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Multiple string (sequence) alignment is a difficult and important problem in computational 
biology, where it is central in two related tasks: finding highly conserved subregions or embedded 
patterns of a set of biological sequences (strings of DNA, RNA or amino acids), and inferring the 
evolutionary history of a set of taxa from their associated biological sequences. Several precise 
measures have been proposed for evaluating the goodness of a multiple alignment, but no 
efficient methods are known which compute the optimal alignment for any of these measures in 
any but small cases. In this paper, we consider two previously proposed measures, and give two 
computationaly efficient multiple alignment methods (one for each measure) whose deviation 
from the optimal value is guaranteed to be less than a factor of two. This is the novel feature of 
these methods, but the methods have additional virtues as well. For both methods, the 
guaranteed bounds are much smaller than two when the number of strings is small (1.3 3 for three 
strings of any length); for one of the methods we give a related randomized method which is much 
faster and which gives, with high probability, multiple alignments with fairly small error bounds; 
and for the other measure, the method given yields a non-obvious lower bound on the value of the 
optimal alignment. 

1. Introduction. Multiple string (sequence) alignment is a difficult problem of 
great value in computational biology, where it is central to two related tasks: 
finding highly conserved subregions or embedded patterns of a set of biological 
sequences (strings of DNA, RNA or amino acids); and inferring the 
evolutionary history of a set of taxa from their associated biological sequences. 
In the first case, a conserved pattern may be so dissimilar or dispersed in the 
strings that it cannot be detected by statistical tests when just two strings of the 
set are aligned, but the pattern becomes clear and compelling when many 
strings are simultaneously aligned. Scores of papers have been written on 
methods for multiple string alignment, and hundreds of papers have used 
various multiple alignment methods to find patterns or build evolutionary 
trees from biological sequence data. The following few papers illustrate this 
broad literature (Sankoff and Cedergren, 1983; Murata et al., 1985; Bacon and 
Anderson, 1986; Johnson and Doolittle, 1986; Waterman, 1986; Feng and 
Doolittle, 1987; Carillo and Lipman, 1988; Altschul, 1989; Altschul and 
Lipman, 1989; Lipman et al., 1989; Argos and Vingren, 1990). 

Many of the suggested methods build a multiple alignment by attempting to 
optimize some explicitly or implicitly stated measure of goodness of the 
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alignment. However, no single measure or objective function has yet been 
proposed that is widely agreed upon (unlike the case of aligning just two 
strings), and some proposed methods build alignments without relying (even 
implicitly) on any measure of goodness. 

In this paper we consider two previously proposed ways to measure the 
goodness of a multiple alignment, which correspond to the two general uses of 
multiple alignments introduced above. For both measures, no efficient 
methods are known to find the optimal alignment, and so the known methods 
are either heuristic (not guaranteed to find an optimal alignment) or are usable 
only for a small number of short strings. For one measure, the best method 
known to compute the optimal alignment has a worst case (and typical) 
running time on the order of the product of the lengths of the strings to be 
aligned, although some ideas have been developed which reduce the typical 
running times by a constant factor (Carillo and Lipman, 1988). For the second 
measure, a method which solves a special case of the problem runs in 
exponential time (Sankoff and Cedergren, 1983), although a more efficient 
algorithm has been developed for an extremely restricted version of the 
problem (Altschul and Lipman, 1989). 

A common approach in the computer science literature to computationaly 
hard optimization problems is to develop fast heuristic algorithms whose 
maximum possible deviation from the optimal solution can be proven to be 
bounded by a small multiplicative factor. Generally, any factor of two or less 
has been of interest. For the multiple string alignment problem, no bounded 
deviation heuristics have been reported. In this paper we adapt known 
heuristics and bounds from related graph theoretic problems (Wong, 1980; 
Kou et al., 1981; Gusfield, 1984) to provide the first such methods and bounds 
for the multiple string alignment problem. 

1.1. Main results. We discuss two computationaly efficient multiple 
alignment heuristics (one for each objective function) whose deviation from the 
optimal value is guaranteed to be less than a factor of two. That is, the 
heuristics give alignments whose value is guaranteed never to be more than 
twice the value of the optimal multiple alignment. For both objective functions 
the guaranteed bounds are even smaller when the number of strings is small 
(1.33 for three strings of any length), and for one of the objective functions the 
method yields a non-obvious lower bound on the value of the optimal solution. 
For one of the methods we give a much faster randomized method whose 
probable deviation from the opt imum is surprisingly small. 

