tumor growth in vivo and to obtain detailed experimental data 
regarding the kinetics of the relevant immune processes. Nevertheless, we feel 
that the model that we have presented is generic and relies on properties that 
any effector cell population should exhibit. Thus, the transitions in the 
behavior of the system as parameters are varied should have a universal 
character, that we expect will be seen in a variety of biological situations. It is 
for this reason that bifurcation diagrams, such as the one given in Fig. 4, may 
be quite helpful in interpreting experimental data. 

Although our model and its analysis were aimed at understanding tumor 
growth, it may have broader applicability. De Boer and Boerlijst (1993) have 
introduced equations (6a) and (6b), with /~=0, as a model for human 
immunodeficiency virus (HIV) infection in AIDS. In their model x represents 
the concentration of HIV specific CD4 § helper T cells that are involved in the 
immune response against HIV. These cells are assumed to be created at rate a 
and die with a per capita death rate c5. The virus, HIV, at concentration y, 
stimulates T cell growth to a maximum proliferation rate p in a density 
dependent manner with t /being the saturation constant of the process. HIV 
also kills T cells at rate Itxy. Equation (6b) describes the kinetics of viral growth 
and elimination. De Boer and Boerlijst assume virus grows at rate ~y and is 
eliminated by an immune response at rate cxy. In equation (6b), due to our 
scaling c = 1. Since HIV kills T cells there is no question that # in equation (6a) 
should be non-zero in this application. Kuznetsov (1983, 1992) has analysed 
the possible bifurcations with/~ = 0. One could also envision circumstances in 
which fl were positive and the virus grew logistically, in which case the model of 
De Boer and Boerlijst would become identical to the model presented here. 
This raises the possibility of sneaking through in AIDS by the mechanism 
elucidated in this paper. 

9. Conclusions. A quantitative model has been proposed for the interaction 
between effector cells and cells in a growing tumor. The model adequately 
describes the kinetics of growth and regression of a BCL 1 lymphoma in the 
spleen of chimeric mice over a wide initial tumor cell concentration range. 
Hypothesizing that cytotoxic effector cells are responsible for the anti tumor 
reactivity seen in the experimental model, we find that the model can account 
for many phenomena observed in vivo. Local and global bifurcations for 
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realistic values of the parameters were calculated, and show that there may be a 
connection between the phenomena of immunostimulation of tumor growth, 
"sneaking through" of tumor, and formation of the tumor "dormant" state. 

According to our model, the limited growth of even the high initial BCL 1 
tumor cell concentrations in the chimeric animals is associated with a high rate 
of accumulation of specific, highly-active, cytotoxic effector cells in the spleen 
and with the absence of suppression of the cytotoxic activity of these cells by the 
tumor. A threshold number of tumor cells, equivalent to 8 • 107 cells for the 
analysed experimental model, is predicted above which immunologically 
uncontrollable tumor growth should be found and below which attenuation of 
the disease with periodic exacerbations and clinical manifestation every 3-4 
months occur. 

One can speculate that even in the presence of cell mediated immune 
responses, which in our model do not totally eliminate even highly 
immunogenic tumors, a multitude of dormant  tumors could accumulate in 
body tissues with increasing age. Thus, according to our model it would not be 
surprising to observe an increased frequency of tumors as an animal ages. 

The model may also be applicable to other processes in biology such as the 
infection of T cells by HIV. 

One of the authors (VK) acknowledges the assistance of Yu. 1. Skal'ko with 
some of the calculations, and wishes to thank the Santa Fe Institute for their 
hospitality. We also thank Dr Steven Skates for valuable comments about a 
preliminary draft of the manuscript. This work was performed under the 
auspices of the U.S. Department of Energy. It was supported in part by NIH 
Grant AI28433, by the Center for Nonlinear Studies at Los Alamos, and by the 
Santa Fe Institute through their Theoretical Immunology Program. 

REFERENCES 

Abrahms, S. I. and Z. Brahmi. 1988. Mechanism of K562-induced human natural killer cell 
inactivation using highly enriched effector cells isolated via a new single-step sheep 
erythrocyte rossette assay. Ann. Inst. Pasteur, Immunol. 139, 361-381. 

