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A competition model describing tumor-normal  cell interaction with the added effects of 
periodically pulsed chemotherapy is discussed. The model describes parameter conditions 
needed to prevent relapse following attempts to remove the tumor or tumor metastasis. The 
effects of resistant tumor subpopulations are also investigated and recurrence prevention 
strategies are explored. 

1. Introduction.  Mathematical models of cancer chemotherapy can indi- 
cate how micro-environmental interactions between tumor and normal cells 
can effect the outcome of the chemotherapy and the ability for a tumor  to 
recur or metastasize. These interactions can include competi t ion for nutri- 
ents, the effects of various growth factor or the effects of the immune 
system. As stated by Knolle (1988), knowing how model  parameters affect 
both the tumor and the normal cells can help take advantage of kinetic 
differences between the cells and how they may react to chemotherapy. 
Eisen (1979) also noted that the mathematics can help "discover ways to 
use existing drugs more efficiently," pointing out that even a good drug can 
appear useless if administered inappropriately. Also, Miller et al. (1981) 
stated that "Investigation of growth and control of neoplasia must take into 
account the natural control mechanisms existent for tumors." 

There has been a variety of research done in this area. An early review 
article by Aroesty et al. (1973) gave a comprehensive description of many of 
the basic ideas in cell kinetics and chemotherapy. Berenbaum (1969) took a 
straightforward approach to modeling the effects of therapy. He derived 

* Address after August 1, 1995: Department of Mathematics, Penn State Erie, The Behrend College, 
Station Road, Erie, PA 16563-0203. 

425 



426 J .C .  PANETTA 

basic criteria for reducing tumor size without overly destroying the normal 
tissue. These criteria include administration of the proper dosage and the 
timing of the dosage. Another common approach to investigating 
chemotherapy is via optimization theory. Murray (1990) modeled the cell 
populations with Gompertz growth and continuous cell kill and minimized 
the tumor population while keeping normal cells above and toxicity below 
acceptable levels. 

Unfortunately, none of these studies takes into account the possible 
interaction between tumor and normal cells or the effects of a resistant 
subpopulation on therapy. Though it is understood that some tumors such 
as lung or brain tumors do not show interative properties with their local 
environment, in many other cases as described forthwith, various local 
interactions can and do occur. Adding these features to the model will 
make it more realistic. Cornil et al. (1991) addressed the question of the 
effects that adjacent normal tissue such as fibroblasts have on human 
melanoma cells. In their in vitro experiments, they showed early stages of 
melanoma cells were suppressed by normal dermal fibroblasts (i.e. a nega- 
tive growth factor from normal tissue) and advanced stages Of melanoma 
cells were stimulated in the presence of normal dermal fibroblasts (i.e. a 
positive growth factor from the normal tissue). They note that this positive 
growth factor may be an explanation for the ability of a small but compe- 
tent metastatic growth to "escape" from a local growth constraints. In 
another study, Miller et al. (1981) showed that preneoplastic cells are 
suppressed by normal mammary cells but stimulated by more advanced 
mammary carcinoma lesions. Gatenby (1991, 1994) investigated this 
tumor-host relationship by considering the interaction to be both the 
effects of the immune system (for small tumor mass) and competition for 
resources by epithelial and mesenchymal cells. In particular, he considered 
the competition with a small number of cancer cells. Bellomo and Forni 
(1994) developed a competition model that examined the interactions 
between the tumor, host, and immune system. They showed that for small 
tumor mass, the immune system can retard the growth of the tumor. 
Additionally, Liotta (1992) discussed how various growth factors produced 
by both normal and tumor tissues can either suppress or stimulate cell 
growth. Burger et al. (1994), Dotto et al. (1988) and La Rocca et al. (1989) 
also discussed various negative growth effects caused by various normal 
tissue to tumor cells. In terms of growth factors, Michelson and Leith 
(1993a) described how growth factor signals from the tumor, the local 
stroma, and the host can all affect the growth of the tumor. 

Even more convincing evidence of the tumor-host interaction is dis- 
cussed by Michelson and Leith (1995), where they described a similar signal 
process between the liver and the tumor after a partial hepatectomy. The 
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theoretical implications of this interaction between the tumor and the liver 
are qualitatively supported by studies by Paschkis et al. (1955), by Fisher 
and Fisher (1959) and, more recently, by Leith et al. (1992). It should be 
noted that (referring to the tumor-liver interaction) "At this point, we 
emphasize the fact that even though intriguing candidates for the signal 
processing elements in this system have been proposed, no experimental 
data explicitly defining these linkages has been generated" (Michelson and 
Leith, 1995). It is the hope that this and other theoretical work will 
encourage clinical tests that will more explicitly show the various interac- 
tions described in this and other papers. 

Furthermore, resistant subpopulations are a major reason for failure of 
the chemotherapeutic regimens. Thus, adding resistance to the model can 
help us understand why the regimen is failing and help to find ways to 
eliminate the problem. Drug resistance must be taken into account because 
as tumors become resistant to drugs, the effects of the therapy are eventu- 
ally reduced to ineffective levels. Two major types of drug resistance are 
applicable here: inherent and acquired. Inherent resistance refers to tumor 
cells that are resistant from the beginning of chemotherapy, whereas 
tumors cells which are initially susceptible to the drug, but develop resis- 
tance over time, are considered to acquire resistance. (We will only work 
with acquired resistance effects in this paper.) 