The error bound of two may at first seem too large to be of use, but the reader 
should remember that the bound is a worst case 9uarantee and the actual 
deviation from optimal for any particular set of strings can be expected to be 
much less. This is illustrated by initial tests run on the method. In fact, the 
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analysis used to obtain the bounds makes several worst case assumptions that 
are unlikely to occur naturally. Further,  the bounded error methods have 
several indirect uses other than the direct use of producing "good" alignments, 
and can often form the basis of more ad hoc methods to improve the solution. 

Although we can expect the method to obtain solutions that are better than 
twice the optimal on typical data, the main thrust of the present paper is 
theoret ical-- to establish provable bounds and to introduce the bounded error 
line of reasoning into this area. No comprehensive tests of the methods given 
here have been made against other existing methods. 

1.2. Basic definitions. An alignment of two strings X and Y is obtained by 
first inserting chosen spaces into, or at either end of, X and Y, and then placing 
the two resulting strings one above the other so that every character or space in 
either string is opposite a unique character or a unique space in the other string. 
Two opposing identical characters form a match, and two opposing 
nonidentical characters from a mismatch. A space in one string opposite a 
character x in the second string can also be thought  of as a deletion ofx  from the 
second string, or an insertion of x into the first string. 

For  example, in the alignment: 

c a c - d b d 
c a w x b - 

of strings cacdbd and cawxb,  character c is mismatched with w, both ds and the 
x are opposite spaces, and all other characters are in matches. 

For  a given alignment s~', let I denote the (equal) length of the two strings in 
sJ, i.e. after spaces have been inserted. The value of alignment s~', denoted 
V(d) ,  is defined as ~zi_ 1 s(X(i),  Y(i)), where s(X(i),  Y(i)) is the value 
contributed by the two opposing characters (either of which could be a space) 
in position i of s~'. This definition allows s(X(i),  Y(i)) to depend on exactly what 
the two characters are, and there are several such character-pair weighting 
schemes for amino acids and for D N A  (Schwarz and Dayhoff, 1979; Jukes and 
Cantor,  1969). A simple, but common,  scheme is to score a zero for a match or 
for two opposing spaces,t and score a one for either a mismatch or for a 
character opposite a space. With this scheme, the above alignment has value 
four. 

In this paper we do not assume any particular scoring scheme, but assume 
only that two opposing spaces have a zero value, and that the other values 
satisfy triangle inequality. That  is, for any three characters x, y, z 
s(x, z)<<,s(x, y ) + s ( y ,  z). This is the standard assumption, and reasonable 

t It is more common in defining pairwise alignment to simply forbid opposing spaces, but they occur in 
multiple alignments, so we allow them here for consistency. 
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because we interpret s(x, z) as the "cost" to transform character x to character 
Z. 

Given a scoring scheme, the optimal alignment of two strings is an alignment 
d which minimizes V(~C) over all alignments of the two strings. The optimal 
V(d)  is also referred to as the (weighted) edit distance between the two strings. 
We define D(X, Y) to be the value of the optimal alignment between strings X 
and Y. For strings of length n and m, D(X, Y) can be computed in O(nm) worst 
case time by dynamic programming (Sankoff and Kruskal, 1983), a fact 
discovered independently many times. 

1.3. Definition of multiple alignment. A multiple alignment of k > 2 strings 
= {X 1, X 2, . . . ,  Xk} is a natural generalization of the pairwise alignment 

defined above. Chosen spaces are inserted into (or at either end of) each string 
so that the resulting strings have the same length, defined to be l, and then the 
strings are arrayed in k rows of I columns each so that each character and space 
of each string is in a unique column. 

The value of a multiple alignment is not so easily generalized. Corresponding 
to the two general uses for multiple alignment mentioned above, we consider 
two rather different objective functions, called SP and TA, respectively, that 
have been proposed to evaluate the value of a multiple alignment. The rational 
for these two approaches has been discussed in some depth in (Altschul and 
Lipman, 1989; Altschul, 1989; Carillo and Lipman, 1988). We will define the 
two objective functions in separate sections below. 