Albert, A., M. Freedman and A. S. Perelson. 1980. Tumors and the immune system: The effects 
of a tumor growth modulator. Math. Biosciences 50, 25-58. 

Alsabti, A. 1978. Tumor dormancy: A review. Tumor Res. 13, 1-13. 
Beaumont, R. A. and R. S. Pierce. 1963. The Algebraic Foundations of Mathematics. Reading, 

MA: Addison-Wesley. 
Brondz, B. D. 1987. T Lymphocytes and Their Receptors in Immunological Recognition (in 

Russian). Moscow: Nauka. 
Callewaert, D. M., P. Meyers, J. Hiernaux and G. Radcliff. 1988. Kinetics of cellular cytotoxicity 

mediated by cloned cytotoxic T lymphocytes. Immunobiol. 178, 203 214. 
Chen, L., Y. Suzuki, C.-M. Liu and E. F. Wheelock. 1990. Maintenance and cure of the L5178Y 

murine tumor dormant state by interleukin 2: Dependence of interleukin 2 on induced 
inteferon-g and on tumor necrosis factor for its antitumor effects. Cancer Res. 50, 1368-1374. 



318 V.A. KUZNETSOV et al. 

Colmeraver, M. E., I. A. Loziol and V. H. Pilch. 1980. Enhancement of metastasis development 
by BCG immunotherapy. J. Sur 9. Oncology 15, 235 241. 

De Boer, R. J. and M. C. Boerlijst. 1993. Diversity and virulence thresholds in AIDS (submitted). 
De Boer, R. J. and P. Hogeweg. 1985. Tumor escape from immune elimination: Simplified 

precursor bound cytotoxicity models. J. theor. Biol. 113, 71%736. 
De Boer, R. J. and P. Hogeweg. 1986. Interactions between macrophages and T-lymphocytes: 

Tumor sneaking through intrinsic to helper T cell dynamics. J. theor. Biol. 120, 331-354. 
Deichman, G. I. 1979. Current concepts on the immunological interaction between the tumor 

and the body. In Tumor Growth as Problem of Development Biology, pp. 208-223. Moscow: 
Nauka. 

Deichman, G. I., T. E. Klyuchareva, L. M. Kashkina and V. A. Matveyeva. 1979. 
Reproducibility and relation to specific and nonspecific antitumor resistance of the "sneaking 
through" phenomenon. Int. J. Cancer 23, 571-584. 

DeLisi, C. and A. Rescigno. 1977. Immune surveillance and neoplasia--1. A minimal 
mathematical model. Bull. math. Biol. 39, 201 221. 

Dozmorov, I. M. and V. A. Kuznetsov. 1988. The role of cellular ratios in the maintenance of 
organism immune homeostasis. In Problems and Perspectives of Modern Immunology: 
Methodological Analysis (in Russian), R. V. Petrov and V. P. Lozovoy (Eds), pp. 43-66. 
Novosibirsk: Nauka. 

Emanuel, N. M. 1981. Chemical and biological kinetics. Russian Chem. Rev. 50, 901-947. 
Fidler, I. J. 1973. In vitro studies of cellular-mediated immunostimulation of tumor growth. J. 

Natl Cancer Inst. 50, 1307-1312. 
Fishelson, Z. and G. Berke. 1981. Tumor cell destruction by cytotoxic T lymphocytes: The basis 

of reduced antitumor cell activity in syngeneic hosts. J. Immunol. 125, 2048 2052. 
Gatenby, P. A., A. Basten and P. Creswick. 1981. "Sneaking through": A T-cell-dependent 

phenomenon. Br. J. Cancer 44, 753 756. 
Gray D. and T. Leanderson. 1990. Expansion, selection and maintenance of memory B-cell 

clones. Current Topics Microbiol. Immunol. 159, 1 17. 
Greenberg, P. D. 1991. Adoptive T cell therapy of tumors: Mechanisms operative in the 

recognition and elimination of tumor cells. Adv. Immunol. 49, 281-355. 
Grossman, Z. and G. Berke. 1980. Tumor escape from immune elimination. J. theor. Biol. 83, 

267-296. 
Hellstr6m, K. E. and I. Hellstr6m. 1969. Cellular immunity against tumor antigens. Adv. Cancer 

Res. 12, 162223. 
Herberman, R. B. 1974. Cell-mediated immunity to tumor cells. Adv. Cancer Res. 19, 207-263. 
Hiernaux, J. R., R. Lefever, C. Uyttenhove and T. Boon. 1986. Tumor dormancy as a result of 

simple competition between tumor cells and cytolytic effector cells. In Paradoxes in 
Immunology, G. W. Hoffman, J. G. Levy and G. T. Nepom (Eds), pp. 95 109. Florida: CRC 
Press. 

