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We first analyse a simple symmetric model of the idiotypic network. In the model idiotypic 
interactions regulate B cell proliferation. Three non-idiotypic processes are incorporated: (1) 
influx of newborn cells; (2) turnover of cells; (3) antigen. Antigen also regulates proliferation. 

A model of 2 B cell populations has 3 stable equilibria: one virgin, two immune. The two- 
dimensional system thus remembers antigens, i.e. accounts for immunity. By contrast, if an 
idiotypic clone proliferates (in response to antigen), its anti-idiotypic partner is unable to control 
this. Symmetric idiotypic networks thus fail to account for proliferation regulation. 

In high-D networks we run into two problems. Firstly, if the network accounts for memory, 
idiotypic activation always propagates very deeply into the network. This is very unrealistic, but 
is an implication of the "realistic" assumption that it should be easier to activate all cells of a small 
virgin clone than to maintain the activation of all cells of a large (immune) clone. Secondly, graph 
theory teaches us that if the (random) network connectance exceeds a threshold level of one 
interaction per clone, most clones are interconnected. We show that this theory is also applicable 
to immune networks based on complementary matching idiotypes. The combination of the first 
"percolation" result with the "interconnectance" result means that the first stimulation of the 
network with antigen should eventually affect most of the clones. We think this is unreasonable. 

Another threshold property of the network connectivity is the existence of a virgin state. A 
gradual increase in network connectance eliminates the virgin state and thus causes an abrupt 
change in network behaviour. In contrast to weakly connected systems, highly connected 
networks display autonomous activity and are unresponsive to external antigens. Similar 
differences between neonatal and adult networks have been described by experimentalists. 

The robustness of these results is tested with a network in which idiotypic inactivation of a 
clone occurs more generally than activation. Such "long-range inhibition" is known to promote 
pattern formation. However, in our model it fails to reduce the percolation, and additionally, 
generates semi-chaotic behaviour. In our network, the inhibition of a clone that is inhibiting can 
alter this clone into a clone that is activating. Hence "long-range inhibition" implies "long-range 
activation", and idiotypic activation fails to remain localized. 

We next complicate this model by incorporating antibody production. Although this 
"antibody" model statically accounts for the same set of equilibrium points, it dynamically fails 
to account for state switching (i.e. memory). The switching behaviour is disturbed by the 
autonomous slow decay of the (long-lived) antibodies. After antigenic triggering the system now 
performs complex cyclic behaviour. Finally, it is suggested that (idiotypic) formation of antibody 
complexes can play only a secondary role in the network. 

In conclusion, our results cast doubt on the functional role of a profound idiotypic network. 
The network fails to account for proliferation regulation, and if it accounts for memory 
phenomena, it "explodes" upon the first encounter with antigen due to extensive percolation. 
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I.  Introduction. Previously we (De Boer, 1988; De Boer and Hogeweg, 1988) 
analysed a simple, symmetric, model of the idiotypic immune network. This 
analysis demonstrated that suppressive (i.e. negative) interactions could not 
play a role in such networks. This suggested that the model could be further 
simplified by omitting negative interactions and that this would not alter the 
results. Having verified this hypothesis, we here proceed with the analysis of 
our symmetric model by investigating networks consisting of many, instead of 
a few (De Boer and Hogeweg, 1988), different clones of lymphocytes. 