Several researchers have modeled resistance. Swan (1981) investigated a 
model of radiotherapeutic resistance with resistant and sensitive cell popu- 
lations modeled by first order (linear) kinetics, and compared the advan- 
tages and disadvantages of periodic and continuous irradiation. Goldie and 
Coldman (1979) showed the effect tumor size has on a tumor developing a 
resistant subpopulation. That is, the larger the tumor burden, the larger the 
probability the tumor will develop resistance. Birkhead and Gregory (1984) 
looked at a difference equation model of drug resistance, including non- 
cross-resistance (cell models which are not resistant to combinations of 
drugs). They looked at the ratio of sensitive tumor cells to total number of 
tumor cells, which can be found clinically, and used it to predict tumor size 
and to estimate model parameters. They also showed the point at which a 
drug becomes ineffective against a resistant tumor. In the case of non- 
cross-resistant therapy, Birkhead and Gregory discussed patterns of admin- 
istration and gave conditions for administration strategies. Martin et al. 
(1992a, b) also looked at single and non-cross-resistant chemotherapy using 
optimization theory. 

Interestingly, none of these models takes into account the effects of the 
drug on the normal tissue. 

Therefore, we extend the basic models of homogeneous and heteroge- 
neous tumor growth to include chemotherapy and tumor-normal cell 
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interaction. The following models examine the effects of cycle non-specific 
(a drug that kills tumor cells at all stages of the cell cycle) periodically 
pulsed chemotherapy in a local tumor-normal  and resistant tumor-normal  
cell environment. Works by Panetta and Adam (1995), Webb (1992a, b), 
Agur et al. (1988), and Cojocaru and Agur (1992) were directed to model 
various types of cycle-specific drug dynamics and are not  covered in this 
paper. Mnst importantly, the models will investigate the use of chemother- 
apy to eliminate either a smal l  tumor burden left after attempts to remove 
the main tumor mass (such as a mastectomy) or metastasized tumor mass, 
and in so doing will provide parameter conditions to prevent tumor relapse. 
From these conditions we show that the interaction term along with the 
normal cell carrying capacity has a significant effect on the outcome of the 
therapy. Also, in the case of resistance, we will show definite regions of 
resistant growth without sensitive growth, thus leading to death of the host. 
Knowing these conditions can help in understanding and developing effec- 
tive drug treatments. 

2. The Model. Competition models from population biology have been 
used to model cell interactions. Gatenby (1991, 1994) investigated competi- 
tion models of tumor-normal  cell interaction, Michelson and Leith (1988, 
1993a, 1995) and Michelson et al. (1987) discussed the interactions with 
non-constant parameters describing various growth factor signals and Jans- 
son and R6v6sz (1977) and Gyori et al. (1988) examined competition in 
heterogeneous tumor populations. Of particular interest in the review of 
heterogeneous tumor populations by Michelson and Leigh (1993b), who 
covered a wide variety of topics including the biological implications of the 
models. These heterogeneous models will be investigated in section 5 where 
we discuss tumor resistance. For now, we will investigate the homogeneous 
case, i.e. just one tumor cell population. As Michelson and Leith (1991, 
1993a) mentioned, logistic growth with constant parameters is not the best 
approach in modeling tumor growth. They suggested that models with 
non-constant parameters that account for adaptational signals (autocrine 
and paracrine in their models) may better describe these complex dynamics. 
However, as a first approximation, the constant case does allow some 
freedom since it is not as difficult as other models to analyze in closed 
form. 

We will assume normal and tumor cells interact in the local environment 
as described by the competition model from population biology with con- 
stant parameters. It is important to note that in some of these cases the 
parameters will not be constant, but depend on various other tumor factors. 
However, we will only deal with constant parameters, and let the competi- 
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tion term represent general interactions between tumor and normal cells. 
Periodically pulsed survival conditions are added to model the effects of 
chemotherapy on interacting populations. Kot and Funasaki (1993) viewed 
a simplified predator-prey in a pulsed chemostat in a similar way. 

We assume that (1) the drug cycle non-specific, (2) there is instantaneous 
cell kill by the drug, (3) the parameters are constant, (4) there is no drug 
buildup in the environment and (5) there is no accumulation of dead cells. 

The basic set of equations that will be studied are: 

dx ( x )  
d T  = r l X  1 ~ A.1Y , (1) 

d T  = r2Y  1 K2 A2X , (2) 

X (  n r  +) = f (  D ) X (  n r -  ) , (3) 

Y ( n r  +) = F ( D ) Y ( n r  ). (4) 

The variables and parameters are: 

X" 
Y: 

r I , r2: 
K1, K2: 

A 1, A2: 

F(D),  F(D):  

Normal (host) cell biomass. 
Tumor cell biomass. 
Growth rates of the normal and tumor cells. 
Carrying capacity of the normal and tumor cells. 
Competitive parameters of the normal and tumor cells. 
Period of dose. r -  and r + denote the time just before and 
after a pulse, respectively. 
Survival fraction of normal and tumor cells for a given dose 
D. Note 0 < F(D);  F (D)  < 1. 

