
Bulletin of Mathematical Biology Vol, 55, No. 1, pp. 141 154, 1993.
Printed in Great Britain.

0092-8240/9355.00 + 0.00
Pergamon Press Ltd

�9 1992 Society for Mathematical Biology

E F F I C I E N T M E T H O D S F O R M U L T I P L E S E Q U E N C E
A L I G N M E N T W I T H G U A R A N T E E D E R R O R B O U N D S

DAN GUSFIELD
Computer Science Division,
University of California,
Davis, CA 95616-8755, U.S.A.

Multiple string (sequence) alignment is a difficult and important problem in computational
biology, where it is central in two related tasks: finding highly conserved subregions or embedded
patterns of a set of biological sequences (strings of DNA, RNA or amino acids), and inferring the
evolutionary history of a set of taxa from their associated biological sequences. Several precise
measures have been proposed for evaluating the goodness of a multiple alignment, but no
efficient methods are known which compute the optimal alignment for any of these measures in
any but small cases. In this paper, we consider two previously proposed measures, and give two
computationaly efficient multiple alignment methods (one for each measure) whose deviation
from the optimal value is guaranteed to be less than a factor of two. This is the novel feature of
these methods, but the methods have additional virtues as well. For both methods, the
guaranteed bounds are much smaller than two when the number of strings is small (1.3 3 for three
strings of any length); for one of the methods we give a related randomized method which is much
faster and which gives, with high probability, multiple alignments with fairly small error bounds;
and for the other measure, the method given yields a non-obvious lower bound on the value of the
optimal alignment.

1. Introduction. Multiple string (sequence) alignment is a difficult problem of
great value in computational biology, where it is central to two related tasks:
finding highly conserved subregions or embedded patterns of a set of biological
sequences (strings of DNA, RNA or amino acids); and inferring the
evolutionary history of a set of taxa from their associated biological sequences.
In the first case, a conserved pattern may be so dissimilar or dispersed in the
strings that it cannot be detected by statistical tests when just two strings of the
set are aligned, but the pattern becomes clear and compelling when many
strings are simultaneously aligned. Scores of papers have been written on
methods for multiple string alignment, and hundreds of papers have used
various multiple alignment methods to find patterns or build evolutionary
trees from biological sequence data. The following few papers illustrate this
broad literature (Sankoff and Cedergren, 1983; Murata et al., 1985; Bacon and
Anderson, 1986; Johnson and Doolittle, 1986; Waterman, 1986; Feng and
Doolittle, 1987; Carillo and Lipman, 1988; Altschul, 1989; Altschul and
Lipman, 1989; Lipman et al., 1989; Argos and Vingren, 1990).

Many of the suggested methods build a multiple alignment by attempting to
optimize some explicitly or implicitly stated measure of goodness of the

141

142 D. G U S F I E L D

alignment. However, no single measure or objective function has yet been
proposed that is widely agreed upon (unlike the case of aligning just two
strings), and some proposed methods build alignments without relying (even
implicitly) on any measure of goodness.

In this paper we consider two previously proposed ways to measure the
goodness of a multiple alignment, which correspond to the two general uses of
multiple alignments introduced above. For both measures, no efficient
methods are known to find the optimal alignment, and so the known methods
are either heuristic (not guaranteed to find an optimal alignment) or are usable
only for a small number of short strings. For one measure, the best method
known to compute the optimal alignment has a worst case (and typical)
running time on the order of the product of the lengths of the strings to be
aligned, although some ideas have been developed which reduce the typical
running times by a constant factor (Carillo and Lipman, 1988). For the second
measure, a method which solves a special case of the problem runs in
exponential time (Sankoff and Cedergren, 1983), although a more efficient
algorithm has been developed for an extremely restricted version of the
problem (Altschul and Lipman, 1989).

A common approach in the computer science literature to computationaly
hard optimization problems is to develop fast heuristic algorithms whose
maximum possible deviation from the optimal solution can be proven to be
bounded by a small multiplicative factor. Generally, any factor of two or less
has been of interest. For the multiple string alignment problem, no bounded
deviation heuristics have been reported. In this paper we adapt known
heuristics and bounds from related graph theoretic problems (Wong, 1980;
Kou et al., 1981; Gusfield, 1984) to provide the first such methods and bounds
for the multiple string alignment problem.

1.1. Main results. We discuss two computationaly efficient multiple
alignment heuristics (one for each objective function) whose deviation from the
optimal value is guaranteed to be less than a factor of two. That is, the
heuristics give alignments whose value is guaranteed never to be more than
twice the value of the optimal multiple alignment. For both objective functions
the guaranteed bounds are even smaller when the number of strings is small
(1.33 for three strings of any length), and for one of the objective functions the
method yields a non-obvious lower bound on the value of the optimal solution.
For one of the methods we give a much faster randomized method whose
probable deviation from the opt imum is surprisingly small.