We view idiotypic network theory (Jerne, 1974) as a straightforward 
extension of the normal scheme of immune systems. Immune systems consist of 
an extremely large ( > 1 0  7 ) number of different lymphocyte clones. The 
lymphocytes of each clone all share an identical (unique) antigen receptor. The 
generation of the variable regions of these receptors involves random processes 
such as somatic recombination and mutation (Early et al., 1980; Berek et al., 
1985). The primary repertoire of antigen receptors can therefore be visualized 
as a large (possibly) random array of receptor molecules. Antigens, i.e. external 
structures, match complementary receptor molecules. Because of the over- 
whelming diversity of receptors, each (possibly random) antigen is expected to 
match at least one of the (10 7 ) receptor molecules. The clones that recognize 
(i.e. match to) the antigen proliferate and develop effector functions. Idiotypic 
network theory (Jerne, 1974) states that if the random repertoire of receptors 
can recognize any random antigen, receptors should also be able to recognize 
other receptors. The structure (i.e. antigen) presented by a receptor is called the 
"idiotype" (Jerne, 1974); the interaction between receptors is referred to as an 
"idiotypic" interaction. Via idiotypic interactions clones should thus be able to 
interact in a stimulatory and/or inhibitory manner. The collection of idiotypic 
interactions defines a profound idiotypic network of a complexity comparable 
to that of the neural network (Jerne, 1974; Hoffmann, 1986). 

Neural networks, for which the Hop field networks are the general paradigm 
system, are capable of complex computational processes (such as learning and 
memory) (Hopfield and Tank, 1986). Neural networks have these properties if 
connection strengths evolve following certain "learning rules", such as the one 
proposed by Hebb (1949). Interestingly, idiotypic connections might evolve in 

a similar way in immune networks if idiotypic interactions become more 
specific by affinity maturation (Weisbuch, 1989). Moreover, the "artificial" 
symmetry assumption of neural networks (Hopfield and Tank, 1986) is very 
natural in idiotypic networks (Hoffmann, 1979, 1980; De Boer and Hogeweg, 
1988). Thus, via its network properties, the immune system might perform very 
complex tasks. Additionally, because lymphocytes are reproducing entities 
that use random mutation (but not crossing over) as a "genetic operator", 
immune systems also bear resemblance to classifier systems (Holland, 1986; 
Farmer et al., 1986). Classifier systems are very powerful learning systems. 
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Whether or not immune systems function [i.e. compute (Segel and Perelson, 
1988)] by such cognitive (Varela et al., 1988) network properties however 
remains an open question. In the first place, we think that even if it were to be 
demonstrated that idiotypic network models have learning or cognitive 
properties this does not necessarily prove that specific immunological 
phenomena (e.g. immunity) are indeed due to "cognition". Even if immune 
systems are cognitive, this might still not mean that they are able to solve the 
problem of, for instance, antigen specific immunity. Several authors have 
argued that idiotypic interactions cannot play a functional role (Cohn, 1986; 
Langman and Cohn, 1986). Furthermore, we have shown (De Boer and 
Hogeweg, 1986, 1987a, 1987b; De Boer, 1989) that immune systems perform 
complex tasks by means of basic interactions at the level of clonal selection, i.e. 
by non-idiotypic interactions. However, because idiotypic interactions seem to 
be inevitable (because of the extensive repertoire of receptors), we here 
investigate the behaviour that can be generated by networks of such basic 
idiotypic interactions. Immunity and/or cognition is therefore a possible 
outcome of our analysis. 

In order to avoid incorporating ambiguous assumptions, we here investigate 
a very simple model of the idiotypic network. Its simplicity enables us to 
analyse an idiotypic network theory that is based on only the most 
fundamental immunological assumptions. We thus investigate whether 
"fundamental" idiotypic interactions can indeed account for the variety of 
immunological phenomena for which networks are claimed to be responsible 
(see for instance: Jerne, 1974; Bona and Pernis, 1984). We here concentrate on 
two such phenomena: (1) immunological memory (immunity); (2) the control 
of (excessive) proliferation. Intuitively, the idiotypic control of proliferation is 
visualized as an inhibitory interaction between the proliferating clone and its 
anti-idiotypic partner(s). The existence of multiple stable equilibria in a 
network system seems to provide an (intuitive) explanation for memory 
phenomena: in response to different antigens networks switch to different 
equilibria. 