2. Multiple Alignment with Objective Function SP. For the purpose of finding 
highly conserved subpatterns and for the purpose of clustering strings by 
similarity as a first step in constructing an evolutionary tree, the value of a 
multiple alignment ~4 has been taken, for example in (Carillo and Lipman, 
1988), to be the sum of the values of pairwise alignments induced by d .  This is 
called the SP value. The induced pairwise alignment of two strings is exactly 
their alignment given in ~ (although any two opposing spaces can be removed 
if desired). The SP measure is used in the multiple alignment package MACAW 
(Schuler et al., 1992) developed at the National Institutes of Health, National 
Center for Biotechnology Information. It was also used in (Murata et al., 1985; 
Bacon and Anderson, 1986) and a similar measure was used in (Feng and 
Doolittle, 1987). 

In this section we discuss an efficiently computed alignment that is 
guaranteed to have no more than twice the optimal SP value. 

The center star method. Given a set of k strings W, we define the center 
string X c e W as that string which minimizes ~ j~  c D(X~, Xj), and let M denote 
that minimum sum. We define the center star to be a star tree of k nodes, with 
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the center node labeled J(~ and with each of the k - 1 remaining nodes labeled by 
a distinct string in X-X~.  

It is folklore, and used for example in (Feng and Doolittle, 1987), that given 
any tree T where each node is labeled with a distinct string, there is a multiple 
alignment sJ (7) of these strings which is "consistent" with the optimal pairwise 
string alignments corresponding to the edges of T. That is, if X~ and Xj are 
strings that label any two adjacent nodes of T, then the pairwise alignment of X~ 
and Xj induced by ~q/(7) has a value of exactly D(X i, X~). This is clearly not 
necessarily true for the induced alignment of two strings that are not adjacent in 
T. 

We define the multiple alignment d~  of the set of strings f to be the 
alignment derived from and consistent with the center star. For completeness 
of this paper, details of how to construct d e  are given in the appendix. 

We define d(X i, Xj)~> D(X/, Xj) as the value of the pairwise alignment of 
strings Xi and Xj induced by d~,  so that value of the alignment is V(~'r = ~i  < j 
d(X~, X~). We will show that V(~r is at most twice the value of the optimal 
multiple alignment of ~ .  

LEMMA 2.1. For any strings X i and Xj, d(Xi, Xj) ~< d(Xi, Xc) q- d(Xc, Xj) = D(X i, 
Xc) + D(Xc, Xj). 

Proof. Consider any single column in the multiple alignment and let x, y and 
z be the three characters in this column from strings X, Y and Z. By triangle 
inequality, s(x, z)<~ s(x, y)+ s(y, z), and so the claimed inequality follows by 
the definition ofd. The claimed equality follows because the pairwise alignment 
ofX i and Xr induced by d e  is an optimal alignment ofX i and Xr and this is true 
also for the alignment of X~ and Xj. [] 

Let A * be the optimal multiple alignment of the k strings ~r, and let V(A *) 
denote its value. Let d*(X~, X~) be the value of the pairwise alignment of strings 
X~ and Xj induced by A*. Then V(A*)=~i<j  d*(X i, ~.). 

THEOREM 2. t. V(Ac)/V(A* ) ~< 2(k - 1)/k < 2. 
Proof. First, define v(agc)- ~(i,jl d(X~, Xj) and v(A * ) -  ~(~,~)d*(X~, Xj), where 

the pair (i,j) is an ordered pair in each case. Clearly, v(~4r162162 and 
v(A *) = 2 V(A *), so V( sg r V(A *) = v( ag r *). It is more convenient to work 
with the second ratio, v(ago)= ~.l~,J)d(X~, J(j)~< ~(i.j)[D(X~, Xr D(X~, Xj)], by 
Lemma 2.1. For any fixed j, D(Xo, Xj) (= D(Xj2 Xc)) shows up in this expression 
exactly 2 ( k -  1) times. So v(d~) ~<2(k- 1) x ~ j  D(X~, Xj) = 2 ( k -  1)M. 

From the other side, v(A*)=Z(i,j)d*(X~, Xj)>~21~,j)D(X~, Xj)=~ i~ j  D(X~, 
Xj)~>kx~j D(X~,Xj)=kM (by the choice of Xr So V(d~)/V(A*)= 
v(s~ ~)/v(A *) <~ 2 ( k -  1)M/kM = 2(k - 1)/k < 2. [] 

Note that for k = 3 the guaranteed upper bound is 1.33. Translated into lower 
bounds this says that for k--3, V(A *)>~ 0.76 V(d~). For k = 4 the upper bound 
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is only 1.5, and for k = 6 (a problem size considered to be too large for efficient 
exact solution with strings of length 200) the bound is still only 1.66. 