The error bound of two may at first seem too large to be of use, but the reader
should remember that the bound is a worst case 9uarantee and the actual
deviation from optimal for any particular set of strings can be expected to be
much less. This is illustrated by initial tests run on the method. In fact, the

EFFICIENT METHODS FOR MULTIPLE SEQUENCE ALIGNMENT 143

analysis used to obtain the bounds makes several worst case assumptions that
are unlikely to occur naturally. Further, the bounded error methods have
several indirect uses other than the direct use of producing "good" alignments,
and can often form the basis of more ad hoc methods to improve the solution.

Although we can expect the method to obtain solutions that are better than
twice the optimal on typical data, the main thrust of the present paper is
theoret ical-- to establish provable bounds and to introduce the bounded error
line of reasoning into this area. No comprehensive tests of the methods given
here have been made against other existing methods.

1.2. Basic definitions. An alignment of two strings X and Y is obtained by
first inserting chosen spaces into, or at either end of, X and Y, and then placing
the two resulting strings one above the other so that every character or space in
either string is opposite a unique character or a unique space in the other string.
Two opposing identical characters form a match, and two opposing
nonidentical characters from a mismatch. A space in one string opposite a
character x in the second string can also be thought of as a deletion ofx from the
second string, or an insertion of x into the first string.

For example, in the alignment:

c a c - d b d
c a w x b -

of strings cacdbd and cawxb, character c is mismatched with w, both ds and the
x are opposite spaces, and all other characters are in matches.

For a given alignment s~', let I denote the (equal) length of the two strings in
sJ, i.e. after spaces have been inserted. The value of alignment s~', denoted
V(d) , is defined as ~zi_ 1 s(X(i), Y(i)), where s(X(i), Y(i)) is the value
contributed by the two opposing characters (either of which could be a space)
in position i of s~'. This definition allows s(X(i), Y(i)) to depend on exactly what
the two characters are, and there are several such character-pair weighting
schemes for amino acids and for D N A (Schwarz and Dayhoff, 1979; Jukes and
Cantor, 1969). A simple, but common, scheme is to score a zero for a match or
for two opposing spaces,t and score a one for either a mismatch or for a
character opposite a space. With this scheme, the above alignment has value
four.

In this paper we do not assume any particular scoring scheme, but assume
only that two opposing spaces have a zero value, and that the other values
satisfy triangle inequality. That is, for any three characters x, y, z
s(x, z)<<,s(x, y) + s (y , z). This is the standard assumption, and reasonable

t It is more common in defining pairwise alignment to simply forbid opposing spaces, but they occur in
multiple alignments, so we allow them here for consistency.

144 D. GUSFIELD

because we interpret s(x, z) as the "cost" to transform character x to character
Z.

Given a scoring scheme, the optimal alignment of two strings is an alignment
d which minimizes V(~C) over all alignments of the two strings. The optimal
V(d) is also referred to as the (weighted) edit distance between the two strings.
We define D(X, Y) to be the value of the optimal alignment between strings X
and Y. For strings of length n and m, D(X, Y) can be computed in O(nm) worst
case time by dynamic programming (Sankoff and Kruskal, 1983), a fact
discovered independently many times.

1.3. Definition of multiple alignment. A multiple alignment of k > 2 strings
= {X 1, X 2, . . . , Xk} is a natural generalization of the pairwise alignment

defined above. Chosen spaces are inserted into (or at either end of) each string
so that the resulting strings have the same length, defined to be l, and then the
strings are arrayed in k rows of I columns each so that each character and space
of each string is in a unique column.

The value of a multiple alignment is not so easily generalized. Corresponding
to the two general uses for multiple alignment mentioned above, we consider
two rather different objective functions, called SP and TA, respectively, that
have been proposed to evaluate the value of a multiple alignment. The rational
for these two approaches has been discussed in some depth in (Altschul and
Lipman, 1989; Altschul, 1989; Carillo and Lipman, 1988). We will define the
two objective functions in separate sections below.

2. Multiple Alignment with Objective Function SP. For the purpose of finding
highly conserved subpatterns and for the purpose of clustering strings by
similarity as a first step in constructing an evolutionary tree, the value of a
multiple alignment ~4 has been taken, for example in (Carillo and Lipman,
1988), to be the sum of the values of pairwise alignments induced by d . This is
called the SP value. The induced pairwise alignment of two strings is exactly
their alignment given in ~ (although any two opposing spaces can be removed
if desired). The SP measure is used in the multiple alignment package MACAW
(Schuler et al., 1992) developed at the National Institutes of Health, National
Center for Biotechnology Information. It was also used in (Murata et al., 1985;
Bacon and Anderson, 1986) and a similar measure was used in (Feng and
Doolittle, 1987).

In this section we discuss an efficiently computed alignment that is
guaranteed to have no more than twice the optimal SP value.