2. The Assumptions. Symmetric network theory has demonstrated (Hoff- 
mann, 1979, 1980; De Boer, 1988; De Boer and Hogeweg, 1988) that 
lymphocyte populations exert "helper" or "suppressor" functions depending 
on the idiotypic circumstances. As a consequence, it seems sufficient to consider 
only one class of cells, here clones of B-lymphocytes. Moreover, interactions 
are symmetric and are therefore not exclusively stimulatory or inhibitory. 
Hence, the two parameters that determine the magnitude (and possibly the 
sign) of idiotypic interactions are: (1) the affinity; (2) the respective population 
densities (De Boer, 1988). 

We assume that all B-lymphocyte populations are regulated by three 
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processes: (1) influx of newborn cells from the bone marrow; (2) normal 
turnover (decay) of cells; (3) proliferation. It is further assumed that idiotypic 
interactions influence the rate of cell proliferation. We consider only B cells in 
this paper, i.e. we implicitly assume that these idiotypic B cell interactions are T 
cell independent or that T cell help is always sufficient. Additionally, we lump 
the clones of B cells and the antibody molecules that they produce into one 
population. Because the lifespan of B cells and antibodies is different we relax 
this simplifying assumption in the last section. Elsewhere (De Boer and 
Hogeweg, 1989) we investigate the effects of T cells. 

The network consists of N clones, each of which is only identified by a unique 
random receptor. A clone (Xi) recognizes another clone (Xj) if (part of) their 
respective receptors can be matched complementarily (Fig. 1). The accuracy of 
this match specifies the affinity (Aij) of the idiotypic interaction between X~ and 
Xj (0 ~< A~j~< 1). Each clone can also be stimulated by antigen (Ag~). Antigen 
cannot grow and is either removed by the clones or by us. 

I 
1 2 3 4 5 6 7 8 

Figure 1. Complementary matching. Two idiotypcs, i.e. the white and the shaded 
pattern, are shifted into each other until the), collide (here at position l, 2, 5, 6, and 
8). The remaining distance (i.e. the black area) is a measure for the affinity. The 
patterns are shifted along each other (indicated by the arrows) in order to find the 
place were the match is most perfect. The match is measured over a distance of eight 

adjacent positions. 

2.1. Influx/efflux. In the absence of idiotypic interactions the clone size is 
determined solely by the balance between the source (Si) of cells from bone 
marrow and the death (D) of cells in the periphery. This suffices for a stable 
virgin state at a clone size of S/D. Because the influx of cells per clone is small, 
and the rate of cell turnover is high, virgin populations are typically small. In 
the virgin state idiotypic interactions are therefore low or absent. This 
contrasts strongly with the assumptions of previous verbal (Jerne, 1974) and 
mathematical (Hoffmann, 1979; Gunther and Hoffmann, 1982) models; in 
these models it is assumed that idiotypic interactions are suppressive in the 
virgin state. We demonstrated previously however that our models are more 
powerful (De Boer, 1988; De Boer and Hogeweg, 1988). Moreover simple 
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influx and decay processes play a pivotal role in "clonal selection" models of 
proliferative immune reactions (De Boer and Hogeweg, 1986, 1987a,b). 

2.2. Symmetry. If idiotypic recognition is based on complementary 
matching and receptor crosslinking, idiotypic interactions are necessarily 
symmetric. If idiotype "i" matches "j", "j" should also match "i"; if "i" 
antibodies crosslink '7" receptors, '7" antibodies can do the same. Hoffmann 
(1979, 1980) first proposed this simple and attractive symmetry theory; 
Hoffmann (1980) and Jerne (1984) review empirical data that support 
symmetry theory (Jerne's "preferred partners"). Note that, because recognizing 
and being recognized are assumed to be identical, symmetry disposes of the 
distinction between "paratope" and "idiotype" (Hoffmann, 1980). Note also 
that complementary matching of parts of the idiotype implies that idiotypes 
can be matched onto themselves. We omit such interactions (i.e. we set all A, to 
zero). In Section 4.3 we will assume that inhibitory interactions occur more 
generally, i.e. require a lower affinity, than stimulatory interactions. The 
additional inhibition matrix (B) is also symmetric. 