Hooke, R. and T. A. Jeeves. Direct search solution of numerical and statistical problems. J. 
Assoc. Comput. Machin. 8, 21~229. 

Jeejeebhoy, H. F. 1977. Stimulation of tumor growth by the immune response. Int. J. Cancer 13, 
665-678. 

Krikorian, J. G., C. S. Portlock, D. P. Cooney and S. A. Rosenberg. 1980. Spontaneous 
regression of non-Hodgkin's lymphoma: A report of nine cases. Cancer 46, 2093 2099. 

Krolick, K. A., P. C. Isakson, I. W. Uhr and E. S. Vitetta. 1979. BCL 1, a murine model for 
chronic lymphocytic leukemia: Use of the surface immunoglobulin idiotype for the detection 
and treatment of tumor. J. Immunol. Rev. 48, 81-106. 

Kukain, R. A., L. I. Nagayeva, V. P. Lozha, S. Ya Laganovsky, S. V. Chapenko, O. I. 
Bratsslavskaya, V. P. Ose and G. V. Kudeleva. 1982. Bovine Leukemia Virus (in Russian). 
Riga: Zinatne. 

Kuznetsov, V. A. 1979. The dynamics of cellular immunological antitumor reactions. I. 
Synthesis of a multi-level model. In Mathematical Methods of Systems Theory (in Russian), 
Vol. 1, pp. 57-71. 



A MODEL OF IMMUNOGENIC TUMOR GROWTH 319 

Kuznetsov, V. A. 198l. A model for cytotoxic cellular immune process and its experimental 
application (in Russian). In Applied Problems in the Theory of Dynamic Systems, Gorky, Vol. 
4, pp. 1443. Manuscript submitted to the All-Union Institute of Science and Technology 
Information, 25 December 1981, No. 5851. 

Kuznetsov, V. A. 1983. Bifurcations in a model of the two-level reactivity of an immune system to 
antigens of a developing neoplasm. In Dynamics of Biological Populations, Gorky (in 
Russian), pp. 52-64. Gor'ki State University. 

Kuznetsov, V. A. 1984. Analysis of population dynamics of cells that exhibit natural resistance to 
tumors. Soviet Immunol. (Immunologiya) 3, 58-68. 

Kuznetsov, V. A. 1987. Mathematical modelling of the processes of dormant tumors formation 
and immunostimulation of their growth (in Russian). Cybernetics 4, 9(~102. 

Kuznetsov, V. A. 1988. Nonlinear effects of the dynamics of antitumor cellular immune system 
(preprint; in Russian). Moscow:Institute of Chemical Physics, Academy of Sciences, USSR. 

Kuznetsov, V. A. 1991. A mathematical model for the interaction between cytotoxic 
lymphocytes and tumour cells. Analysis of the growth, stabilization and regression of the B 
cell lymphoma in mice chimeric with respect to the major histocompatibility complex. 
Biomed. Sci. 2, 465-476. 

Kuznetsov, V. A. 1992. Dynamics of Immune Processes During Tumor Growth (in Russian). 
Moscow: Nauka. 

Kuznetsov, V. A., A. V. Inshina and Z. G. Kadagidze. 1988. Computer-aided determination of 
the number of active natural killers, their avidity and the rate of recycling in a lytic cycle. 
Soviet Immunology (Immunologiya) 5, 25-30. 

Kuznetsov, V. A. and M. V. Volkenshtein. 1978. Mathematical model of cellular immune 
response to tumor growth (in Russian). In The Reports at the Third All-Union Conference on 
Biology and Medical Cybernetics (Sukhumi), pp. 58-61. Moscow: USSR Academy of Science. 

Kuznetsov, V. A. and M. V. Volkenshtein. 1979. Dynamics of cellular immunological antitumor 
reactions. II. Qualitative analysis of the model (in Russian). In Mathematical Methods of 
Systems Theory, pp. 72-100. Frunze: Kirghiz State University. 

