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A classical predator-prey model is considered in this paper with reference to the case of 
periodically varying parameters. Six elementary seasonality mechanisms are identified and 
analysed in detail by means of a continuation technique producing complete bifurcation 
diagrams. The results show that each elementary mechanism can give rise to multiple attractors 
and that catastrophic transitions can occur when suitable parameters are slightly changed. 
Moreover ,  the two classical routes to chaos, namely, torus destruction and cascade of period 
doublings, are numerically detected. Since in the case of constant parameters the model cannot 
have multiple attractors, catastrophes and chaos, the results support  the conjecture that seasons 
can very easily give rise to complex populat ion dynamics. 

1. Introduction. The study of ecological systems driven by periodic external 
forces is of great importance Since, with almost no exception, population 
communities are imbedded in periodically varying environments. Tempera- 
ture variations strongly influence the reproduction rate of bacteria during the 
day, moon and tide cycles regulate migration rates of numerous species in 
aquatic and terrestrial ecosystems, light intensity controls photosynthesis 
during the seasons, hunting perturbs game stocks once a year. It is therefore 
quite natural to try to identify the functional role that seasons play in the 
behaviour of population communities. In particular, a basic problem is to 
understand if the magnitude of the seasonal variations is related to the 
complexity of the system. Indeed, it has been known since long ago that the 
nonlinear mechanical and electronic systems described by Duffing and Van 
der Pol equations have a very simple dynamic behaviour in the constant 
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parameter case, but become very complex (multiplicity of attractors, 
catastrophes and chaos) when they are periodically perturbed (Gucken- 
heimer and Holmes, 1986). Another important example in a different field is 
the classical SEIR epidemic model which has a globally stable equilibrium in 
the constant parameter case and a great number of modes of behaviour in the 
periodically varying case (Schwartz and Smith, 1983; Aron and Schwartz, 
1984; Kot et al., 1988; Olsen et al., 1988). 

In this paper we prove that the Rosenzweig-MacArthur predator-prey 
model, composed of a logistic prey and a Holling's type predator, is also very 
sensitive to seasonality. In the constant parameter case the model has a 
supercritical Hopf bifurcation and therefore has only one mode of behaviour 
for each combination of the parameters: a globally stable equilibrum or a 
globally stable limit cycle. For small magnitudes of the seasonal variations of 
the parameters the equilibrium is replaced by a periodic solution with the 
same period of the perturbation (say, period 1), while the limit cycle is, in 
general, replaced by a quasi-periodic solution (torus). Nevertheless, if the 
parameter valtJes are such that the period of the limit cycle of the unperturbed 
system is approximately k times bigger than the period of the forcing function 
(k = integer), then even a small periodic perturbation of a parameter can give 
rise to "phase-locking", i.e. to stable period k periodic solutions (called 
subharmonics). This well-known phenomenon (Guckenheimer and Holmes, 
1986) is particularly relevant (and therefore easy to detect numerically) for 
k = 2  and k=3.  Period 2 and 3 subharmonics can coexist with the basic 
period 1 solution as well as with quasi-periodic solutions or with strange 
attractors obtained through torus destruction. Obviously, the presence of two 
(or more) attractors, each one having its own basin of attraction, makes the 
system particularly sensitive to random disturbances. Moreover, some of the 
bifurcations characterizing the system (for example, tangent and flip bifurca- 
tions) are such that small variations of a parameter can entail "catastrophic 
transitions" between different attractors. Finally, for high magnitudes of the 
seasonal variations the period 2 and 3 subharmonics can very easily undergo 
a cascade of period doublings ending in a strange attractor. Some of these 
attractors are quite similar to those discovered by Ueda for the periodically 
perturbed Duffing equation (Guckenheimer and Holmes, 1986). 

This is not the first contribution on periodically forced ecosystems. 
Discrete-time models (maps), in which the unit time step coincides with the 
period of the forcing function, have been used to show that quasi-periodic 
and chaotic solutions are possible in population dynamics (see, for example, 
May, 1974; Kot and Schaffer, 1984; Lauwerier and Metz, 1986). Models of 
this kind are very easy to handle and can give rise to spectacular dynamics, in 
particular when the map is non-invertible as in the famous case of seasonally 
breeding organisms with nonoverlapping generations (May, 1974). More 
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interesting continuous time models with periodically varying parameters 
have been used to show that seasonality can support coexistence of 
competing species (Cushing, 1980; De Mottoni and Schiaffino, 1981; Smith, 
1981; Butler et al., 1985; Namba, 1986), and that periodic Lotka-Volterra 
predator-prey systems can have a great variety of periodic solutions 
(Cushing, 1977; Bardi, 1981; Cushing, 1982). Nevertheless, these studies are 
somehow incomplete, because they do not touch the problem of deterministic 
chaos. On the contrary, more recent contributions on second order 
periodically varying predator-prey systems (Inoue and Kamifukumoto, 1984; 
Schaffer, 1988; Toro and Aracil, 1988; Allen, 1989; Kuznetsov et al., 1992) 
deal with such a problem and are much closer, at least in spirit, to the present 
analysis. Specific comments on these contributions can be found in the 
following sections. Here it suffices to say that the analysis presented in this 
paper is much more accurate and complete and allows one to synthetically 
interpret the results. Some interesting analogies can also be found in a very 
recent work (Kot et al., 1992) on a third order chemostat model with 
periodically varying concentration of the inflowing substrate. 