COROLLARY 2.1. kM ~2i<j  D(Xi, Xj)~V(A*)~V(~c)~ [ 2 ( k -  1)/k]~i< j 
D(Xi, Xj). 

In practice one can better measure the goodness of sr by the ratio 
V(,~o)/~i< j D(X~, Xi). By Corollary 2.1 this ratio is always less than two, but 
the analysis is worst case so one can expect it to be considerably less than two in 
many cases. Similarly, one should expect that V(Sr will often be 
considerably less than two, since typically ~i,j D(~ ,  Xj) will be considerably 
larger than kM, V(A *) will not generally be close to ~i<j  D(~ ,  ~ )  for any but 
strings which are very similar, and D(X~, ~ )  will be less than D(X~, Xc) + D(Xc, 
~ )  for most typical strings. 

Corollary 2.1 is also useful in the Carillo-Lipman algorithm (Carillo and 
Lipman, 1988), since that method uses ~ i< j  D(X~, Xj) as a lower bound on 
V(A *), but it also requires knowing an efficiently computed upper bound on 
V(A*) and does not suggest how to obtain one. By Corollary 2.1, 2(k-1) /k  
times the lower bound is an efficiently computed upper bound. 

2.1. Faster, randomized alignments. The center method requires the 
computation of all (~) optimal pairwise alignments. For large k and large 
strings, this may involve a great deal of computation, and so it may also be 
valuable to more quickly compute a multiple alignment with a "reasonable" 
worst case or expected error bound. Suppose one randomly selects a string Xi, 
then computes D(X i, Xj) for everyj r i, and then builds the multiple alignment 
consistent with the star centered at X~. What can be expected ifp such stars are 
built and the best multiple alignment ~4 is taken? With such a method, at most 
(k-1)p  optimal pairwise alignments need be computed. Contrary to what 
might seem intuitive, even when p is fairly small this approach will, with high 
probability, give alignments with reasonable worst case deviation from the 
optimal alignment. The following theorems partially capture the situation. 

THEOREM 2.2. For any r >  1, define e(r) to be the expected number of stars 
needed to be chosen at random before the value of best resulting alignment is 
within a factor of 2+ 1/ ( r -1)  of the optimal alignment. Then e(r)~<r. 

For example, e(r) is at most two for an error bound of three, and e(r) is at 
most 10 for a bound of 2.1112. Note that e(r) is independent of k and of the 
lengths of the strings. 

Proof. For ease of exposition, we first prove the case for r = 2. For each string 
X i define M(i) = ~j  D(Xi, Xj). Then M(c) = M. Using this notation, recall from 
the proof of Theorem 2.1 that ~,j)D(X~, Xj)=~i  M(i)<~2(k-1)M, so the 
average value of M(i) is less than 2M. Then since the minimum value for M(i) is 
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M, it follows that the median of the M(i) values is less than 3M. The expected 
number and centers selected at random before a selected M(i) is less than the 
median, is two. 

Now suppose the median is actually eM, for 1 ~< e ~< 3. Then ~(i,i) D(X~, 
Xj) >1 kM/2 + keM/2, and the value of the alignment obtained from any below 
median star is at most 2 ( k -  1)eM. Hence the error ratio for this star is at most 

2e " " ~1/2~/2). This ratio is maximized when e is as large as allowable, i.e. when e = 3, 
where the error ratio is three. Hence e(2)~< 2. 

Generalizing the above proof, we note that at least k/r stars have M(i) less 
than or equal to ( 2 r - 1 ) M / ( r - - 1 ) ,  which again follows from the fact that the 
minimum M(i) is M and the mean is less than 2M. Suppose that the point below 
which k/r of the M(i) fall is actually eM for 1 ~< e ~< (2r - 1)/(r - 1). The expected 
number  of stars to pick until one is chosen with M(i) less than eM, is r. The error 
ratio of such a star is 25/[�89 + ~-te],  which again is maximized for the largest 
allowable e, at which point the error ratio is (2r - 1)/(r - 1) = 2 + 1 / ( r -  1). �9 

It may be more useful to put the theorem in terms of probabilities rather than 
expectations, since generally one is interested in how well the method might do 
for any fixed instance, rather than how it will do over a sequences of instances. 
The proof of the following is easily modified from the proof of Theorem 2.2. 