Kuznetsov, V. A., V. P. Zhivoglyadov and L. A. Stepanova. 1993. Kinetic approach and 
estimation of parameters of cellular interaction between the immunity system and a tumor. 
Archly. Immunol. Ther. Exp. 41, 21-32. 

Lefever, R. and T. Erneaux. 1984. On the growth of cellular tissues under constant and 
fluctuating environmental conditions. In Nonlinear Electrodynamics in Biological Systems, P. 
Adley and A. F. Lowrence (Eds), pp. 287-305. New York and London: Plenum Press. 

Lefever, R., J. Hiernaux, J. Urbain and P. Meyers. 1992. On the kinetics and optimal specificity 
of cytotoxic reactions mediated by T-lymphocyte clones. Bull. math. Biol. 54, 839-873. 

Liu, Ch.-M., Y. Suzuki, L. Chen, T. Okayasu, C. E. Calkins and E. F. Wheelock. 1990. 
Maintenance and cure of the L5178 murine tumor dormant state by interleukin-2: In vivo and 
in vitro effects. Cancer Res. 50, 1361-1367. 

Look, A. T., T. J. Schriber, J. F. Nawrocki and W. H. Murphy. 1981. Computer simulation of the 
cellular immune response to malignant lymphoid cells: Logic of approach, model design and 
laboratory verification. Immunol. 43, 677-690. 

Macken, C. A. and A. S. Perelson. 1984. A multistage model for the action of cytotoxic T 
lymphocytes in multicellular conjugates. J. Immunol. 132, 1614 1624. 

Mathe, G. and P. Rejzenstein. 1986. Managing minimal residual malignant disease. Oncology 
43, 137-142. 

Menta, B. C. and M. B. Agarwal. 1980. Cyclic oscillations in leukocyte count in chronic myeloid 
leukemia. Acta. Haematol. 63, 68 70. 

Merrill, S. J. 1982. Foundations of the use of enzyme kinetic analogy in cell-mediated 
cytotoxicity. Math. Biosci. 62, 219-236. 

Merrill, S. J. and S. Sathananthan. 1986. Approximate Michaelis-Menthen kinetics displayed in 
a stochastic model of cell-mediated cytotoxicity. Math. Biosci. 80, 223-238. 

Mohler, R. R. and K. S. Lee. 1989. Dynamic analysis and control of cancer. In Int. Conf. IEEE 
Engng Med. Biol. Seattle, pp. 1-2. 



320 V.A. KUZNETSOV et al. 

Nelson, D. S. and M. Nelson. 1987. Evasion of host defenses by tumors. Imrnunol. Cell. Biol. 65, 
287-304. 

Old, L. J., E. A.Boyse, D. A. Clarke and F. A. Carswell. 1962. Antigenic properties of chemically 
induced tumors. Ann. N. Y. Acad. Sci. 101, 80-106. 

Perelson, A. S. and G. I. Bell. 1982. Delivery of lethal hits by cytotoxic T lymphocytes in 
multicellular conjugates occurs sequentially but at random. J. Immunol. 129, 2796--2801. 

Perelson, A. S. and C. A. Macken. 1984. Kinetics of cell-mediated cytotoxicity: Stochastic and 
deterministic multistage models. Math. Biosci. 170, 161 194. 

Prehn, R. T. 1972. The immune reaction as a stimulator of tumor growth. Science 4031, 170-171. 
Prehn, R. T. 1983. Review/commentary. The dose-response curve in tumor immunity. Int. J. 

Immunopharm. 5, 255-257. 
Prigogine, I. and R. Lefever. 1980. Stability problems in cancer growth and nucleation. Comp. 

Biochern. Physiol. 67, 389-393. 
Rescigno, A. and C. DeLisi. Immune surveillance and neoplasia. II. A two-stage mathematical 

model. Bull. math. Biol. 39, 487-497. 
Reynolds, C. W., R. H. Wiltrout, S. Reichardi and R. B. Herberman. 1985. Measurements of the 

in vivo turnover rates of rat peripheral blood and spleen large granular lymphocytes. Natural 
Irnmun. Cell Growth Regul. 9, 272. 