Finally, we would like to mention that the analysis of a number of recorded 
time series of seasonally perturbed plant, animal and human populations 
seems to confirm the existence of the above nonlinear phenomena (Sugihara 
and May, 1990). Subharmonics of period 2, 3 and 8 days, as well as phase- 
locking with the moon cycle, have been found by analysing the abundance of 
reef fishes influenced by tides (Robertson et al., 1990). A low dimensional 
strange attractor has been ascertained in the Canadian Lynx population by 
applying Taken's method to the 200 year long time series of number of skins 
shipped by the Hudson's Bay Company (Schaffer, 1984), while higher 
dimensional strange attractors have been detected in plant populations 
through the analysis of tree-rings (Gutierrez and Almiral, 1989). But the most 
convincing and detailed analysis showing evidence of chaos in a periodically 
perturbed population is, without doubt, the study of childhood diseases 
which are strongly influenced by the seasonality of the contact rates induced 
by the Summer and Christmas vacations in schools (Kot et al., 1988; Olsen et 
al., 1988). Other examples can be found in the broad area of food chain and 
food web systems which comprises forest ecosystems with recursive insect 
pest outbreaks, and aquatic ecosystems with chaotic algae blooms season- 
ally triggered by light intensity. Nevertheless, we would like to stress that 
the ultimate goal of this paper is only to show that the analysis of a classical 
predator-prey model supports the conjecture that seasons can generate very 
complex ecosystems dynamics, comprising catastrophes and chaos. The 
reinforcement of this conjecture through the analysis of field data and 
laboratory experiments is certainly a much more ambitious and difficult 
task. 
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2. The Model and the Six Seasonality Mechanisms. The model we discuss in 
this paper is the classical Rosenzweig-MacArthur predator-prey model used 
in the last 20 years to interpret the behaviour of many predator-prey 
communities, namely: 

I ax dl  (2) 
~=y e b+x  

where the six parameters r, K, a, b, d, e are positive and x and y are the numbers 
of individuals of prey and predator populations or suitable (but equivalent) 
measures of their density or biomass. In the absence of predators (y = 0) the 
rate of growth of prey per unit of biomass, namely r(1 -x /K) ,  decreases with x. 
This is the standard assumption of logistic growth of populations (Verhulst, 
1845) which accounts for competition for food and space among individuals of 
the same species and for increased mortality at high density due, for example, to 
higher chances of epidemics at higher frequency of encounters among 
individuals. The intrinsic growth rate r describes the exponential growth of the 
prey population at low densities, while the carrying capacity K is the prey 
biomass at equilibrium in the absence of predators. The intrinsic growth rate 
and the carrying capacity increase with the quality and amount  of food 
available to the prey population and can therefore undergo synchronous 
periodic variations during the year. 

The function: 

a x  
q(x) - (3) 

b+x  

appearing in equations (1) and (2) is the type 2functional response proposed by 
Holling (Holling, 1965), which is, by far, the most commonly used in these kind 
of studies. It represents the prey biomass destroyed by each predator in one 
unit and can be justified as follows (for a more detailed interpretation see Metz 
and van Batenburg, 1985). Let us assume that the searching time, namely the 
time the predator spends to find a unit of prey is inversely proportional to prey 
density, i.e. s/x, where s is a suitable parameter. If the time needed by each 
predator to handle one unit of prey is h and all other activities (resting time) of 
the predator occupy a fraction u of its time, we can write: 

S 
- q(x)+hq(x)+u= 1 
x 

from which equation (3) follows with: 
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1 - - U  S 
a - b = - .  (4) 

h h 

Thus, q(x) is a concave saturating function and a is the maximum harvest rate of 
each predator, while b is the half saturation constant, namely the density of prey 
at which the predation rate is half maximum. Finally, the parameter e in 
equation (2) is a simple conversion factor, called efficiency, that specifies the 
number of newly born predators for each captured prey, while d is the predator 
death rate per capita. 

Of course, the parameters must be time-varying if relevant environmental 
factors periodically fluctuate in time. For simplicity we consider only 
sinusoidal perturbations so that for any periodic parameter p in equations (1) 
and (2) we write: 

p=po(1 +e  sin 2rot) 

where P0 is the average value ofp and e is the "degree" of seasonality (notice that 
epo is the magnitude of the perturbation). Obviously, 0 ~< e ~< 1 because p cannot 
be negative: e = 0 corresponds to absence of seasonality, while e = 1 means that 
the maximum value of the parameter is twice its average value. 