The Ais describe the various interactions discussed. For example, positive 
A 1 describes the negative affects of the tumor on the host; negative A 1 

(though probably not physically meaningful) could describe any possible 
positive affects of the tumor on the host. Similarly, positive A 2 describes the 
negative affects of the host on the tumor (i.e. the immune system or 
TFG-/3; see Burger et al., 1994, Dotto et al., 1988 and La Rocca et al., 
1989), whereas negative A 2 describes positive affects of the host on the 
tumor (i.e. growth factors such as those described in Cornil et al., 1991, 
Michelson and Leith, 1995 and Miller et al., 1981). If either Ai = 0, then it is 
assumed there is no interaction or signal in that direction. Some forms of 
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F ( D )  and i f ( D )  are given in Be renbaum (1969): 

1. Exponential :  F(  D)  -- e -'~D 
2. Exponent ia l  with shoulder:  F ( D )  = 1 - ( 1  - e - ~ V )  t3. 
3. Hyperbolic:  F(  D ) = ( D / D o) - ~. 

See Knolle [(1988), pp. 89-90] for indications of how the exponential  
dose - r e sponse  curve is formulated.  

3. Recurrence in the Absence of Chemotherapy. In the absence of 
chemotherapy,  the two periodic condit ions (3 and 4) are removed  and the 
problem reduces to the ordinary compet i t ion  model .  We must  ask this 
question: Is the tumor-f ree  case (Ka,0) stable to small ( compared  to the 
normal  cell mass) per turbat ions?  In o ther  words, can a small amoun t  of  
tumor  mass, left after surgery or due to metastasis, survive or will the 
pat ient  remain  in the disease-flee state? Linearizing about  this equi l ibr ium 
( X = K  1 + eu and Y =  0 - Ev, where  e is small compared  to  K1), we get 

(5) 

From (5) it can be seen that  the t umor  popula t ion  can recur if K ah 2 < 1 
(the eigenvalue 1 - A2K a is positive). For  more  informat ion on the mathe-  
matical analysis, see Wal tman  (1983). The  te rm K a h 2 will be referred to as 
competi t ive pressure.  Note  that  a similar result, derived differently, can 
also be found in Gatenby (1994). It can be seen that  the damaged  normal  
tissue env i ronment  ( reduced K 1) will be more  susceptible to t umor  recur- 
rence along with poor  compet i t ion  for resources among  the normal  cells 
(small positive h2). Therefore ,  0 < Kah 2 < 1 represents  the  t umor  recurr ing 
but  at an inhibited rate (caused by the normal  tissue) as compared  to the 
non-compet i t ive  case. However,  if h 2 is negative (positive growth factors), 
then  Kah 2 < 0 is always t rue and the t u m o r  will recur  faster than  in the 
non-compet i t ive  case (h i --0). This case can represent  the normal  tissue 
st imulating the t umor  mass. 

These  results are consistent with the in vitro experiments  f rom Cornil  
et al. (1991), who concluded that  non-metas ta t ic  me lanoma  cells (WM35) 
can be inhibited 3.5-fold (in five days; i.e. 0 < KIA  2 < 1) by dermal  fibrob- 
lasts, whereas  the metastat ic  m e l a n o m a  cells (WM9) can be s t imulated 
1.6-fold (in five days; i.e. K a h 2 < 0) by dermal  fibroblasts. More  specifically, 
setting the parameters  of our  mode l  at r a = 0.212, r 2 = 0.42, K a = 107, 
K 2 = 105, X(0) = 107, Y(0) = 5000, h 1 = 0 and h 2 = 0 (to conform with the 
experiments  carried out  in Cornil  et al. without the dermal  fibroblasts, i.e. 
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no interaction terms), we show similar growth rates as in their experiments. 
That is, the initial cancerous tissue mass for both the Cornil et al. study and 
our model was set at Y(0)--5000 and after five days they both grew to 
Y(5) ~ 30,000. By adding the effects of the dermal fibroblasts (h 2 ~ 0), our 
model, for various choices of h2, compares well with the Cornil et al. study. 
In the case of the non-metastatic melanoma cells, choosing h 2 = 7.12 • 
10 -s, the competitive pressure is 0 < K 1 h 2 = 0.712, which is consistent with 
the theory since the dermal fibroblasts are inhibiting the growth of the 
melanoma cells. In this inhibited growth environment Y(5)~ 8000, which 
compares well to the Cornil et al. study. In the case of the metastatic cells, 
choos ing  h2 = - 3 . 7 5  • 10 -8, the competitive pressure is KIA 2 = - 0 . 3 7 5  < 
0, which is also consistent with the theory since the dermal fibroblasts are 
stimulating the growth of the melanoma cells. In this stimulated case, 
Y(5) "" 55,000, which also compares well to the Cornil et al. study. 

If the parameters are non-constant--controlled by the growth factor 
signaling as in Michelson and Leith (1991, 1993a, 1995)--then recurrence 
can be more difficult to see, but is also more realistic. For example, h2 can 
change from positive to negative (i.e. inhibitory to stimulatory effects) after 
a partial hepatectomy (Michelson and Leigh, 1995) or in the case of tumor 
"escape" as discussed by Cornil et al. (1991). 

4. Recurrence with Pulsed Chemotherapy. It is common after a mastec- 
tomy or other surgical procedure to remove a tumor mass to administer 
chemotherapy to destroy any possible tumor metastasis. We now add these 
chemotherapeutic effects to our model. 

Once chemotherapy is incorporated, it is very important to study the 
effects that it has not only on the tumor cells, but also on the normal cells. 
Otherwise, our solution to destroy the tumor might also destroy the normal 
cells, and thus the patient. So, first let us see what basic conditions must be 
placed on the therapy with just the normal cells; then we will examine the 
attempt of tumor cells to recur. Solving equations (1)-(4) (see Appendix A) 
we find that the condition on the survival fraction for the normal tissue to 
survive is 

F ( D )  > a +e-rC~(1 - a ) ,  (6) 

where ( 1 - a )  represents the percentage of allowable normal cell kill 
(usually about 50%). 