The center star method. Given a set of k strings W, we define the center
string X c e W as that string which minimizes ~ j~ c D(X~, Xj), and let M denote
that minimum sum. We define the center star to be a star tree of k nodes, with

EFFICIENT METHODS FOR MULTIPLE SEQUENCE ALIGNMENT 145

the center node labeled J(~ and with each of the k - 1 remaining nodes labeled by
a distinct string in X-X~.

It is folklore, and used for example in (Feng and Doolittle, 1987), that given
any tree T where each node is labeled with a distinct string, there is a multiple
alignment sJ (7) of these strings which is "consistent" with the optimal pairwise
string alignments corresponding to the edges of T. That is, if X~ and Xj are
strings that label any two adjacent nodes of T, then the pairwise alignment of X~
and Xj induced by ~q/(7) has a value of exactly D(X i, X~). This is clearly not
necessarily true for the induced alignment of two strings that are not adjacent in
T.

We define the multiple alignment d~ of the set of strings f to be the
alignment derived from and consistent with the center star. For completeness
of this paper, details of how to construct d e are given in the appendix.

We define d(X i, Xj)~> D(X/, Xj) as the value of the pairwise alignment of
strings Xi and Xj induced by d~, so that value of the alignment is V(~'r = ~i < j
d(X~, X~). We will show that V(~r is at most twice the value of the optimal
multiple alignment of ~ .

LEMMA 2.1. For any strings X i and Xj, d(Xi, Xj) ~< d(Xi, Xc) q- d(Xc, Xj) = D(X i,
Xc) + D(Xc, Xj).

Proof. Consider any single column in the multiple alignment and let x, y and
z be the three characters in this column from strings X, Y and Z. By triangle
inequality, s(x, z)<~ s(x, y)+ s(y, z), and so the claimed inequality follows by
the definition ofd. The claimed equality follows because the pairwise alignment
ofX i and Xr induced by d e is an optimal alignment ofX i and Xr and this is true
also for the alignment of X~ and Xj. []

Let A * be the optimal multiple alignment of the k strings ~r, and let V(A *)
denote its value. Let d*(X~, X~) be the value of the pairwise alignment of strings
X~ and Xj induced by A*. Then V(A*)=~i<j d*(X i, ~.).

THEOREM 2. t. V(Ac)/V(A*) ~< 2(k - 1)/k < 2.
Proof. First, define v(agc)- ~(i,jl d(X~, Xj) and v(A *) - ~(~,~)d*(X~, Xj), where

the pair (i,j) is an ordered pair in each case. Clearly, v(~4r162162 and
v(A *) = 2 V(A *), so V(sg r V(A *) = v(ag r *). It is more convenient to work
with the second ratio, v(ago)= ~.l~,J)d(X~, J(j)~< ~(i.j)[D(X~, Xr D(X~, Xj)], by
Lemma 2.1. For any fixed j, D(Xo, Xj) (= D(Xj2 Xc)) shows up in this expression
exactly 2 (k - 1) times. So v(d~) ~<2(k- 1) x ~ j D(X~, Xj) = 2 (k - 1)M.

From the other side, v(A*)=Z(i,j)d*(X~, Xj)>~21~,j)D(X~, Xj)=~ i~ j D(X~,
Xj)~>kx~j D(X~,Xj)=kM (by the choice of Xr So V(d~)/V(A*)=
v(s~ ~)/v(A *) <~ 2 (k - 1)M/kM = 2(k - 1)/k < 2. []

Note that for k = 3 the guaranteed upper bound is 1.33. Translated into lower
bounds this says that for k--3, V(A *)>~ 0.76 V(d~). For k = 4 the upper bound

146 D. GUSFIELD

is only 1.5, and for k = 6 (a problem size considered to be too large for efficient
exact solution with strings of length 200) the bound is still only 1.66.

COROLLARY 2.1. kM ~2i<j D(Xi, Xj)~V(A*)~V(~c)~ [2 (k - 1)/k]~i< j
D(Xi, Xj).

In practice one can better measure the goodness of sr by the ratio
V(,~o)/~i< j D(X~, Xi). By Corollary 2.1 this ratio is always less than two, but
the analysis is worst case so one can expect it to be considerably less than two in
many cases. Similarly, one should expect that V(Sr will often be
considerably less than two, since typically ~i,j D(~ , Xj) will be considerably
larger than kM, V(A *) will not generally be close to ~i<j D(~ , ~) for any but
strings which are very similar, and D(X~, ~) will be less than D(X~, Xc) + D(Xc,
~) for most typical strings.

Corollary 2.1 is also useful in the Carillo-Lipman algorithm (Carillo and
Lipman, 1988), since that method uses ~ i< j D(X~, Xj) as a lower bound on
V(A *), but it also requires knowing an efficiently computed upper bound on
V(A*) and does not suggest how to obtain one. By Corollary 2.1, 2(k-1) /k
times the lower bound is an efficiently computed upper bound.