Real predator-prey communities are characterized by many seasonality 
mechanisms so that many, if not all, parameters of model (1), (2) vary 
periodically. Moreover, these periodic variations are often not in phase, 
because, even when the different seasonality mechanisms have a common 
physical origin, their influence reaches its maximum at different times. For 
example, light intensity and water temperature influencing in different ways 
phytoplankton-zooplankton communities are out of phase of 1 or 2 months in 
relatively large lakes, although they both depend upon the sun cycle. In order 
to avoid too heavy an analysis, we only deal with "elementary" seasonality 
mechanisms, namely with phenomena that entail periodic variations of a single 
parameter in model (1), (2) or periodic but synchronous variations of two 
parameters. For this aim, we identify six elementary mechanisms denoted by 
(i), ( i i ) , . . . ,  (vi) in the following. The first one entails the synchronous 
variation of the intrinsic growth rate r and of the carrying capacity K, while all 
others imply the periodic variation of one parameter. 

(i) Amount offood available to prey (r, K). The intrinsic growth rate r in (1) 
is the difference between basic birth and death rates of the prey. Hence r 
increases with the amount  of food available to the prey community,  so that 
r = r0(1 + e sin 2rot). Since, on the contrary, the prey intraspecific competition 
(r/K) is not influenced by the amount  of food available to the prey it follows that 
K=Ko(1 +e  sin 27ct). 



20 S. RINALDI et al. 

(ii) Prey intraspecific competition (K). Surplus of prey mortality at high 
densities due to competition for special niches or to epidemics can be enhanced 
in some seasons. If this is the case, the carrying capacity varies periodically, i.e. 
K=Ko(1 +e  sin 2rot). 

(iii) Caloric content of the prey (e). If the caloric content of the prey varies 
during the year, like in some plant-herbivore communities, the energy 
available to the predator for reproduction varies consistently. Hence the 
efficiency varies periodically, i.e. e = eo(1 + ~ sin 2~zt). 

(iv) Predator exploitation (d). The periodic presence of a superpredator 
exploiting the predator community gives rise to periodic variations of the 
predator death rate, i.e. d=do(1 +e sin 2rot). Phytoplankton-zooplankton 
communities with first year class fish feeding on zooplankton during the 
Summer and tree-insect pest systems controlled by migratory insectivores are 
examples of this class. 

(v) Predator and prey mimicry (b). When the degree of mimicry of the prey 
(predator) is not constant during the year or when variations of the habitat 
facilitate the escape or the capture of the prey in some specific season, the 
parameter identifying the searching time in equation (4) varies periodically. 
This implies [see equation (4)] that the half saturation constant varies in the 
same way, i.e. b =bo(1 +e  sin 2rot). 

(vi) Predator restin9 time (a). If the resting time of the predator fluctuates 
during the year, as in populations characterized by some degree of diapause, 
the parameter u in (4) varies periodically. Thus the maximum harvest rate of 
the predator varies in the same manner, i.e. a=ao(1 +e  sin 2rot). 

The only "single parameter" perturbation we have excluded in our analysis is 
that of the intrinsic growth rate r, because we have not found an interesting 
biological interpretation for it. In this respect we must point out that the 
analysis carried out in Inoue and Kamifukumoto (1984), Toro and Aracil 
(1988) and Allen (1989) refers exactly to this case. Moreover, the discussion in 
Inoue and Kamifukumoto (1984) is mainly focused on the influence of the 
frequency of the forcing function, which is classical in mechanics and 
electronics but has very little meaning in ecology, while in Toro and Aracil 
(1988) and Allen (1989) only the results of a few simulations are shown. On the 
contrary, the discussion in Schaffer (1988) (corresponding to our third 
elementary mechanism) is more systematic and points out that chaos can be 
obtained through torus destruction. This is confirmed by our analysis which, 
nevertheless, shows that the period doubling route to chaos is also present, as 
was already proved for the fifth elementary mechanism in Kuznetsov et al. 
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(1992) and for a third order chemostat model composed by limiting substrate, 
heterotrophic prey and holozoic predator in Kot et al. (1992). 

3. The Constant Parameter Case. In the absence ofseasonality (e = 0), system 
(1), (2) is an autonomous second order system where all parameters and state 
variables are nonnegative. The analysis of the local stability of its equilibria 
(May, 1972) shows that there is a Hopfbi furcat ion at: 

e a - d  
K = b  - -  (5) 

ea - d 

and a transcritical bifurcation at: 

d 
K = b e a _ d .  (6) 

The Hopf bifurcation is always supercritical [-the computation of its Liapunov 
number is relatively easy if one considers the orbitally equivalent system 
obtained by multiplying equations (1), (2) by (b+x)] and the asymptotic 
period of the appearing limit cycle is: 

K )  1/2 
Tu = 2zr rbd (7) 

Moreover, the limit cycle does not bifurcate since it is unique (Cheng, 1981; 
Wrzosek, 1990). Thus the parameter space is partitioned into three regions 
separated by the manifolds (5) and (6). For all combinations of the parameters 
there is a single attractor which is globally stable in the first quadrant as 
indicated in Fig. 1. More precisely, for sufficiently high values of the carrying 
capacity K, the attractor is a stale limit cycle. For decreasing values of K this 
cycle shrinks and disappears through a Hopf bifurcation. Then the attractor is 
a stable equilibrium which is positive for intermediate values of K and trivial 
(absence of predator population) for low values of K. 