Sampson, D., T. G. Peter, S. D. Lewis, J. Metzig and B. E. Murtz. 1977. Dose dependence of 
immunopotentiation and tumor regression induced by levamisole. Cancer Res. 37, 
3526 3528. 

Siu, H., E. S. Vitetta, R. D. May and I. W. Uhr. 1986. Tumor dormancy. I. Regression ofBCL 1 
tumor and induction of a dormant tumor state in mice chimeric at the major 
histocompatibility complex. J. Irnmunol. 137, 1376-1382. 

Slavin, S. and S. Strober. 1978. Spontaneous murine B-cell leukemia. Nature 272, 624-626. 
Stewart, T. H. M. and E. F. Wheelock. 1992. Cellular Immune Mechanisms and Tumor Dormancy. 

Boca Raton, FL: CRC. 
Strober, S., E. S. Gronowicz, M. R. Knapp and S. Slavin. 1979. Immunobiology of a 

spontaneous murine B cell Leukemia (BCL). Irnrnunol. Rev. 48, 169-195. 
Swan, G. W. 1977. Some Current Mathematical Topics in Cancer Research. Ann Arbor, MI: 

University Microfilms International. 
Tanaka, K., T. Yoshioka, C. Bieberich and G. Jay. 1988. Role of the major histocompatibility 

complex class I antigens in tumor growth and metastasis. Ann. Rev. Irnrnunol. 6, 359-380. 
Thoma, J. A., G. J. Thoma and W. Clark. 1978. The efficiency and linearity of the 

radiochromium release assay for cell-mediated cytotoxicity. Cell Irnrnunol 40, 404-418. 
Thorn, R. M. and C. S. Henney. 1976. Kinetic analysis of target cell destruction by effector T cell. 

J. Irnrnunol. 117, 2213-2219. 
Thorn, R. M. and C. S. Henney. 1977. Kinetic analysis of target cell destruction by effector cells. 

II. Changes in killer cell avidity as a function of time and dose. J. lmrnunol. 119, 1973-1978. 
Umiel, T. and N. Trainin. 1974. Immunological enhancement of tumor growth by syngeneic 

thymus-derived lymphocytes. Transplant 18, 244-250. 
Uhr, J. W., T. Tucker, R. D. May, H. Siu and E. S. Vitetta. 1991. Cancer dormancy: Studies of 

the murine BCL 1 lymphoma. Cancer Res. (Suppl.) 51, 5045s-5053s. 
Uyttenhove, C., J. Maryanski and T. Boon. 1983. Escape of mouse mastocytoma P815 after 

nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J. 
Expl Med. 157, 1040-1052. 

Weinhold, K. J., L. T. Goldstein and E. F. Wheelock. 1979a. The tumor dormant state. 
Quantitation of L5178Y cells and host immune response during the establishment. J. Expl 
Med. 149, 732-744. 

Weinhold, K. J., D. A. Miller and E. F. Wheelock. 1979b. The tumor dormant state. Comparison 
of L5178Y cells used to establish dormancy with those that emerge after its termination. J. 
Expl Med. 149, 745 747. 

Weiss, L., S. Morecki, E. S. Vitetta and S. Slavin. 1983. Suppression and elimination of BCL~ 
leukemia by allogeneic bone marrow transplantation. J. Irnrnunol. 130, 2452-2455. 



A MODEL OF 1MMUNOGENIC TUMOR GROWTH 321 

Wheelock, E. F. and M. K. Robinson. 1983. Biology of disease. Endogenous control of the 
neoplastic process. Lab. Investigation 48, 120-139. 

Wheelock, E. F., K. J. Weinhold and J. Levich. 198l. The tumor dormant state. Adv. Cancer Res. 
34, 107-135. 

Wiggins, S. 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York, 
NY: Springer. 

Yefenof, E., L. J. Picker, R. H. Scheuermann, T. F. Tucker, E. S. Vitetta and J. W. Uhr. 1993. 
Cancer dormancy: Isolation and characterization of dormant lymphoma cells. Proc. Natl 
Acad. Sci. USA 90, 1829-1833. 

Yermakova, A., P. Valko and S. Vajda. 1982. Direct intergral method via spline approximation 
for estimating rate constant. Appl. Catalysis 2, 139-154. 

Rece ived  23 S e p t e m b e r  1992 