Now, examine the recurrence of a small amount of tumor cells. As 
suggested earlier, this can be an O(E) amount of tumor mass left after 
surgery. The question to be asked is: Can the tumor continue to grow or is 
the chemotherapy strong enough to eradicate it while maintaining the 
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normal tissue above some acceptable level? To answer this, we linearize the 
original system about (Xs(t), 0), to study the stability of the tumor mass (see 
Appendix B). The condition to prevent recurrence (Appendix B) is 

if(D) < F (  D ) r 2 a 2 g i / r ' e x p (  - rr2(1 - A2K1) ). (7) 

Note that A2K 1 < 1 is the condition for tumor survival without drug 
therapy. In other words, if A2K ~ > 1, then there is no need for any 
chemotherapy since the tumor is killed by competition with other cells (see 
section 3). To make it difficult for the tumor to recur, the right-hand side of 
(7) must be large, close to 1. Therefore, either an increase in r 2 (tumor 
regrowth rate) or r (period between treatments) will increase the ability of 
the tumor to recur, and an increase in r I (normal cell regrowth rate) or 
A2K 1 (competitive pressure) will decrease the ability of the tumor to recur 
if A 2 is positive and increase the ability to recur if it is negative. Also, many 
of the chemotherapeutic drugs used are immuno-suppressive. In this model 
this can be described by decreasing the size of A2, thus making it harder to 
prevent tumor recurrence without larger doses of the drugs. 

If F(D)= e -~,D and F(D)---e -'2D, then the conditions which prevent 
the tumor from recurring are 

rr2(1 - A2K1) 
D > (8) 

Ol 2 - -  Ol 1 A z K l r z / r l  

- 1  
< ln(a + e - r" (1  - a)) ,  (9) 

where the first condition is derived from equation (7) and the second comes 
from (6). Note that both of these equations are affected by normal cell 
parameters (K1, Az, rl, ~l ,a).  For example, as the competitive pressure 
AzK 1 increases (A 2 > 0), less of a dose is needed to prevent recurrence. For 
there to exist a region of acceptable dose and period, the graph of equation 
(9) must lie above that of equation (8) for some region. For this to happen, 
the slope of equation (9) at r = 0 must be larger than that of equation (8). 
To satisfy this, the following condition is needed: 

air2(1 - aA2K1) 
~2 > (10) 

rl(1 - a) 
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From this condition, we can see (as might be expected) that for the 
treatment to be effective, the chemotherapeutic drug must have more of an 
affect on the tumor cells than on the normal cell unless the normal cells 
are able to grow back faster (r I > r2). 

Figure 1 gives one example of a region of acceptable dose and period. A 
dose and period chosen above the line "Tumor Condition" and below the 
curve "Normal Condition" will prevent the tumor from recurring and keep 
the normal cells above the specified level a. This also shows graphically the 
need for condition (10). Figure 2 gives a similar view with varying host 
survival (a). Here we want to choose a dose and period above the plane and 
below the curved surface. It can be seen that as the condition on host 
survival (a) is increased, the region for successful treatment is decreased. In 
fact, Fig. 3 shows where the graphs in Fig. 2 cross. This forms the boundary 
between where a successful region does and does not exist. Figure 4 shows 
the effect of varying A2K 1. As predicted, for small values of A2K 1, it will 
take a larger dose to prevent tumor recurrence. This can be interpreted as 
when the competitive pressure (A2K a) decreases, the drug therapy will need 
to be made more effective to continue to prevent recurrence. In fact, we 
can see that as the competitive pressure becomes increasingly negative, that 
is, stimulatory affects by the normal tissue, the region of acceptable dose 
gets smaller until it disappears around A2K 1 = -0 .6 .  
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5. Resistant  Subpopulations.  If a resistant subpopulation occurs, then the 
tumor  can never be killed off unless the drugs are altered to have an effect 
on the most resistant population. This will entail the use of non-cross-re- 
sistant drugs. Models that assume resistant cells are 100% resistant are 
discussed by Goldie and Coldman (1979). They show, by stochastic meth- 
ods, that as the tumor  burden  is increased, there is a higher probability of 
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Figure 4. Dose-response curve: dose versus A2K 1. 

tumor becoming resistant and that there is a small critical time interval in 
which the probability of the tumor developing resistance goes from low to 
high. 

Resistance arises in various ways. One is resistance that is not induced 
by the drugs. Since tumor heterogeneity is common (see Michelson and 
Leith, 1993b), this is a very likely case. This will be modeled by a continuous 
flow of cells, independent of the chemotherapy, from sensitive to resistant. 
The other is resistance induced by the drugs. That is, as the drugs are 
administered, some sensitive cells become resistant. This could be caused 
by genetic mutations. This will be modeled by a discrete flow of cells, 
dependent on the chemotherapy, from sensitive to resistant. As mentioned 
before, the present paper will look at this acquired resistance. 

5.1. Acquired resistance: Cell mutations. Martin et al. (1992b) state that 
some types of drug resistant cells arise at a constant rate and are not 
induced by the chemotherapeutic drugs. This gives rise to heterogeneous 
tumors. Michelson and Leith (1988) and Michelson et al. (1987) have 
developed heterogeneous tumor models without normal cell interaction or 
chemotherapy and Gyori et al, (1988), using the model developed by 
Michelson et al., added the effects of a time-dependent cytotoxic agent. 