THEOREM 2.3. Picking p stars (centers) at random, the best resulting alignment 
will have value within a factor of 2 + 1 / ( r -  1) of the optimal with probability at 
least 1 - [ ( r -  1)/r] p. 

Theorems 2.2 and 2.3 say that one can expect to get a multiple alignment 
with a reasonable worst case SP error ratio with significantly less computat ion 
than is needed to compute d e ,  and indeed less than is used for most other 
multiple alignment heuristics in the literature. However, even these two 
theorems are too pessimistic--the analysis used in their proofs is very loose. 
For  example, in Theorem 2.2 the case of r = 2 was proven by considering the 
median M(i) value, and then setting the median to 3M, since that is where the 
analysis gives the largest (hence certain) error ratio. But, if the median were 
actually 3M, then the distribution of the M(i) values would be known precisely: 
M(i) = M for half the stars, and M(i) = 3M for the other half. Then Z(i,j) D(Xi, 
Xj) = 2kM, the denominator  in the error ratio is 2kM, and so an optimal SP 
alignment would be obtained from any center string X~ with M(i)= M; such a 
string is selected with probability one-half. The same conclusion holds for each 
r. That  is, were the extreme conditions used in the proof of Theorem 2.2 to 
actually hold, then an optimal SP alignment would be constructed from 1/r of 
the stars. So the analysis used in the proofs is quite pessimistic, and Theorems 
2.2 and 2.3 should be taken as "back of the envelope" estimates which give 
sufficiently positive results to encourage the experimentation of randomized 
methods on real data of interest. This is consistent with the experimental results 



148 D. G U S F I E L D  

mentioned in the next section. If one wants complete certainty, we have the 
following. 

THEOREM 2.4. I f  p stars are chosen in any manner, and ~4 is the best resulting 
multiple alignment, then V(~4)/V(A*) is 9uaranteed to be less than 
(k - 1)/k + (k - 1)/p. 

As an interesting aside, let Tbe any tree with k nodes labeled with the strings 
of W, and let d be the multiple alignment of W consistent with T. Using 
Theorem 2 in the paper by Wong (1980), it can be shown that 
V(d)/V(A*)<~2k. This provides a very quick way (since only k - 1  pairwise 
alignments need by computed) to obtain a bounded error multiple alignment, 
but the error in this case may so large as to make the alignment uninteresting. 

2.2. Comments and empirical results. We should point out that the above 
theorems, although correct, are not informative when the strings are extremely 
different. Let W(X~, ~.) be the value of the worst possible alignment between 
strings X~ and Xj. If 2i<j W(~i, ~j)/2i<j D(X~, X~)<<. 2(k -1 ) /k  then Theorem 
2.1 holds vacuously. So the theorem is informative only when the strings are 
sufficiently similar. This is the case for many applications involving biological 
sequences, but probably the most interesting cases are when the strings are 
highly dissimilar. However, we should not conclude that the center star method 
is not useful for highly dissimilar strings, as illustrated in the sketch of the 
empirical results given below. Further, in cases when the dissimilar strings can 
first be grouped into subsets of more mutually related strings, then each subset 
can be aligned separately using the star method, and then the centers of each 
star can be aligned, again by the star method. 

One might also object that the SP measure is based on global alignment, 
applying to the entire length of each string, while a measure based on local 
alignment would be of more use. This is most likely true, but the SP measure 
may still be important in multiple local alignment, as for example in the 
program MACAW (Schuler et al., 1992). In that program, regions of local 
similarly that extend throughout  the strings are first found and aligned. These 
regions are called diagonals. Every consecutive pair of diagonals defines a set of 
substrings consisting of the strings between the two diagonals. These substrings 
are then globally aligned by MACAW, and the goodness of the entire 
alignment is evaluated with respect to the SP measure. Hence the need for 
global alignment can arise even in the context of more locally oriented 
objectives. 

A final comment is that the center star method is similar in some ways to 
earlier progressive alignment methods, but quite different in one important 
way. Once the center star is determined, the actual alignment obtained follows 
the ideas of progressive alignment in that progressive alignment methods also 
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first build, explicitly or implicitly, some tree to guide the alignment. However, 
the key issue is how the initial tree is found. The progressive alignment method 
in (Feng and Doolittle, 1987) essentially first finds a minimum spanning tree or, 
in other words, first does a single-link clustering, based on the edit distances. 
Algorithms to build minimum spanning trees are called "myopic algorithms" in 
the literature precisely because each successive decision about which link to 
include in the tree is made without considering the implication of that choice on 
possible future choices. This is consistent with the stated philosophy in (Feng 
and Doolittle, 1987): "once a gap always a gap". In contrast, the center star is 
based on a much more global consideration of all the data. No claim is being 
made here that a more global approach is better than a myopic approach, just 
that it is certainly different. 