4. Method of Investigation. For e > 0 system (1), (2) adding the equation t'= 1 
(t mod 1), can be transformed into an autonomous three-dimensional system 
for which a Poincar~ section and first return map (x (0), y(0))~ (x(1), y(1)) can 
be defined (Arnold, 1982; Guckenheimer and Holmes, 1986). Fixed points of 
the kth iterate of the map correspond to periodic solutions (cycles) of equations 
(1) and (2) with period k (we will refer to these points as period k f i xed  points). 
Closed and regular invariant curves of the Poincar6 map correspond to quasi- 
periodic solutions (invariant tori), while irregular invariant sets correspond to 
chaotic solutions (strange attractors). 
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Figure 1. Phase portraits of system (1), (2) in the case of constant parameters: (a) 
K>b(ea+d)/(ea-d): the attractor is the cycle F; (b) bd/(ea-d)<K<b(ea+d)/ 
(ea-d): the attractor is the equilibrium P; (c) K<  bd/(ea-d): the attractor is the 

trivial equilibrium (K, 0). 

Non-saddle  (i.e. at tracting or repelling) and saddle cycles of period k of 
system (1), (2) can bifurcate at some parameter  values. We use the following 
nota t ion  for the corresponding fixed point  codimension one bifurcation curves. 

h(k)--Hopf (Neimark-Sacker)  bifurcation curve. For  parameter  values on this 
curve the map  has a period k fixed point  with a pair of multipliers on the unit  
c i rc le :  ]2(k]2 = e -+ i,~, o) > 0. When curve h (k) is crossed, an attracting (repelling) 
cycle of period k bifurcates into an attracting (repelling) quasi-periodic 
solution and a repelling (attracting) cycle of period k. 

t(a)--tangent (fold) bifurcation curve. For  parameter  values on this curve the 
map  has a period k fixed point  with a multiplier/~a) = 1. When this curve is 
crossed, a saddle and a non-saddle cycle of period k collide and disappear.  

f(k)--flip (period doubling) bifurcation curve. For  parameter  values on this 
curve the map  has a period k fixed point  with a multiplier #~lk) = - 1. When 
this curve is crossed a saddle (non-saddle) cycle of period k bifurcates into a 
non-saddle (saddle) cycle of period k and a saddle (non-saddle) cycle of 
period 2k. 

The behaviour of the system for parameter  values close to these curves is 
described in Arnold (1982) and Guckenheimer  and Holmes (1986). It is 
worthwhile noticing that  tangent and flip bifurcations always involve saddle 
cycles, while Hopf  bifurcations are only concerned with attractors and 
repellors. Moreover ,  Hopf  bifurcations always involve an attractor,  while 
tangent  and flip bifurcations sometimes do not.  Al though all curves h (k), t (k), f(k) 
are needed if one likes to fully unders tand the structure of the bifurcations of a 
dynamical  system, only those concerning attractors are useful to classify the 
asymptot ic  modes  of behaviour  of the system. In the following, in order to 
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facilitate the biological interpretation of the results, we will not display 
bifurcation curves which do not refer to attractors. Readers interested in the 
bifurcation structure of the model can refer to Kuznetsov et al. (1992), where 
the bifurcation curves corresponding to our fifth elementary mechanism are 
fully displayed. 

The bifurcation curves presented in the next section have been computed by 
means of a continuation method interactively supported by the program 
LOCBIF developed by the third author and by A. Khibnik, V. Levitin and 
E. Nikolaev at the Research Computing Centre of the U.S.S.R. Academy of 
Sciences at Pushchino. 

The method can be briefly described as follows (see Khibnik, 1990a,b). Each 
bifurcation curve is computed by projecting a one-dimensional manifold 
located in the four-dimensional space (x, y, Pl, P2) on the (Pl, Pz)-P lane, where 
pl and P2 are two parameters of (1), (2). The manifold is determined by the two 
fixed point equations and by a bifurcation condition imposed on the 
multipliers of the fixed point. This condition is written using the characteristic 
polynomial det(A --#/), where A is the Jacobian matrix of the Poincar6 map at 
point (x, y) and I is the unit matrix. More precisely, the bifurcation conditions 
are the following: 

R[det(A - #I), det(#A --/)] = 0 
det (A - / )  = 0 
det(A + / )  = 0 

(for Hopf bifurcation), 
(for tangent bifurcation), 
(for flip bifurcation), 

where R[.,.] stands for the resultant of two polynomials (Lancaster and 
Tismenetsky, 1985). In the program LOCBIF the bifurcation curves are 
computed by means of an adaptive prediction-correction continuation 
procedure with tangent prediction and Newton correction. All relevant 
derivatives, as well as the Poincar6 map, are evaluated numerically. The 
program LOCBIF also produces phase portraits of the Poincar6 map, 
continues fixed points in any (x, y, pl)-space and detects codimension one 
bifurcations. 