2.1. Faster, randomized alignments. The center method requires the
computation of all (~) optimal pairwise alignments. For large k and large
strings, this may involve a great deal of computation, and so it may also be
valuable to more quickly compute a multiple alignment with a "reasonable"
worst case or expected error bound. Suppose one randomly selects a string Xi,
then computes D(X i, Xj) for everyj r i, and then builds the multiple alignment
consistent with the star centered at X~. What can be expected ifp such stars are
built and the best multiple alignment ~4 is taken? With such a method, at most
(k-1)p optimal pairwise alignments need be computed. Contrary to what
might seem intuitive, even when p is fairly small this approach will, with high
probability, give alignments with reasonable worst case deviation from the
optimal alignment. The following theorems partially capture the situation.

THEOREM 2.2. For any r > 1, define e(r) to be the expected number of stars
needed to be chosen at random before the value of best resulting alignment is
within a factor of 2+ 1/ (r -1) of the optimal alignment. Then e(r)~<r.

For example, e(r) is at most two for an error bound of three, and e(r) is at
most 10 for a bound of 2.1112. Note that e(r) is independent of k and of the
lengths of the strings.

Proof. For ease of exposition, we first prove the case for r = 2. For each string
X i define M(i) = ~j D(Xi, Xj). Then M(c) = M. Using this notation, recall from
the proof of Theorem 2.1 that ~,j)D(X~, Xj)=~i M(i)<~2(k-1)M, so the
average value of M(i) is less than 2M. Then since the minimum value for M(i) is

E F F I C I E N T M E T H O D S F O R M U L T I P L E S E Q U E N C E A L I G N M E N T 147

M, it follows that the median of the M(i) values is less than 3M. The expected
number and centers selected at random before a selected M(i) is less than the
median, is two.

Now suppose the median is actually eM, for 1 ~< e ~< 3. Then ~(i,i) D(X~,
Xj) >1 kM/2 + keM/2, and the value of the alignment obtained from any below
median star is at most 2 (k - 1)eM. Hence the error ratio for this star is at most

2e " " ~1/2~/2). This ratio is maximized when e is as large as allowable, i.e. when e = 3,
where the error ratio is three. Hence e(2)~< 2.

Generalizing the above proof, we note that at least k/r stars have M(i) less
than or equal to (2 r - 1) M / (r - - 1) , which again follows from the fact that the
minimum M(i) is M and the mean is less than 2M. Suppose that the point below
which k/r of the M(i) fall is actually eM for 1 ~< e ~< (2r - 1)/(r - 1). The expected
number of stars to pick until one is chosen with M(i) less than eM, is r. The error
ratio of such a star is 25/[�89 + ~-te], which again is maximized for the largest
allowable e, at which point the error ratio is (2r - 1)/(r - 1) = 2 + 1 / (r - 1). �9

It may be more useful to put the theorem in terms of probabilities rather than
expectations, since generally one is interested in how well the method might do
for any fixed instance, rather than how it will do over a sequences of instances.
The proof of the following is easily modified from the proof of Theorem 2.2.

THEOREM 2.3. Picking p stars (centers) at random, the best resulting alignment
will have value within a factor of 2 + 1 / (r - 1) of the optimal with probability at
least 1 - [(r - 1)/r] p.

Theorems 2.2 and 2.3 say that one can expect to get a multiple alignment
with a reasonable worst case SP error ratio with significantly less computat ion
than is needed to compute d e , and indeed less than is used for most other
multiple alignment heuristics in the literature. However, even these two
theorems are too pessimistic--the analysis used in their proofs is very loose.
For example, in Theorem 2.2 the case of r = 2 was proven by considering the
median M(i) value, and then setting the median to 3M, since that is where the
analysis gives the largest (hence certain) error ratio. But, if the median were
actually 3M, then the distribution of the M(i) values would be known precisely:
M(i) = M for half the stars, and M(i) = 3M for the other half. Then Z(i,j) D(Xi,
Xj) = 2kM, the denominator in the error ratio is 2kM, and so an optimal SP
alignment would be obtained from any center string X~ with M(i)= M; such a
string is selected with probability one-half. The same conclusion holds for each
r. That is, were the extreme conditions used in the proof of Theorem 2.2 to
actually hold, then an optimal SP alignment would be constructed from 1/r of
the stars. So the analysis used in the proofs is quite pessimistic, and Theorems
2.2 and 2.3 should be taken as "back of the envelope" estimates which give
sufficiently positive results to encourage the experimentation of randomized
methods on real data of interest. This is consistent with the experimental results

148 D. G U S F I E L D

mentioned in the next section. If one wants complete certainty, we have the
following.