A sketch of empirical results. We ran the above methods on several sets of 
biological sequences. The objective function used counted zero for a match, 
two for a mismatch and one for a space. Typical cases had between seven and 20 
strings of lengths between 40 and 200 characters. A more complete write up of 
these and other experiments is forthcoming. However, in all cases, the results 
were considerably better than the bounds given in the above theorems, and we 
will give two illustrations, one where the strings were quite similar, and one 
with much greater variability. 

We aligned 19 amino acid sequences of homeoboxs from different species. 
This experiment was a case where the strings were quite similar. The average 
string length was 60 and the average optimal (pairwise) alignment value was 
25.5 with an average number of equalities in an alignment of 46. For these 
strings, the bound from Corollary 2.1 of 2 ( k -  1)Mini, j D(X i, Xj) was 1.34, and 
the ratio of worst possible multiple alignment value to the lower bound was 
greater than this, making the bound informative. As expected, the actual 
deviation of V(dc) from the lower bound was much less: V(~c)/y'i< j D(Xii, X~) 
was 1.018, i.e. the multiple alignment obtained from the center star had a value 
whose deviation from the lower bound was less than 2%. Further, in 11 out of 
the 19 multiple alignments (each obtained from a different choice of center), the 
deviation was less than 5%. The average deviation from the lower bound for 
the alignments produced using centers whose M(i) ranked below the median 
center was 3%. Generally there was a rough, but not perfect, correlation 
between the rank of M(i) and the rank of the value of the multiple alignment 
produced using string ~ as center. Further, the center string, with the smallest 
M(i), did give the best of the 19 alignments, and the string with worst M(i) gave 
the worst multiple alignment. 

To test strings which were not so similar, and where Theorem 2.1 was not 
informative, we took 10 sequences near the homeoboxs. The average string 
length was 43, the average optimal pairwise alignment value was 56.5 and the 
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average number of equalities in an optimal alignment was 13.7. The ratio 
2 (k -  1)Mini, ~ D(Xii , Xj) was 1.61, but again the the actual deviation of~r from 
the lower bound was much lower: using d~ ,  the ratio was 1.162 (a 16.2% 
deviation from the lower bound), while the string with next best M(i) gave an 
alignment which deviated from the lower bound by only 16.0%. Despite this, 
there was again a rough correlation between the rank of M(i) and the rank of 
the alignment obtained from string X~. Also, M was 466, while the median star 
had M(i) equal to 504, much less than the 3M bound shown above. Note that 
the deviation of 16.0% is from the lower bound ~i<j D(X~, Xj) and we do not 
know what the actual deviation from the optimal alignment is. But since the 
average pairwise alignment value is large compared to the average string 
length, it seems unlikely that the optimal is very close to the lower bound. 
Hence a 16% deviation from the lower bound seems quite good. 

Both of the above experiments support the belief that Theorems 2.1, 2.2 and 
2.3 are generally pessimistic compared to the typical situation arising in 
practice. 

3. Multiple Alignment and Evolutionary Trees. One of the main uses for 
aligning more than two strings simultaneously is in building evolutionary trees 
for the taxa associated with set of biological sequences. The typical approach 
has been to first find a multiple alignment of the strings, then obtain distances 
or clusterings from that alignment to construct a tree "explaining" the 
evolutionary derivation of the set of strings (see Feng and Doolittle, 1987; 
Johnson and Doolittle, 1986; Doolittle, 1986; for examples). Often, one can 
identify major clusters, and the pattern of evolution, by the places that long 
contiguous sequences of spaces have been inserted into the alignment. With 
this approach, the SP measure may be sufficient, and a close to optimal 
alignment may identify the same clusters that an optimal alignment would. 

However, another approach is to first choose the typology of the tree and 
then map the strings (with additional strings possibly added) to the nodes of the 
tree. The string alignment is then the alignment which is consistent (discussed 
in the previous section) with the pairwise alignments of the strings at the ends of 
the edges of the tree. The value of the alignment is j ust the sum of those selected 
pairwise alignments. This second approach to multiple alignment is called the 
tree alignment (TA) approach (Altschul, 1989; Altschul and Lipman, 1989). 