5. Bifurcation Curves. In this section we present and discuss the bifurcation 
curves of system (1), (2) for the six elementary seasonality mechanisms 
identified in Section 2. The reference values of the parameters are the following: 

e = K = l  r = d = 2 n  a=2.2rc b=0.3. (8) 

For these values, the system oscillates on a limit cycle [Kis slightly bigger than 
b(ea+d)/(ea-d), see equation (5)], and the period of the cycle (evaluated 
numerically) is T=  1.85. Thus, in the parameter space we are not too far from 
Hopf bifurcations (5) and from k = 2  resonances, i.e. values of parameters 
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giving rise to a cycle of period two times bigger than the period of the forcing 
function. Actually, the reference values of the parameters have been tuned 
intentionally in this way, because these are the most  favourable condit ions to 
point  out  periodic and quasi-periodic behaviour,  as well as phase-locking of a 
periodically forced dynamical  system. The reader interested in the analysis of 
the bifurcations of system (1), (2) in other regions of the parameter  space can 
refer to Kuznetsov et al. (1992), where the fifth seasonality mechanism is 
discussed in some more  detail. 

For  each seasonality mechanism the discussion is carried out with respect to 
two parameters.  The first is the degree ofseasonali ty e, which varies from 0 to 1, 
and the second is the average value of the periodically varying parameter ,  i.e. 
K o (with r o = 2n. Ko) in case (i), K o in case (ii), e o in case (iii), and so on. All 
other parameters  are kept  constant  at their reference value (8). The second 
parameter  varies in a range that  contains the value for which the unper turbed 
system has a Hopf  bifurcation [easily computable  f rom (5)] and the resonant  
value for which the period of the limit cycle for e = 0 is equal to 2. 

The six diagrams (i), ( i i ) , . . . ,  (vi) of Fig. 2 display the bifurcation curves of 
system (1), (2) for the corresponding six seasonality mechanisms.  Five 
bifurcation curves are drawn on these diagrams, namely, h (1), h(Z),f(1),f ~2) and 
t (2), the last one composed  by two branches (t~ 2) and t(22)). These bifurcation 
curves are present in all cases, but curve h (2) cannot  be seen in cases (i), (ii), (iii) 
and (vi) because of the particular range of the parameter .  The c u r v e s f l l ) , f  ~2) 
and t 12) are not  complete,  because the branches not involving attractors have 
been disregarded. The bifurcation cu rves f  I~) a n d f  (8) have also been obtained 
but  they are not  shown in Fig. 2 because they almost coincide with f{2). 
Nevertheless, they must  be kept  in mind because they clearly indicate one of the 
two routes to chaos (i.e. cascade of period doublings). 

If we compare  the six diagrams 2 ( i ) , . . . ,  2(vi) we immediately recognize that  
turning the fourth and fifth upside down we obtain six topologically equivalent 
diagrams. This fact is very impor tant  and clearly indicates that  the six 
seasonality mechanisms give rise to the same phenomena .  Let us therefore 
consider and interpret in detail the qualitative bifurcation diagram of Fig. 3 
which is equivalent to those of Fig. 2, but contains, for the sake of clarity, the 
bifurcation curves f  (4) and h (4). The parameter  P0 of this diagram is directly [in 
cases (i), (ii), (iii) and (vi)] or inversely [in cases (iv) and (v)] related to the 
average value of the periodically varying parameter .  On  the Po-axis there is 
point  H [-computable from (5)] corresponding to the Hopf  bifurcation of the 
unper turbed system. Below that  point,  the at tractor  of the unper turbed system 
is an equilibrium, while above it the at tractor  is a limit cycle. Thus,  for small 
values of e and below point  H we have period 1 periodic solutions, while for 
small values of e and above point  H we have quasi-periodic solutions. 
Consistently, a bifurcation curve h/~) rooted at point  H separates the two 
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Figure 2. Bifurcation diagrams for system (1), (2). Each case (i) . . . . .  (vi) refers to 
the corresponding seasonality mechanism identified in Section 2. Curves h (k), t (2) 
a n d f  (k), k = 1, 2 are Hopf, tangent and flip bifurcation curves, respectively. Points 

A, B, C, D are codimension two bifurcation points. 
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regions. When this curve is crossed from below, the forced stable cycle of 
period 1 smoothly bifurcates into a stable quasi-periodic solution. While 
continuing curve h (~) from the left to the right the multipliers #]~,)z = e + io~ of the 
Poincar6 map  vary and become equal to - 1  when the terminal point  A is 
reached. 
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Figure 3. A general qualitative bifurcation diagram for systems (1), (2). Curves h (1), 
h ~2), h(4),fI1),f(2),.[ (4), t (2) are bifurcation curves. Points A, B, C, D are codimension 

two bifurcation points. 