THEOREM 2.4. I f p stars are chosen in any manner, and ~4 is the best resulting
multiple alignment, then V(~4)/V(A*) is 9uaranteed to be less than
(k - 1)/k + (k - 1)/p.

As an interesting aside, let Tbe any tree with k nodes labeled with the strings
of W, and let d be the multiple alignment of W consistent with T. Using
Theorem 2 in the paper by Wong (1980), it can be shown that
V(d)/V(A*)<~2k. This provides a very quick way (since only k - 1 pairwise
alignments need by computed) to obtain a bounded error multiple alignment,
but the error in this case may so large as to make the alignment uninteresting.

2.2. Comments and empirical results. We should point out that the above
theorems, although correct, are not informative when the strings are extremely
different. Let W(X~, ~.) be the value of the worst possible alignment between
strings X~ and Xj. If 2i<j W(~i, ~j)/2i<j D(X~, X~)<<. 2(k -1) /k then Theorem
2.1 holds vacuously. So the theorem is informative only when the strings are
sufficiently similar. This is the case for many applications involving biological
sequences, but probably the most interesting cases are when the strings are
highly dissimilar. However, we should not conclude that the center star method
is not useful for highly dissimilar strings, as illustrated in the sketch of the
empirical results given below. Further, in cases when the dissimilar strings can
first be grouped into subsets of more mutually related strings, then each subset
can be aligned separately using the star method, and then the centers of each
star can be aligned, again by the star method.

One might also object that the SP measure is based on global alignment,
applying to the entire length of each string, while a measure based on local
alignment would be of more use. This is most likely true, but the SP measure
may still be important in multiple local alignment, as for example in the
program MACAW (Schuler et al., 1992). In that program, regions of local
similarly that extend throughout the strings are first found and aligned. These
regions are called diagonals. Every consecutive pair of diagonals defines a set of
substrings consisting of the strings between the two diagonals. These substrings
are then globally aligned by MACAW, and the goodness of the entire
alignment is evaluated with respect to the SP measure. Hence the need for
global alignment can arise even in the context of more locally oriented
objectives.

A final comment is that the center star method is similar in some ways to
earlier progressive alignment methods, but quite different in one important
way. Once the center star is determined, the actual alignment obtained follows
the ideas of progressive alignment in that progressive alignment methods also

EFFICIENT METHODS FOR MULTIPLE SEQUENCE ALIGNMENT 149

first build, explicitly or implicitly, some tree to guide the alignment. However,
the key issue is how the initial tree is found. The progressive alignment method
in (Feng and Doolittle, 1987) essentially first finds a minimum spanning tree or,
in other words, first does a single-link clustering, based on the edit distances.
Algorithms to build minimum spanning trees are called "myopic algorithms" in
the literature precisely because each successive decision about which link to
include in the tree is made without considering the implication of that choice on
possible future choices. This is consistent with the stated philosophy in (Feng
and Doolittle, 1987): "once a gap always a gap". In contrast, the center star is
based on a much more global consideration of all the data. No claim is being
made here that a more global approach is better than a myopic approach, just
that it is certainly different.

A sketch of empirical results. We ran the above methods on several sets of
biological sequences. The objective function used counted zero for a match,
two for a mismatch and one for a space. Typical cases had between seven and 20
strings of lengths between 40 and 200 characters. A more complete write up of
these and other experiments is forthcoming. However, in all cases, the results
were considerably better than the bounds given in the above theorems, and we
will give two illustrations, one where the strings were quite similar, and one
with much greater variability.

We aligned 19 amino acid sequences of homeoboxs from different species.
This experiment was a case where the strings were quite similar. The average
string length was 60 and the average optimal (pairwise) alignment value was
25.5 with an average number of equalities in an alignment of 46. For these
strings, the bound from Corollary 2.1 of 2 (k - 1)Mini, j D(X i, Xj) was 1.34, and
the ratio of worst possible multiple alignment value to the lower bound was
greater than this, making the bound informative. As expected, the actual
deviation of V(dc) from the lower bound was much less: V(~c)/y'i< j D(Xii, X~)
was 1.018, i.e. the multiple alignment obtained from the center star had a value
whose deviation from the lower bound was less than 2%. Further, in 11 out of
the 19 multiple alignments (each obtained from a different choice of center), the
deviation was less than 5%. The average deviation from the lower bound for
the alignments produced using centers whose M(i) ranked below the median
center was 3%. Generally there was a rough, but not perfect, correlation
between the rank of M(i) and the rank of the value of the multiple alignment
produced using string ~ as center. Further, the center string, with the smallest
M(i), did give the best of the 19 alignments, and the string with worst M(i) gave
the worst multiple alignment.