The above specific approaches to building evolutionary trees connect the 
multiple alignment problem with the tree building problem, and the papers 
cited above treat the evolutionary tree problem in the context of the multiple 
string alignment problem. However, the main goal is the tree itself and the 
alignment is either part of a method to build the tree, or is a reflection of the 
goodness of the tree. Hence the goodness of the alignment is judged by the 
goodness of the tree associated with it. For this reason, we will focus on the tree 
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problem, but the bounds obtained there translate of course into the alignment 
problem with the TA objective function. 

3.1. Formal definitions. Let K be an imput set of k strings, and let K' _ K be 
a set of strings containing (possibly equal to) K. An evolutionary tree T~,for Kis 
a tree with at least k nodes, where each string in K' labels exactly one node, 
and each node gets exactly one label from K'. The value of T K, is V(T~,)= 
[~ D(X~ Y): (X, Y) label the ends of an edge in TK,]. As before D(X, Y) is the 
value of the optimal pairwise alignment of strings X and Y. Given the set K, the 
problem is to find a set of strings K ' _  K and an evolutionary tree T~, for K 
which minimizes V(TK, ) over all evolutionary trees for K. 

Although the correct root (most ancestral string in K) may not be known, if 
the root were known and the edges of T~, directed away from the root, then T K, 
provides a model of the evolutionary change involved in deriving the set of 
strings K from the root string. The alignment value D(X, Y) associated with 
each directed edge (X, Y) is interpreted as the minimum "cost" to transform 
string X to string Y, and therefore the sum of the alignment values of the edges 
gives the evolutionary cost implied by the tree. 

The set of strings in K ' - K  model hypothesized ancestors of the taxa 
associated with K; the nodes labeled with K'--K give the hypothesized 
historical positions of these taxa. It is easy to construct examples where the 
optimal (minimum value) evolutionary tree must contain such ancestors. Of 
course, one cannot know for sure that the "ancestors" are real, but the optimal 
evolutionary tree none-the-less provides the best general lower bound on the 
amount  of evolutionary change involved in the "true" history,t  and is of course 
a lower bound on the best possible value obtainable by the two specific 
approaches to building evolutionary trees mentioned above. 

Finding the optimal evolutionary tree is a very difficult computational task, 
and only special cases of it have been addressed in the literature (Sankoff and 
Cedergren, 1983; Altschul and Lipman, 1989). In this section we discuss a 
method which gives an evolutionary tree whose value is never more than twice 
that of the optimal evolutionary tree, hence never has more than twice the 
minimum possible evolutionary change. 

3.2. Method. To describe the method, we first define the minimum spannin9 
tree of a edge weighted graph. Let G be a graph with k nodes where every node 
is labeled with a distinct string in K. The weight given to any edge (X, Y) is 
D(X, Y), the value of the optimal alignment of strings X and Y. The minimum 
spanning tree (denoted MST) of G is a subtree of G containing all k nodes, such 
that the sum of the weights on its edges is the minimum possible over all such 

t Provided that we measure evolutionary change in terms of weighted edit distance of the associated 
strings. 
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subtrees of G. A min imum spanning tree of a graph can be computed  very 
efficiently by a variety of methods  (Tarjan, 1983). Clearly, given a set of strings 
K, the MST constructed as above is an evolutionary tree for K. 

For  any set of strings K, let T* denote the opt imal  evolutionary tree for K. 
We will show that  V(MST)/V(T*)<2.  

Let C be a traversal of the edges of tree T* which traverses every edge exactly 
once in each direction. Clearly its value, the sum values of the edges it traverses 
is exactly 2 V(T*) since it traverses every edge twice. Now consider a number ing  
of the strings in K in the order that  these strings are first encountered on 
traversal C. Let C1, C2, . . . ,  C k be this numbering.  Define V(C) to be D(C k, 
C,)-I-Ei< k O(C i, Ci+ l). 

LEMMA 3.1. For any i < k ,  D(Ci, Ci+l) is at most the sum of the values of  the 
edges on the traversal C between string C i and Ci+ 1. Similarly, D(Ck, C1) is at 
most the sum of the values of  the edges on C between C k and C 1 . 

Proof. Follows immediately from triangle inequality on the distance function 
D. �9 

COROLLARY 3.1. V(C)~<2V(T*). 
N ow let D(Ci,, Ci, + 1) be the largest distance of any adjacent strings C/, C/+ 1 

including C k, C 1 . 