Point  A is a codimension two bifurcation point,  called strong resonance 1 : 2, 
studied in Arnold (1982) by means of the normal  form approach.  The two 
coefficients of the normal  form are of opposite sign and this suffices to say that  
only two bifurcation curves, namely, a Hopf  h (1) and a f l i p f  I1), are rooted at 
point  A (as already said, the branch ofJ "(1~ not  involving attractors is not  shown 
in the figure). Curve f(1) can be generated by the cont inuat ion technique 
starting from point  A. Along c u r v e f  (1) the normal  form coefficient (computed 
as in Kuznetsov and Rinaldi, 1991) varies and becomes equal to 0 at point  B, 
which is therefore a codimension two bifurcation point.  Thus,  curve f(1) is 
divided into two segments ( A B  and BE)  and the period doubl ing takes place in 
opposite directions on these two segments, namely from region 4 on segment 
A B  and from region 1 on segment BE.  More precisely, when curve f(1) is 
crossed from region 1 to region 4 the forced cycle of period 1 loses stability and 
smoothly  bifurcates into a stable period 2 cycle. On the contrary,  i f f  I*) is 
crossed from region 3 to region 4, the stable cycle of period 1 collides with a 
saddle cycle of period 2 and becomes a saddle cycle of period 1. 

The codimension two bifurcation point  B is the terminal point  of one of the 
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two branches of a tangent bifurcation c u r v e  t (2 )  (Afrajmovich et al., 1991). The 
two branches [ t ~  2) and t(22)] originate at point T 2 on the po-axis where the limit 
cycle of the unperturbed system has period 2. Some details concerning the 
system behaviour near point T 2 can be found in Guckenheimer and Holmes 
(1986). When t~ 2) and f(2 2) a r e  crossed from the left, close to point T 2 ,  a stable 
cycle of period 2 and a saddle cycle of period 2 appear. When branch t~22) is 
continued from point T 2 the first multiplier ~2) remains equal to 1 while the 
second #~22) varies smoothly and becomes equal to 1 at the codimension two 
bifurcation point C. After this point, the bifurcation curve r does not involve 
attractors and has not been drawn in Fig. 3. 

Point C is the root of a Hopf bifurcation curve h ~2) ending at point D where 
the two multipliers are equal to - 1 and the two coefficients of the normal form 
have the same sign. When h (2) is crossed from below, a stable cycle of period 2 
bifurcates into an unstable cycle of period 2 and in a stable quasi-periodic 
solution. 

Point D is the root of a bifurcation curvef  (2) [and of a bifurcation curve h~4)]. 
When curvef  (2) is crossed from region 4 to region 6, a stable periodic solution 
of period 2 smoothly bifurcates into a stable periodic solution of period 4. 

Finally, the analysis shows that flip bifurcation c u r v e s  f ( 4 ) ,  f ( 8 )  . . . exist in 
the vicinity of curve f(2) [-the difference between curves f(2) and f(4) is 
intentionally magnified in Fig. 3]. This cascade of period doublings results in 
strange attractors which can be found in some subregions of region 7. 

The quasi-periodic solutions also bifurcate, but their bifurcation sets cannot 
be computed with our continuation technique. Nevertheless, in accordance 
with (Guckenheimer and Holmes, 1986), we can say that the stable quasi- 
periodic solution appearing on h (1) disappears through a homoclinic structure 
on a bifurcation set resembling a curve connecting point A with a point on 
branch t ]  2) close to point T 2. Thus, in this region we have strange attractors 
obtained through torus destruction (see Schaffer, 1988, Kuznetsov et al. 1992, 
for some examples). 

Finally, we must point out that the same kind of bifurcations exist for cycles 
of period 3 (as well as for cycles of higher period). Indeed, two branches t] 3) and 
?23) of a tangent bifurcation originate at a point on the po-axis where the period 
of the limit cycle of the unperturbed system is equal to 3. When these branches 
are crossed from the left, a stable cycle of period 3 appears together with a 
saddle cycle of period 3. Then, the stable cycle undergoes a cascade of period 
doublings f(3), f ( 6 ) ,  . . . . None of these bifurcation curves is shown in our 
figures in order to maintain them as readable as possible. 

6. Multiple Attractors, Catastrophes and Chaos. The qualitative bifurcation 
diagram of Fig. 3 points out a number of interesting facts which prove that 
seasonalities can generate rather complex dynamics. 
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The first and most important fact is the existence of multiple attractors. 
Indeed, for a constant value ofe and for increasing values ofpo, a stable cycle of 
period 2 first coexists with a stable cycle of period 1 (in region 3 of Fig. 3), then 
with a quasi-periodic solution [in region 4, just above curve h (1)] and, finally, 
with a strange attractor obtained through torus destruction (in a subregion of 
region 4). Coexistence of cycles of period greater than or equal to 3 with quasi- 
periodic solutions and strange attractors are also possible in the regions 
delimited by the branches t] k) and t Ik), k ~> 3 of tangent bifurcation curves not 
shown in Fig. 3. Moreover, coexistence of triplets of attractors like, for 
example, cycles of period 2 and 3 and strange attractors, cannot be excluded 
although we have not found numerical evidence of it during our computational 
experiments. 