To test strings which were not so similar, and where Theorem 2.1 was not
informative, we took 10 sequences near the homeoboxs. The average string
length was 43, the average optimal pairwise alignment value was 56.5 and the

150 D. G U S F I E L D

average number of equalities in an optimal alignment was 13.7. The ratio
2 (k - 1)Mini, ~ D(Xii , Xj) was 1.61, but again the the actual deviation of~r from
the lower bound was much lower: using d~ , the ratio was 1.162 (a 16.2%
deviation from the lower bound), while the string with next best M(i) gave an
alignment which deviated from the lower bound by only 16.0%. Despite this,
there was again a rough correlation between the rank of M(i) and the rank of
the alignment obtained from string X~. Also, M was 466, while the median star
had M(i) equal to 504, much less than the 3M bound shown above. Note that
the deviation of 16.0% is from the lower bound ~i<j D(X~, Xj) and we do not
know what the actual deviation from the optimal alignment is. But since the
average pairwise alignment value is large compared to the average string
length, it seems unlikely that the optimal is very close to the lower bound.
Hence a 16% deviation from the lower bound seems quite good.

Both of the above experiments support the belief that Theorems 2.1, 2.2 and
2.3 are generally pessimistic compared to the typical situation arising in
practice.

3. Multiple Alignment and Evolutionary Trees. One of the main uses for
aligning more than two strings simultaneously is in building evolutionary trees
for the taxa associated with set of biological sequences. The typical approach
has been to first find a multiple alignment of the strings, then obtain distances
or clusterings from that alignment to construct a tree "explaining" the
evolutionary derivation of the set of strings (see Feng and Doolittle, 1987;
Johnson and Doolittle, 1986; Doolittle, 1986; for examples). Often, one can
identify major clusters, and the pattern of evolution, by the places that long
contiguous sequences of spaces have been inserted into the alignment. With
this approach, the SP measure may be sufficient, and a close to optimal
alignment may identify the same clusters that an optimal alignment would.

However, another approach is to first choose the typology of the tree and
then map the strings (with additional strings possibly added) to the nodes of the
tree. The string alignment is then the alignment which is consistent (discussed
in the previous section) with the pairwise alignments of the strings at the ends of
the edges of the tree. The value of the alignment is j ust the sum of those selected
pairwise alignments. This second approach to multiple alignment is called the
tree alignment (TA) approach (Altschul, 1989; Altschul and Lipman, 1989).

The above specific approaches to building evolutionary trees connect the
multiple alignment problem with the tree building problem, and the papers
cited above treat the evolutionary tree problem in the context of the multiple
string alignment problem. However, the main goal is the tree itself and the
alignment is either part of a method to build the tree, or is a reflection of the
goodness of the tree. Hence the goodness of the alignment is judged by the
goodness of the tree associated with it. For this reason, we will focus on the tree

EFFICIENT METHODS FOR MULTIPLE SEQUENCE ALIGNMENT 151

problem, but the bounds obtained there translate of course into the alignment
problem with the TA objective function.

3.1. Formal definitions. Let K be an imput set of k strings, and let K' _ K be
a set of strings containing (possibly equal to) K. An evolutionary tree T~,for Kis
a tree with at least k nodes, where each string in K' labels exactly one node,
and each node gets exactly one label from K'. The value of T K, is V(T~,)=
[~ D(X~ Y): (X, Y) label the ends of an edge in TK,]. As before D(X, Y) is the
value of the optimal pairwise alignment of strings X and Y. Given the set K, the
problem is to find a set of strings K ' _ K and an evolutionary tree T~, for K
which minimizes V(TK,) over all evolutionary trees for K.

Although the correct root (most ancestral string in K) may not be known, if
the root were known and the edges of T~, directed away from the root, then T K,
provides a model of the evolutionary change involved in deriving the set of
strings K from the root string. The alignment value D(X, Y) associated with
each directed edge (X, Y) is interpreted as the minimum "cost" to transform
string X to string Y, and therefore the sum of the alignment values of the edges
gives the evolutionary cost implied by the tree.

The set of strings in K ' - K model hypothesized ancestors of the taxa
associated with K; the nodes labeled with K'--K give the hypothesized
historical positions of these taxa. It is easy to construct examples where the
optimal (minimum value) evolutionary tree must contain such ancestors. Of
course, one cannot know for sure that the "ancestors" are real, but the optimal
evolutionary tree none-the-less provides the best general lower bound on the
amount of evolutionary change involved in the "true" history,t and is of course
a lower bound on the best possible value obtainable by the two specific
approaches to building evolutionary trees mentioned above.

Finding the optimal evolutionary tree is a very difficult computational task,
and only special cases of it have been addressed in the literature (Sankoff and
Cedergren, 1983; Altschul and Lipman, 1989). In this section we discuss a
method which gives an evolutionary tree whose value is never more than twice
that of the optimal evolutionary tree, hence never has more than twice the
minimum possible evolutionary change.