LEMMA 3.2. V(MST)~<V(C) -D(Ci ,  , Ci, + 1)~V(C)-V(C)/k. 
Proof. Any k - 1 of the k pairs { (C~, C i + 1): 1 ~ i < k} w (C k, C 1) specify a set of 

edges which form a subtree of G containing all k nodes. In particular, the set of 
pairs consisting of all pairs but  (Ci,, C~,+ 1) form a spanning tree. The value of 
that  spanning tree is exactly V( C) - D( Cz,, C~,+ 1). But MST is the min imum 
spanning tree of G, implying the first inequality. Clearly, D(Q,, C~,+I)~> 
V(C)/k, implying the second inequality. �9 

In summary  we make  the following conclusions. 

THEOREM 3.1. For any set K o f k  strings, V(MST)/V(T*)<<.2(k-1)/k <2. 
More exactly, we have the following theorem. 

THEOREM 3.2. V(MST)/V(T*) <~ ( k -  1)/kV(C)/V(T~:) <~ 2 ( k -  1)/k. 
Generally, we can expect that  V(C) will be considerably less than 2V(T*), 

and further since V(MST)~< V( C)-- D( Ci,, C/,+1), we can also expect that  
V(MST)/V(T*) will be considerably less than two. However,  unlike the case of 
the SP bound,  we do not know how to compute  (as opposed to prove 
beforehand) a better bound  than that  given in Theorem 3.2. 

COROLLARY 3.2. V(T*)>kV(MST) /2 (k -1 ) .  
Corollary 3.2 gives an efficient me thod  to compute  a non-obvious  lower 

bound on V( T*). 
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4. Extension to Other Distances. All the results establ ished in this p ap e r  ho ld  
for m o r e  complex  weight  funct ions  than  discussed above.  F o r  example ,  an 
i m p o r t a n t  extens ion is the in t roduc t ion  of  the concep t  of  a gap, a con t iguous  
sequence of  spaces in an a l ignment .  A single evo lu t iona ry  event  might  insert  or  
delete a con t iguous  sequence of  charac ters  of  quite  var iable  length,  causing a 
gap in an a l ignment  of  the unmodi f ied  and  the der ived strings. Hence  it is no t  
always cor rec t  to weigh the spaces in a gap by  simply summing  up the weights 
given by  each individual  space. Ins tead m o r e  complex  gap weight  funct ions 
have  been suggested and studied.  We will no t  discuss these here,  bu t  simply 
po in t  out  tha t  unde r  any  gap weight  funct ion  if the defini t ion of the op t imal  
a l ignment  value (edit dis tance)  satisfies the t r iangle inequal i ty ,  then all results 
still apply.  
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A P P E N D I X  

For completeness of this paper we show how to construct the multiple alignment do,  which is 
consistent with the center tree. Without loss of generality, assume Xr = X 1. We will follow a 
method that is simple to describe, but not the most efficient method. 

After computing all the optimal pairwise alignments, let s o be the maximum number of spaces 
placed before the first character of)(1 in any of the alignments, let s I be the maximum number of 
spaces placed after the last character of )(1 in any of the alignments, and for each i let s i be the 
maximum number of spaces placed between characters Xl(i ) and Xl(i+ 1) of X~ in any of the 
alignments. To create the multiple alignment d~ we first insert spaces into X 1 . Insert s o spaces 
before )(1, sf spaces after X1, and s i spaces between character )(1 (i) and X 1 (i + 1) for each i. Let J(1 
denote the string X~ with these spaces inserted. Then for each string Xj, find the optimal pairwise 
alignment of Xj with X 1 with the constraint that no additional spaces are put into )(~. The result is 
also an alignment ofX 1 and Xj, so D(X. Xa) >>. D(Yj X1) Conversely s o (sl) is greater or equal to j ~  , �9 . ' 

the number of spaces placed before (after) X 1 in the optimal ahgnment of X~ and Xj, and each si is 
greater or equal to the number of spaces between X~(i) and )(1(i+ 1) in the optimal )(1, Xj 
alignment. Hence D(Xj, J(~)~<D(Xj, X1), so D(Xj, J~I)=D(Xj, )(i) for each X~. Then since no 
additional spaces were inserted into )(~, these pairwise alignments form a multiple alignment J c  
which is consistent with the center tree. 
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