436 J.C. PANET'I?A 

These models can be modified in the following way to account for normal 
cell interaction and periodically pulsed therapy: 

where: 

dx ( x  ) 
--~ = q X  1 K11 /~I(Y1 "l'- Y2 ) , (11) 

dY1 =r2Yl[ 1 Y1 + Y2 h2(X + Y2) ] -mY1,  (12) 
dt ~ K 2 ] 

dY2 = r3Y2/1 I11 + Y2 /~3(X.+. yl ) l  +mYa ' (13) 
dt 1 K2 ] 

X ( n r  +) = F ( D ) X ( n r - ) ,  

Yl(nr +) = ff( D)Yl( nr-  ) , 

Y2( nr +) = P( D ) Y2( nr-  ), 

(14) 

(15) 

(16) 

X: Normal cell biomass. 
I11: Sensitive tumor cell biomass. 
Y2: Resistant tumor cell biomass. 
m: Resistance parameter. Usually this is very small since cancer cells 

mutate at a rate of about 1 in every 10 6 cells (see Michelson and 
Leith, 1988). 

Note that the his can be either positive or negative as described before. We 
assume that two drugs are administered: both affect the sensitive cells with 
survival fraction F(D), while only o n e  affects the resistant cells with 
survival fraction if(D). This leads to the assumption if(D) < if(D), i.e. the 
drugs will have a stronger effect on the sensitive tumor cells than the 
resistant tumor cells. 

5.1.1. No therapy case. Let us first look at the case with no chemother- 
apy. Michelson and Leith (1993b) noted that with this model, in the 
constant coefficient case, there is no equilibrium where the resistant cells 
Y2 are excluded and sensitive cells Y1 survive. However, with the proper 
choices of parameters, the coexistent equilibrium can be driven as close to 
the Y2 = 0 case as possible. They note that in this limit, the deterministic 
model can break down. 

As before, the stability of the tumor-free case (K~, 0, 0) is investigated 
and parameter ranges for tumor growth are given. Linearizing equations 



PERIODICALLY PULSED CHEMOTHERAPY 437 

(11)-(13) about X = K  1 + Eu, Y1 = 0 4- et) and I12 = 0 + ~w, we get 

U ! 

V'  

W r 

m r  1 

= 0 

0 

- r l A 1 K  1 

r2(1 - A2K 1) -- m 

m 

0 

r3 (1  --  A 3 K I )  

(17) 

We investigate the stability by looking at the eigenvalues. In particular, we 
are interested in the second two equations of the system. Since they 
decouple from the first equation, we may focus on them alone. The 
condition on sensitive cell recurrence is A2K 1 < 1 - m / r  2. This condition is 
more  restrictive than that of  the no resistance case because of the presence 
of  the m / r  2 term. As m increases, it is harder  for the sensitive cells to 
recur  and as r 2 increases, the sensitive cells can grow faster, thus making it 
easier for them to recur. Also, if m > r 2, then the sensitive cells cannot  
recur, although, typically m -~ r 2. The condition on resistant cell recurrence 
is A3K 1 < 1. Although, if the sensitive cells recur, then the resistant cells 
must  recur  (see Michelson et al., 1987), even if A3K 1 > 1. This can be seen 
by looking at the third equation (w' = m y  + r 3 ( 1 -  A3gl)w). Since v is 
increasing, then so must w. However,  if A 3 K  1 < 1 and A2K 1 > 1 - m / r  2, 
then the resistant cells will recur  without the sensitive cells. 

5.1.2. Resistant  recurrence. As before, we want to see what happens to 
small perturbations, caused by a small amount  of tumor  mass, to the 
tumor-free periodic solution given in section 3. The condition to prevent  
sensitive cell recurrence as shown in Appendix C is 

F ( D )  < F ( D )  ((rz-m)A2K1)/r' exp( - T r 2 ( l  - A 2K 1)  ) .  (18) 

Note that we assume A2K 1 < 1 (see the previous section). As can be 
concluded, as m increases in size, the resistance has a larger affect in the 
outcome. 

As in the no-drug case, resistant cells must recur  if sensitive cells do, and 
there can be resistant cell recurrence even if the sensitive cells do not 
recur. The condition to prevent  resistant recurrence  as calculated in Ap- 
pendix C is 

F ( D )  < F ( D )  r3asK*/r' exp( - "rr3(1 - A3K1)  ) .  (19) 

It is important  to note that if the resistant subpopulation goes undetec ted  
and drugs are administered which kill only the sensitive cells, then F ( D )  = 1. 



438 J . C .  PANETTA 

In this case the resistant subpopulation will recur unless they are competi- 
tively excluded (K1A 3 > 1), since the right-hand side of equation (53) is less 
than 1. 