2.3. Dose-response relation. Idiotypic interactions can be stimulatory 
(Eichmann and Rajewsky, 1975; Vakil and Kearny, 1986; Bernabe et al., 1981) 
and inhibitory (Hardt et al., 1972; Eichmann, 1974; Vakil and Kearny, 1986). 
Because B cells are most probably activated by the crosslinking of the antigen 
receptors (surface Ig) (Abbas, 1988), it is to be expected that the rate of cell 
activation increases if the concentration of the crosslinking agent (here antigen 
or anti-idiotypic antibody) increases. However, when these concentrations 
become too high the efficacy of cell activation by receptor crosslinking 
decreases (Perelson, 1984). Thus, the present model is based on the efficacy of 
cell activation and proliferation induction (by receptor crosslinking); inhibi- 
tory interactions are incorporated as the reduction of the proliferation rate. 
This argument corresponds to a (log) bell-shaped proliferation dose response 
curve (see e.g. Fig. 2D), i.e. to the kind that can be found in any immunology 
textbook. Despite this simplicity, previous models incorporated a totally 
different (Hoffmann, 1980) or even reverse dose response relation [i.e. "escape 
from suppression" (Jerne, 1974)]. 

3. The Model. We consider Nclones ofB-lymphocytes (X~) with an influx ofS i 
cells per day from the bone marrow and a rate D of cell turnover. Clones 
proliferate in response to antigen (Agl) and to the total of anti-idiotypic clones 
(Mdi). The strength of the idiotypic interaction is determined by the affinity 
matrix A. This matrix is symmetric (all Aq=A~i); furthermore clones never 
recognize themselves (all Ai, = 0). The rate of cell proliferation is governed by a 
growth dose response function G(X~, Ag~, otldl), which depends on: (i) the size of 
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Figure 2. A two-dimensional network with maximum affinity (A12 = 1). (A) The 
X[ = 0  and X~=0 isoclines define 3 stable equilibria: a virgin state (V) and two 
immune states (I t and 12). The X' t > 0 region is shaded. (B) The trajectory of a switch 
from the virgin state to an immune state (11) as it is evoked by an antigen dose of 
Ag t = 104 cells. (C) At day zero, in the virgin state, Ag I is introduced in a dose of 104 
cells (see Fig. 2B); it is reintroduced in a dose of 106 cells at day 50; Ag 2 is introduced 
in such a dose at day 75. In the 11 state X t is immune; X 2 is suppressed. (D) the (log) 
bell-shaped dose-response curve (G) as a function of the anti-idiotype. The circles 

indicate the location of the immune and suppressed clone respectively. 

the clone (a buffering term); (ii) the antigen; (iii) the total amount of anti- 
idiotype (ocldi). The function G(Xi, Ag i, ~ld 3 is maximally one; proliferation per 
cell then proceeds at a rate P per day. The anti-idiotype dose response function 
(G) is a (log) bell-shaped curve (Fig. 2D), i.e. anti-idiotypic antibody 
concentrations that are too large inhibit the crosslinking and hence the rate of 
cell proliferation. Antigen can only increase (up to a certain maximum) the rate 
of cell proliferation: the antigen dose response curve is a simple saturation 
function. (The results remain similar if proliferation induced by antigen also 
fellows this bell-shaped dose response curve.) 

oddi= ~ AuX j (1) 
j = z  

Agi + aldi P2 
G(Xi' Agi' aldi) = P1 + FXi + Agi + aldi x P2 + ~ 

(2) 
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dXi. = S,-DX~ + PX~G(X~, A9,, ~ldi) (3) 
dt 