3.2. Method. To describe the method, we first define the minimum spannin9
tree of a edge weighted graph. Let G be a graph with k nodes where every node
is labeled with a distinct string in K. The weight given to any edge (X, Y) is
D(X, Y), the value of the optimal alignment of strings X and Y. The minimum
spanning tree (denoted MST) of G is a subtree of G containing all k nodes, such
that the sum of the weights on its edges is the minimum possible over all such

t Provided that we measure evolutionary change in terms of weighted edit distance of the associated
strings.

152 D. GUSFIELD

subtrees of G. A min imum spanning tree of a graph can be computed very
efficiently by a variety of methods (Tarjan, 1983). Clearly, given a set of strings
K, the MST constructed as above is an evolutionary tree for K.

For any set of strings K, let T* denote the opt imal evolutionary tree for K.
We will show that V(MST)/V(T*)<2.

Let C be a traversal of the edges of tree T* which traverses every edge exactly
once in each direction. Clearly its value, the sum values of the edges it traverses
is exactly 2 V(T*) since it traverses every edge twice. Now consider a number ing
of the strings in K in the order that these strings are first encountered on
traversal C. Let C1, C2, . . . , C k be this numbering. Define V(C) to be D(C k,
C,)-I-Ei< k O(C i, Ci+ l).

LEMMA 3.1. For any i < k , D(Ci, Ci+l) is at most the sum of the values of the
edges on the traversal C between string C i and Ci+ 1. Similarly, D(Ck, C1) is at
most the sum of the values of the edges on C between C k and C 1 .

Proof. Follows immediately from triangle inequality on the distance function
D. �9

COROLLARY 3.1. V(C)~<2V(T*).
N ow let D(Ci,, Ci, + 1) be the largest distance of any adjacent strings C/, C/+ 1

including C k, C 1 .

LEMMA 3.2. V(MST)~<V(C) -D(Ci , , Ci, + 1)~V(C)-V(C)/k.
Proof. Any k - 1 of the k pairs { (C~, C i + 1): 1 ~ i < k} w (C k, C 1) specify a set of

edges which form a subtree of G containing all k nodes. In particular, the set of
pairs consisting of all pairs but (Ci,, C~,+ 1) form a spanning tree. The value of
that spanning tree is exactly V(C) - D(Cz,, C~,+ 1). But MST is the min imum
spanning tree of G, implying the first inequality. Clearly, D(Q,, C~,+I)~>
V(C)/k, implying the second inequality. �9

In summary we make the following conclusions.

THEOREM 3.1. For any set K o f k strings, V(MST)/V(T*)<<.2(k-1)/k <2.
More exactly, we have the following theorem.

THEOREM 3.2. V(MST)/V(T*) <~ (k - 1)/kV(C)/V(T~:) <~ 2 (k - 1)/k.
Generally, we can expect that V(C) will be considerably less than 2V(T*),

and further since V(MST)~< V(C)-- D(Ci,, C/,+1), we can also expect that
V(MST)/V(T*) will be considerably less than two. However, unlike the case of
the SP bound, we do not know how to compute (as opposed to prove
beforehand) a better bound than that given in Theorem 3.2.

COROLLARY 3.2. V(T*)>kV(MST) /2 (k -1) .
Corollary 3.2 gives an efficient me thod to compute a non-obvious lower

bound on V(T*).

EFFICIENT METHODS FOR MULTIPLE SEQUENCE ALIGNMENT 153

4. Extension to Other Distances. All the results establ ished in this p ap e r ho ld
for m o r e complex weight funct ions than discussed above. F o r example , an
i m p o r t a n t extens ion is the in t roduc t ion of the concep t of a gap, a con t iguous
sequence of spaces in an a l ignment . A single evo lu t iona ry event might insert or
delete a con t iguous sequence of charac ters of quite var iable length, causing a
gap in an a l ignment of the unmodi f ied and the der ived strings. Hence it is no t
always cor rec t to weigh the spaces in a gap by simply summing up the weights
given by each individual space. Ins tead m o r e complex gap weight funct ions
have been suggested and studied. We will no t discuss these here, bu t simply
po in t out tha t unde r any gap weight funct ion if the defini t ion of the op t imal
a l ignment value (edit dis tance) satisfies the t r iangle inequal i ty , then all results
still apply.

T h a n k s to Kr i shna B a l a s u b r a m a n i a n and Dal i t N a o r for helpful co m m en t s
and discussions dur ing this research, and to Jo h n Kecec ioglu for helpful
c om me n t s on an early draft . Research par t ia l ly suppor t ed by grant D E - F G 0 3 -
90ER60999 f rom the D e p a r t m e n t of Energy , and grant CCR-8803704 f rom the
N a t i o n a l Science F o u n d a t i o n .

A P P E N D I X

For completeness of this paper we show how to construct the multiple alignment do, which is
consistent with the center tree. Without loss of generality, assume Xr = X 1. We will follow a
method that is simple to describe, but not the most efficient method.