As before, choose the dose-response  to be F(D) = e -~'0, i f(D) = e -~D 
and i f ( D ) = e  -"3D. Then the conditions to prevent both sensitive and 
resistant tumor  recurrence while keeping the normal cells above the 
specified level a are 

, r r2 (  1 - -  A 2 K 1 )  
D > (20) 

012 - -  ~  - m ) / r l  

rr3(1 -- A3K1) 
> (21) 

013 --  0 1 1 A 3 K l r 3 / r l  

- 1  
< -ln(a + e-'l~(1 - a)). (22) 

011 

For there to be a region of resistant recurrence without sensitive recur- 
rence, the graph of (20) (the equality) must be below that of (21), or the 
slope of (21) with respect to r must be greater than that of (20). In general, 
this will depend on the growth rates and competit ion parameters of the two 
populations along with the dose-response  parameters (01i). In the special 
case where r 2 = r 3 and A 2 -~" ~t 3 (a biologically reasonable one) the condition 
i s  0/3 - -  012 < a l A z K l m / q  �9 If a 3 > 012 (F(D)  >/6(D),  which is unrealistic), 
then, depending on the size of m, there will be a region (small if m is 
small) where resistant cells can recur without sensitive cells. If 013 < 0~2 
(F(D)  < F(D), typically true), then there will always be a region of resis- 
tant recurrence without sensitive recurrence. Replacing 012, r2, A 2 with 
a 3, r 3, A 3 in equation (10), we can see the minimum condition needed for 
the treatment to be able to prevent resistant tumor recurrence. 

Figure 5 gives an example of two regions of dose versus period. One 
occurs where the tumor cannot recur and the other where only resistant 
tumor cells can do so. The upper  line refers to equation (21) (the equality); 
the lower line refers to equation (20) and the curve is equation (22). From 
this graph we can see how the two regions are close together, thus showing 
how sensitive the results are to small changes in dose or period. Addition- 
ally, if the resistant population is undetected,  then we can easily choose a 
dose and period to eliminate the tumor  which actually falls in the range of 
resistant recurrence. Thus, the tumor  can recur even though it appears that 
we are administering an acceptable dose regimen. 
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Figure 5. Dose-response curves: dose versus period. 

5.2. Induced resistance. Birkhead and Gregory (!984) and  Martin et al. 
(1992b) noted that tumor cells can mutate to resistant subpopulations as a 
result of exposure to chemotherapeutic drugs. With regard to this, a 
variation can be made to the above model to model induced resistance: 

dx ( x  ) 
-d-[ - rl X 1 -~1 hi(Y1 + Y2 ) , 

dYj ( YI + Y2 A2(X + Y2)) --~ -- r2Y 1 1 Ke 

dY2 = r3Y2( 1 Y1 + Y2 A3(X + ]11)) 
dt K 2 ' 

X ( n r  +) = F ( D ) X ( n r - ) ,  

Yl( nr +) = ( F ( D )  - R( D ) ) YI( nr ) , 

Ya(nz+) = F (D )Yz (nr - )  + R(D)Y1(nr- ) ,  

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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where in equations (27) and (28) R(D) is the fraction of ceils mutating due 
to the dose of the drug. Note that R(D) can be as large as 0.5, i.e. 50% of 
the surviving cells become resistant. Thus, induced resistance may have a 
great affect on the outcome of the therapy. 

5.2.1. Normal growth. As in section 3, we are interested in the stability 
of the tumor-free case (K1, 0, 0). Linearizing (23)-(25) about the tumor-free 
state ( X = K  1 + Eu, Y1 = 0 + ev and Y2 = 0 + ew), we get 

U' -- r 1 

V' = 0 

w' 0 

- h l r lK  1 

r2(1 -- A2K1) 

0 

0 

r3(1 -- A3Kz) 

(29) 

Note that this has similar conditions for recurrence as equation (5). That  is, 
the sensitive cells will recur if )tzK a < 1 and the resistant ceils will recur if 
A3K 1 < 1. For this problem however, unlike the previous case, we can have 
sensitive cell recurrence without resistant recurrence and the recurrence of 
one does not affect the other. It just depends on the competit ion coefficient 
A i. Thus, prior to therapy, sensitive cell recurrence has no effect on the 
recurrence of resistant cells. 

5.2.2. Induced resistance with chemotherapy. Continuing with the same 
approach as before, we linearize the system about the tumor-free periodic 
solution (Xs(t),O, 0). In this case we will solve the two decoupled equations 
v' = r 2 ( 1 -  haXs(t))v and w' = r 3 ( 1 -  A3Xs(t))w by integrating over the 
period and applying the pulsing conditions (27) and (28). This gives us the 
system of difference equations 

( i f (D)  - R ( O ) ) e  r2" 

U(n+ l ) r  = Unr F( D ~ / 7 ~  exp(r2A2K2r ) , (30) 

R ( D ) e  r2"~ 

W(n+ l). ~ = v,,r F( D ),2a2K,/r 1 exp(r2A2K(r) 

f f (D)e  r3" 

q- Wn~ F(D)r3x3gl/q exp(r3A3KlZ) (31) 

Now, we will look at the stability results. First, the sensitive tumor  cells 
cannot recur if 

i f (D)  < F ( D )  r2azlq/rl e x p ( -  rr2(1 -- A2K1) ) + R ( D ) .  (32) 
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Note that R(D) increases the size of the right-hand side (dramatically when 
R(D) is large), thus making it easier to prevent sensitive cell recurrence. It 
can be seen that if R(D) is large (close to 0.5), then tumor resistance will 
be ha rd  to prevent. If the sensitive cells recur, then the resistant cells will 
also recur because the first term on the right-hand side of equation (31) will 
grow in spite of the second term. Thus, resistant tumor  population recur- 
rence does not depend on competitive pressure if there is sensitive recur- 
rence. Last, the resistant tumor cells can recur even if the sensitive cells do 
not, provided 

P(D) > F ( D )  r3A3Kl/rl exp( -- "rr3(1 -- A3K1) ). (33) 

This is derived assuming that there are sensitive cells initially, which is very 
likely. Note that this result is consistent with condition (53) for non-induced 
resistance. 