Antigen cannot grow and is either removed by the clone that recognizes it (X~), 
or is incorporated as a constant (K= 0): 

dAgi = KAgiX~ (4) 
dt K I + X  i" 

3.1. Parameters. The parameter setting is: S ~ 10 cells day- 1; D = 1 day- 1; 
P =  1.5 day- 1; P1 = 103; P2 = 106; F =  0.01, K= 1, K 1 = 105. Buffering ensures 
that large X~ populations (FX~ P1) cannot be stimulated by small antigen 
and/or anti-idiotype concentrations (De Boer and Hogeweg, 1988). The virgin 
population density equals S/D ,.~ 10 cells. The influx is slightly different for each 
clone (to prevent settlement into unstable equilibria): S has a mean of 10 cells 
per day with a 10% standard deviation. Virgin populations are too small to 
evoke proliferation (S/D~.P1): idiotypic interactions are negligible in the 
virgin state. Maximum proliferation proceeds at a rate P-D = 0.5 cells per cell 
per day (this corresponds to a doubling time of about 16 hr). 

3.2. Previous models. The parameters of the present model are slightly 
different from those used before (De Boer, 1988; De Boer and Hogeweg, 1988). 
In the previous model antigen grows exponentially; because we required that 
such an antigen could be rejected by the network we imposed some restrictions 
on the parameter values. We now opt for somewhat simpler functions and 
parameter values. We: (1) omit negative (suppressive) interactions; (2) no 
longer use sigmoid dose response curves; (3) reduce the life-time of cells to one 
day; (4) reduce the influx of virgin cells (2-fold). Negative interactions were 
omitted because in the previous model they failed to play a role. The 
incorporation of sigmoid dose response curves generated a more pronounced 
difference between proliferation and suppression and hence facilitated antigen 
rejection. Finally, the present model has a lower virgin state; which is therefore 
more easily preserved (De Boer, 1988). 

3.3. Methods. The affinity matrix is either based on a complementary 
matching algorithm, or is drawn randomly from a uniform distribution 
between zero and one. The complementary matching algorithm resembles that 
of Farmer et al. (1986) and Perelson (1988). Ours matches patterns 
(landscapes) defined by an array of real numbers (that are uniformly 
distributed between zero and one), see Fig. 1. We measure the total distance 
within each adjacent set of (here 8) numbers (i.e. the "mask", e.g. an idiotope). 
Patterns are shifted along each other in order to find the best possible match. If 
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this minimum total distance is larger than one, the affinity between the two 
patterns is zero. Otherwise it is one minus this distance (i.e. 0 ~<A o ~< 1). This 
procedure generates an exponential distribution of affinities (i.e. high affinity 
interactions are rare); this seems realistic. In order to vary the network 
connectance, we vary the length of the pattern (i.e. the number of idiotopes per 
idotype). Because we only want to vary the distribution of connections, and not 
their magnitude, affinity matrices are re-scaled afterwards. The maximum 
affinity is set to one, the rest is scaled proportionally. 

Following the usual convention, we talk of antibodies in levels. The Ab ~ level 
(Y~) recognizes the antigen, Ab 2 clones (X2) recognize (and are recognized by) 
Ab~ clones, and so on. The actual level of a clone is determined by the lowest 
antibody level with which it interacts (whatever the affinity); this argument 
represents the affinity matrix as a tree (i.e. omits cycles of interactions). The 
low-D models have been analysed by GRIND (De Boer, 1983) which performs 
numerical 0-isocline analysis, and numerical integration by means of ROW4A 
(Gottwald and Wanner, 1982). High-D models are integrated by means of a 
variable step size Runge-Kutta-Merson integrator (D02BBF) implemented in 
NAG (1984). 