After computing all the optimal pairwise alignments, let s o be the maximum number of spaces
placed before the first character of)(1 in any of the alignments, let s I be the maximum number of
spaces placed after the last character of)(1 in any of the alignments, and for each i let s i be the
maximum number of spaces placed between characters Xl(i) and Xl(i+ 1) of X~ in any of the
alignments. To create the multiple alignment d~ we first insert spaces into X 1 . Insert s o spaces
before)(1, sf spaces after X1, and s i spaces between character)(1 (i) and X 1 (i + 1) for each i. Let J(1
denote the string X~ with these spaces inserted. Then for each string Xj, find the optimal pairwise
alignment of Xj with X 1 with the constraint that no additional spaces are put into)(~. The result is
also an alignment ofX 1 and Xj, so D(X. Xa) >>. D(Yj X1) Conversely s o (sl) is greater or equal to j ~ , �9 . '

the number of spaces placed before (after) X 1 in the optimal ahgnment of X~ and Xj, and each si is
greater or equal to the number of spaces between X~(i) and)(1(i+ 1) in the optimal)(1, Xj
alignment. Hence D(Xj, J(~)~<D(Xj, X1), so D(Xj, J~I)=D(Xj,)(i) for each X~. Then since no
additional spaces were inserted into)(~, these pairwise alignments form a multiple alignment J c
which is consistent with the center tree.

L I T E R A T U R E

Altschul, S. 1989. Gap costs for multiple alignment. J. theor. Biol. 138, 297 309.
Altschul, S. and D. Lipman. 1989. Trees, stars, and multiple sequence alignment. SIAMJ. appl.

Math 49, 197-209.
Argos, P. and M. Vingren. 1990. Sensitivity comparisons of protein amino acid sequences. In

Methods in Enzymology. Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences, R. Doolittle (Ed.), Vol. 183, pp. 352 365. New York: Academic Press.

154 D. GUSFIELD

Bacon, D. and W. Anderson. 1986. Multiple sequence alignment. J. molec. Biol. 191,153 161.
Carrillo, H. and D. Lipman. 1988 The multiple sequence alignment problem in biology. SIAM

J. appl. Math 48, 1073-1082.
Doolittle, R. 1986. Of Urfs and Orfs: A Primer on How to Analyze Derived Amino Acid Sequences.

Mill "galley, CA: University Science Books.
Feng, D. and R. Doolittle. 1987. Progressive sequence alignment as a prerequisite to correct

phylogenetic trees. J. molec. Evol. 25, 351-360.
Gusfield, D. 1984. The Steiner Tree Problem in Phylogeny. Technical report No. 334, Yale

University Computer Science Department, September 1984.
Johnson, M. and R. Doolittle. 1986. A method for the simultaneous alignment of three or more

amino acid sequences. J. molec. Evol. 23, 267-278.
Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules. In Mammalian Protein

Metabolism, H. N. Munro (Ed.), pp. 21 132. New York: Academic Press.
Kou, L., G. Markowsky and L. Berman. 1981. A fast algorithm for steiner trees. ACTA

Informatica 15.
Lipman, D., S. Altshul and J. Kececioglu. 1989. A tool for multiple sequence alignment. Proc.

natn. Acad. Sci., U.S.A. 86, 4412~4415.
Murata, M., J. Richardson and Joel Sussman. 1985. Simultaneous comparison of three protein

sequences. Proc. natn. Acad. Sci., U.S.A. 82, 3073-3077.
Sankoff, D. and R. Cedergren. 1983. Simultaneous comparisons of three or more sequences

related by a tree. In Time Warps, String Edits, and Macromolecules: the Theory and Practice of
Sequence Comparison, D. Sankoffand J. Kruskal (Eds), pp. 253 264. Reading, MA: Addison
Wesley.

Sankoff, D. and J. Kruskal (Eds). 1983. Time Warps, String Edits, and Macromolecules: the
Theory and Pactice of Sequence Comparison. Reading, MA: Addison Wesley.

Schuler, G. D., S. F. Altschul and D. J. Lipman. 1992. A workbench for multiple alignment
construction and analysis. In Proteins: Structure, Function and Genetics, in press.

Schwarz, R. and M. Dayhoff. 1979. Matrices for detecting distant relationships. In Atlas of
Protein Sequences, M. Dayhoff (Ed.), pp. 353-358. National Biomedical Research Founda-
tion.

Tarjan, R. E. 1983. Data S~ructures and Network Algorithms. Philadelphia, PA: SIAM.
Waterman, M. 1986. Multiple sequence alignment by consensus. Nucleic Acids Res. 14,

9095 9102.
Wong, R. 1980. Worst-case analysis of network design problem heuristics. S I A M J. Algebraic

Discrete Methods 1, 51 63.

R e c e i v e d 11 J u l y 1991

R e v i s e d 12 N o v e m b e r 1991