6. Discussion and Conclusions. Since tumor cells are not isolated from 
their micro-environment, but can be competing with the host for resources, 
affected by the immune system or by various growth factors, the models 
discussed in this paper, which include tumor -no rma l  cell interaction, are a 
step toward better describing chemotherapeutic  effects. For example, as 
stated by Miller et al. (1981): 

Investigation of growth and control of neoplasia must take into account 
the natural control mechanisms existent for tumors. For example, a much 
more vigorous therapeutic approach might be necessary to control a 
mammary tumor growing in a mammary fatpad than to control a mam- 
mary tumor  growing at a s.c. (subcutaneous) site. 

The model  in this paper can help better qualify how vigorous the 
chemotherapy might need to be (i.e. in terms of dose and period) given a 
set of parameters that relate to the sites discussed by Miller et al. or others 
in which a tumor can grow. Along with the effects of the drugs on normal 
tissue, t he s e  are some of the more important  constraints on the use of 
chemotherapeutic drugs and should be a part of any model  that will 
accurately describe the mutual interplay within the system. 

We show that data from studies on various tumor -hos t  interactions have 
suggested that the type of interactions described in this paper can play an 
important role in the growth and control of tumors. As a result of this, 
many clinical studies have been and are being conducted to find the specific 
kinetics involved in these interactions, though, at this t ime these studies 
cannot specify the kinetics of these interactions, they do strongly suggest 
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that these interactions are very important and should be taken into ac- 
count. Without having to know these specific kinetics, our model describes 
well both thr suggested interactions along with more specific experimental 
data noted in this paper. 

The models in this paper establish that there are definite parameter 
regions of acceptable and unacceptable chemotherapeutic regimens, giving 
us a qualitatiue idea of how each parameter affects tumor recurrence. In 
particular, we show how the competitive pressure (AzK 1) (i.e. competition 
for resources, positive or negative growth factors and immune System 
effects) can control and even prevent t umor  growth and recurrence, or 
possibly even enhance tumor growth (as seen in the case of a partial 
hepateetomy). Also, we show how certain doses (D) and period (~-) can lead 
to tumor regrowth including resistant regrowth. 

The model is inappropriate if the tumor develops resistance that is 
untreatable (no drug affects it). However, if non-cross-resistant drugs are 
administered, then it is still possible to continue to prevent tumor recur- 
rence. One simplistic way to model this problem is to define the drugs to be 
a non-cross-resistantconglomeration that is administered to give survival 
fractions F(D) and F(D). However, because this does not give any insight 
into the mechanism of resistant recurrence or how to control it, more 
sophisticated resistance models are needed. 

Since most tumors are known to be heterogeneous and heterogeneity can 
be a result of resistant subpopulations, then heterogeneous tumor models 
are an appropriate approach to study drug resistance. Two different types 
of resistance are investigated: drug induced and non-induced. One of the 
main differences between these situations is in the no therapy cases. That 
is, in the drug-induced no therapy case, growth of the sensitive cell 
population does not affect that of the resistant cell population, whereas in 
the other case it does. When chemotherapy is added, both cases show a 
definite region of resistant recurrence with no sensitive recurrence. This 
region is important in that when planning a chemotherapeutic regimen, it 
can be avoided and thus not cause the tumor to become totally resistant, 
thereby killing the host. In both of these cases, the parameter region that 
will prevent recurrence is generally smaller than the homogeneous case, 
since the resistant cells are affected by fewer drugs. One of the most 
important points to note is that, in all cases, there are definite regions 
where the therapy will either succeed or fail. This should emphasize the 
importance of correct administration of chemotherapeutic drugs. Also, as 
pointed out earlier, it is important to account for the resistant subpopula- 
tion since it can significantly narrow the acceptable region of drug treat- 
ment. The main mathematical difference between these two resistance 
models is that the induced model allows for discrete mutations which can 
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have a significant affect on the outcome while the non-induced model has 
continuous mutations which usually are small compared to the chemothera- 
peutic effects. 

Gatenby (1991) pointed out that when therapy is withdrawn, the tumor 
will just grow back to its original size unless it is totally destroyed or the 
characteristics of the system have changed. As seen in this model, one of 
these changes can be a variation of A2K 1 through the critical value of 1, 
which will make it impossible for the tumor to recur. Another factor can be 
a change in sign of A 2 (through growth factors, etc.), which will force the 
tumor to recur in the absence of chemotherapeutic drugs. A relevant topic 
in this regard is that of growth factors as discussed by Michelson and Leith 
(1991, 1993a, 1995). In particular, the paracrine path, which can be de- 
scribed mathematically as the varying of the carrying capacity K i by tumor 
growth factors, can change the recurrence condition significantly. Addition- 
ally, Gatenby (1991) discussed how damage to the local tissue (normal cells) 
and devascularization can help the tumor mass emerge. That is, the 
carrying capacity is reduced because of dead cell accumulation or increased 
levels of toxic drugs, thus making it easier for the tumor to emerge. These 
ideas give rise to the need for models with non-constant parameters. 

Even though further work will be required to address the simplification 
in these models, they do provide a useful initial indication of the dynamics 
of tumor recurrence. The parameter conditions arising from these models 
define our expectations for the effective chemotherapeutic treatment of 
tumor recurrence, giving us more insight into how to administer the drugs 
more efficiently. 