A second relevant fact is that some of the bifurcations shown in Fig. 3 are 
catastrophic, so that even very small variations of a parameter can sometimes 
entail a radical change of behaviour of the system. Assume, for example, that 
the system behaves in region 1 of Fig. 3, just below the Hopf bifurcation curve 
h (1). In this region the system has only one stable mode of behaviour, namely a 
cycle of period 1. Ifpo is kept constant and e is slowly increased, the stable cycle 
of period 1 varies smoothy but gradually loses stability when approaching the 
flip curvef (1). When line AB is crossed the attractor disappears because on that 
line the stable cycle of period 1 collides with a saddle cycle of period 2 and 
becomes a saddle cycle of period 1. Therefore, afterf  (1) has been crossed, the 
system moves toward another attractor, which, in the present case, is a period 2 
cycle. After this catastrophic transition has occurred, the system is trapped in 
the new attractor. Indeed, even if e is now slowly decreased, so that f(1) is 
crossed from the right, the stable mode of behaviour remains the cycle of 
period 2. Of course, ife is further reduced, so that the tangent bifurcation curve 
t~ 2) is crossed from the right, we will have another catastrophic transition that 
brings the system back to a period 1 cycle. All this can be summarized by saying 
that if e is alternatively increased and decreased so that curves t] 2) a n d f  (1) are 
crossed we will have a "hysteresis" involving transitions between cycles of 
period 1 and 2. Therefore, the catastrophic transitions characterizing the 
hysteresis involve a sudden variation of the frequency at which the system 
operates: a rather interesting behaviour. 

Finally, the third important fact is the existence of deterministic chaos in two 
different regions of parameter space (see dotted regions of Fig. 3). The first 
region is characterized by relatively small values of e and is delimited from 
below by the bifurcation set on which stable quasi-periodic solutions disappear 
through homoclinic structures (torus destruction). If p0 is increased at constant 

starting from a point just above curve h (1) in Fig. 3, a small closed and regular 
curve on the Poincar6 section (stable invariant torus) will first become bigger 
and bigger and then smoothly lose continuity and degenerate into a fractal 
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set (strange attractor). It is clear from Fig. 3 that these strange attractors can be 
present only for values of P0 for which the unperturbed system behaves on a 
limit cycle. In other words, a predator-prey system which does not 
autonomously cycle in a constant environment, cannot become chaotic 
through torus destruction. 

The second region of deterministic chaos is characterized by relatively high 
values of e and corresponds to the second well-known route to chaos, namely 
cascade of period doublings f ( 2 ) ,  f ( 4 ) ,  f ( 8 ) ,  . . . . This region is delimited by a 
curvef (~) where the attractor loses periodicity and becomes chaotic. The curve 
f(oo) cannot be found by numerical analysis because it is not possible to 
distinguish between a periodic cycle with an extremely large period and a 
genuine chaotic solution. Nevertheless, we can reasonably conjecture that 
curve f(~) is quite close t o  f ( 2 )  because the flip bifurcation curves f(2), fl4), 
f (8 ) , . . ,  follow, in general, the Feigenbaum accumulation law (Guckenheimer 
and Holmes, 1986) and all our computations point out t h a t f  (4) a n d f  (8) are 
already almost coinciding wi th f  (2). Figure 4 shows six chaotic attractors, one 
for each seasonality mechanism, while Fig. 5 shows the corresponding time 
series of the y variable (predator) for a time interval equal to 25. All attractors 
have been obtained with the same degree of seasonality e = 0.7 and with the 
other parameters (except the time varying ones) at their reference values (8). 
The corresponding points are denoted by Q in Fig. 2. 

The analysis of Figs 2, 3 proves that the value of Po at which curvef  (~176 is 
minimum is sometimes lower than the value of Po corresponding to point H. 
This implies that this kind of chaotic behaviour can occur even if the 
corresponding unperturbed system does not autonomously cycle. The 
attractors (iii), (iv) and (v) of Fig. 4 are three examples. This characteristic 
allows one to further distinguish between the two types of chaos: the first (torus 
destruction) does not need high degrees of seasonality but requires a strong 
endogenous tendency to cycle, while the second (period doubling) requires 
high degrees ofseasonality but can develop also in systems that would not cycle 
in a constant environment. 

7. Concluding Remarks. A classical predator prey model has been studied in 
this paper with reference to the case of periodically varying parameters. Six 
elementary seasonality mechanisms have been identified and analysed in detail 
by means of a continuation technique automatically producing Hopf, tangent 
and flip bifurcation curves of periodic solutions of any period. The results have 
been compared and summarized through a general qualitative bifurcation 
diagram (Fig. 3) which allows one to classify and interpret the main modes of 
behaviour of the model. The general conclusion is that for suitable values of the 
parameters there are multiple attractors, catastrophes and strange attractors. 
Since, on the contrary, the unperturbed system has always a unique attractor 
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Figure 5. Normalized fluctuations of predator population y over a time period equal 
to 25. Each case (i) . . . .  , (vi) refers to the corresponding strange attractor of Fig. 4. 

(an equilibrium or a limit cycle) our analysis proves that seasons can easily give 
rise to very complex predator-prey dynamics. This fact had already been 
established (Inoue and Kamifukumoto,  1984; Schaffer, 1988; Toro and Aracil, 
1988; Allen, 1989) but not synthetically interpreted in terms of bifurcations, 
since the analysis was carried out only through simulation. 

From a biological point of view the most interesting results are the following. 
If the degree of seasonality is small, the predator and the prey populations 
asymptotically vary in a periodic or in a quasi-periodic way. The period of the 
oscillations coincides with that of the forcing function (normalized to 1) if the 
system does not autonomously cycle when there are no seasons. On the 
contrary, if the unperturbed system behaves on a limit cycle, then the 
introduction of a small degree of seasonality transforms the cyclic behaviour 
into a quasi-periodic one. Moreover, in some subregions of the parameter 
space, there are also subharmonics, namely periodic solutions of period k times 
bigger than that of the forcing function (k = integer). In particular, subharmo- 
nics of period 2 and 3 are relevant and have indeed been detected numerically in 
all cases we have analysed. Thus, multiplicity of attractors, for example 
coexistence of periodic solutions of period 2 or 3 and quasi-periodic solutions, 
is possible even at very low degrees of seasonality. This is also true for higher 
magnitudes of the seasonal variations at which, for example, subharmonics of 
period 2 can coexist with the basic period 1 solution (region 3 of Fig. 3). 
Actually, if the degree of seasonality is slowly varied and alternatively increased 
and decreased, the system can repeatedly undergo catastrophic transitions 
between periodic solutions of period 1 and 2 (hysteresis with frequency 
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switches). Finally, the two classical routes to chaos, i.e. torus destruction and 
cascade of period doublings, are present. Strange attractors of the first kind are 
obtained by introducing a low degree of seasonality in a predator-prey 
community which, in the absence of seasons, behaves on a limit cycle, while the 
second type of attractors can be generated, with a higher degree of seasonality, 
even when the system does not autonomously cycle. This means that chaos can 
be present in a predator-prey community provided that the exogenous and 
endogenous sources of periodicities are, as a whole, sufficiently strong. 

As far as the method of analysis is concerned, we can summarize our 
experience by saying that continuation techniques producing bifurcation 
curves are very effective when they are used in conjunction with "detectors" of 
codimension two bifurcation points. Indeed, our bifurcation diagrams have 
been obtained in the following way. We have first generated curve h (1) starting 
from the Hopf bifurcation of the unperturbed system (point H in Fig. 3) and 
ending at point A, which is a codimension two bifurcation point. Then, we have 
produced the flip curve f(l), starting from point A, thus finding a second 
codimension two bifurcation point, namely point B. From this point we have 
generated the tangent bifurcation curve t (21 and found the third codimension 
two point, namely point C. Continuing like so, we have alternatively obtained 
bifurcation curves (h (2), f(2), h(~), f(~)) and codimension two bifurcation 
points. Finding these codimension two points is therefore necessary for 
producing in a systematic way all the bifurcation curves. Of course, at each 
codimension two bifurcation point one must use the normal form approach to 
find out how many and which bifurcation curves are rooted at that point .For 
this reason we believe that packages which incorporate "detectors" and 
"analysers" of codimension two bifurcation points are very powerful for 
discussing the qualitative behaviour of nonlinear dynamical systems. More- 
over, they are the only serious tool for finding bifurcation curves which are not 
predicted by the available theories. For example, our bifurcation curvesf  (2) are 
not predicted by the known theory of periodically forced Hopf bifurcations 
(Kath, 1981; Rosenblat and Cohen, 1981; Gambaudo,  1985; Bajaj, 1986; 
Namachchivaya and Ariaratnam, 1987) (the interested reader can find more 
details on this matter in Kuznetsov et al., 1992). 

Although the analysis presented in this paper is quite detailed, we believe 
that there are still interesting questions to be answered and meaningful 
extensions to be performed. For example, it would be of interest to extend the 
analysis presented in this paper to predator prey models which have also 
tangent and homoclinic bifurcations when they are not periodically perturbed. 
Among these models we have the case of a logistic prey, a Holling's type 
predator and a constant Holling's type superpredator, i.e. the most rudi- 
mentary food chain model (a more complete study of periodically forced food 
chain systems involving third order models appears to be very difficult because 
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such models can have chaotic behaviour even in the case of constant 
environment (Hogeweg and Hesper,  1978; Scheffer, 1990; Hastings and 
Powell, 1991). Another interesting extension would be to revisit the analysis of 
the periodically forced chemostat  model carried out in (Kot et al., 1992) with 
the use of circle maps. In fact, our continuation technique allows one to find 
codimension two bifurcation points and is therefore more powerful than the 
circle map technique. Finally, an interesting direction for further research is the 
investigation of the synergism among independent sources of periodicity. In 
particular, it would be interesting to know how chaos could be reinforced or 
damped by suitably "controlling" the phase between different elementary 
seasonality mechanisms. Information on this matter  would be of particular 
relevance in the field of renewable resources management,  where the time and 
intensity of stocking and harvesting must be well tuned with the natural 
periodicity mechanisms in order to avoid undesirable modes of behaviour. 
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