APPENDIX A. NORMAL CELL GROWTH 

In the absence of any tumor cells, system (1)-(4) reduces to 

d-~ = r lX  1 - , (A1) 

X ( n r  +) ~ F ( D ) X ( n z -  ). (A2) 

The solution which holds between pulses is 

X,,K1 
X(t)= n T < t < ( n + l ) z ,  (A3) 

Xnr + (K1 - X,~)exp(-rl(t - nT)) '  

where X ~ = X ( n ~ ) .  At the beginning of each successive pulse, the solution, using the 
pulsing condition (A2), is 

X,~K~ 
X ( n  + ,)., = F ( D )  X n  ~ + ( K  1 _ X , , ~ . ) e _ r , .  r . (A4) 
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Equation (A4) has two equilibrium points: 

K I ( F ( D  ) --e-r1 "r) 
X* = 0 ,  X* = (1 - e  -r~r) (A5) 

Note that for X* to exist and to be stable, F ( D ) >  e -rl~'. Otherwise X* is the only 
equilibrium that exists and it is stable. Since F ( D )  > e - r ~  allows even 99% of the normal 
cells to be killed and still have survival, then that condition in most cases is not acceptable 
and must be made more rigid. According to Berenbaum (1969), an acceptable level of cell 
kill for normal cells is about half the original state. This, in general, depends upon the type 
of normal cells that are being referred to. Some can survive much larger cell kills than 
others. However, to avoid specifying any particular type now and to keep the model flexible, 
we will require X* > aKl, where a is the proportion of acceptable reduction from the steady 
state for normal cells. Using the above information, it can be seen that the survival fraction 
must be 

F ( D )  > a + e - r~(1  - a) (A6) 

for there to be at least a% of the normal cells left. Substituting As* into (A3) we get the 
steady-state periodic solution: 

K 1 ( F ( D  ) - e-r,7) 

X~(t)  = F ( D )  - e -rl* + (1 - F ( D ) ) e x p ( - r l ( t  - n z ) )  ' 
n z  < t < (n + l)~'. (A7) 

A P P E N D I X  B. R E C U R R E N C E  O F  T H E  T U M O R  

Letting X =Xs( t )  + eu and Y =  0 + ev,  then system (1)-(4) becomes 

u' = r 1 1 -  K1 . (B1) 

V' 0 r2(1 -- A2Xs(t))  

If this system is stable in v, then the steady state (Xs(t) ,  0) is stable and the chemotherapeu- 
tic regimen prevents tumor recurrence. The stability of v is determined by integrating 

v' = r2(1 - A2Xs( t ) )v ,  nz  < t < (n  + 1)z. (B2) 

Since X~(t) is periodic with period ~-, integrate over one period to get 

[ (n + 1)1" ) 
V(n+O,=f f (D)vn ,  explrzfn~ 1 -  A2Xs( t )d t  (a3)  

or, in a more useful form, 

( . f(n+l) . . . .  ) 
v (~+l )~=v~ f f (D)ex  p lner27-r2A2Jn~ X s ( t ) d t  . (B4) 
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Calculating the above integral and simplifying, we get 

-- [ ( r27 \ 1  
v~ + 1~ = v, , .~F(D)expl ln~ . . . .  - -  (B5) 

, . ~ ~ F ( D )  "2~2-~/r~ exp(r2A2Kl,r) 11 
or  

ff(D)er: ,  ) 

v(n+ 1)~ = Vnr F(D)r2a21q/rl exp(r2A2Klr) �9 (B6) 

If the characteristic multiplier of equation (B6) (term in brackets) is less than 1, the tumor 
will regress. Thus, to prevent recurrence, 

F ( D )  < F ( D )  ~2x~K'/rl e x p ( -  zr2(1 - A2Ka)). (B7) 

APPENDIX C. ACQUIRED RESISTANCE RECURRENCE 
Linearizing system (11)-(16) about (X~(t), 0, 0) the stability of the sensitive and resistant 

subpopulations is investigated. In the same manner as before, we look at the linear system 

v' 0 

w' 0 

- r t A t S s ( t )  - r t A 1 X s ( t )  

r 2 ( 1 - h 2 X s ( t ) ) - m  0 

m r3(1 - h3Xs(t)) 

U 

U 

W 

(c1) 

where X = X s ( t )  + eu,  Y1 = 0 + ev  and Y2 = 0 + ew. In this case the second two equations 
decouple and the second can be solved by integrating 

v' = (r2(1 - A2Xs(t)) - m ) v ,  nr  < t < (n  + 1)r. (c2) 

This gives 

vf,  + 1)~ = v , ,  ( ff(D)exp_____~((r 2 - m)z____~) 

F ( D )  r2a2r~/~ exp(r2 A2KI~- ) }" 
(C3) 

The condition to prevent sensitive cell recurrence is 

F ( D )  < F ( D )  ((r2-m)'~2K1)/q exp( - ~'r2(1 - A 2 K 1 ) ) .  (C4) 

To find the condition for resistant recurrence, we must integrate 

w' = r3(1 -- A 3 S s ( t ) ) w ,  nr  < t < (n  + 1)~', (c5) 

giving us: 

p(D)er3~ 
w(~+ t)~ = w.~ F(D) ,3~3rl / ,  ~ e x p ( r 3 A 3 K l ' r )  

(C6) 
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Thus, the condition to prevent resistance recurrence is 

i f (D) < F (  D ) r3x3K1/r~ exp(-  ' r r3(1 - A3K1) ) .  (C7) 
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