4. Results 
4.1. Memory but no suppression in two-dimensional networks. In Fig. 2 we 

analyse a two-dimensional network of two clones that see each other with 
maximum affinity (A 12 ~---1). (Similar results were described before (De Boer, 
1988) for a somewhat different model.) The qualitatively different regions of 
idiotype anti-idiotype state space are indicated by the X' 1 =0  and X~ =0  
isoclines (Fig. 2A); the X~ > 0 region (i.e. the X 1 proliferation region) is shaded. 
This two-dimensional network has three stable equilibria: one virgin state and 
two immune states. The system is thus able to remember antigens by switching 
from the virgin state to one of the immune states. This is demonstrated in 
Figs 2B and C: clone X~ is stimulated by antigen (in a dose of 104 cells). X~ 
proliferation commences which activates the anti-idiotypic X 2 (see also 
Fig. 2C, day 0-50). Both clones proliferate and settle into the X 1 immune state. 
In this equilibrium both clones are enlarged (X~ ~ X2). The large X~ population 
accounts for rapid antigen rejection, i.e. for immunity. The same antigen (Ag a ) 
is reintroduced (in a large dose of 10 6 cells) at day 50 (Fig. 2C): X1 further 
proliferates which further suppresses X 2 . The fact that X 2 really is suppressed is 
shown by the introduction of the same dose of Ag 2 (10 6 cells) at day 75. X 2 is 
relatively small and fails to react (fails to proliferate); antigen is removed very 
slowly. 

The immune states in this model are maintained by reciprocal stimulation. 
Because small (virgin) clones fail to induce proliferation of the anti-idiotype, 
both clones have to be enlarged (i.e. have to proliferate) in the immune state. 
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(This contrasts strongly with immunity maintained by (long-lived) memory 
cells, which is a resting state.) The essential difference between the proliferating 
immune clone and the proliferating suppressed clone is shown in Fig. 2D. The 
left circle corresponds to the immune clone, the right circle to the suppressed 
one. Per cell both clones proliferate at an equal rate; this is a necessity because 
in equilibrium proliferation should outweigh the rate of cell decay (which is 
identical for all cells). The only difference in the proliferation of the immune and 
the suppressed clone is therefore their location on the proliferation dose 
response curve. Further idiotypic stimulation of the immune clone leads to 
further proliferation, whereas further idiotypic stimulation of the suppressed 
done can only derease the rate of cell proliferation. 

The present model has virgin and immune states (and is thus able to 
remember antigens) if A12>0.02. Therefore although we have omitted an 
affinity threshold, i.e. a minimum affinity, the model incorporates one. This is 
due to the buffering parameter (De Boer and Hogeweg, 1988). If 0.02 < A 12 ( 
0.08, the model has one immune state (for both clones) and one virgin state. 

Absence of proliferation regulation. Suppression (i.e. the down regulation of 
a large proliferating clone) is impossible in these symmetric models (De Boer, 
1988). In symmetric models (where there are no "suppressor" clones) the clone 
stimulated by antigen always wins from the anti-idiotypic done(s)just because 
it will always be larger due to its initial proliferative advantage provided by 
antigen. Thus proliferating clones suppress their anti-idiotypic "suppressors" 
long before these can become suppressive. Similar results are obtained in high- 
D networks (not shown): the total of anti idiotypic clones is usually smaller 
than the effect of the proliferating idiotypic clone. We think that the absence of 
proliferation control seriously questions the general assumption that idiotypic 
interactions play an important regulatory role. Note that in our models (see De 
Boer and Hogeweg, 1988), idiotypic suppression easily occurs following 
"experimental manipulation", e.g. the artificial introduction of a large anti- 
idiotypic clone; this gives the anti-idiotype an advantage. 

For these low-D networks, we conclude that idiotypic interactions (1) can 
easily account for memory (immunity) phenomena by forcing switches from 
virgin to immune states, but (2) fail to account for proliferation regulation 
(suppression). Memory generated by network switches is a minimal explan- 
ation since it does not require specialized memory cells. However we think that 
such memory cells provide an easy alternative explanation for immunity 
phenomena. Moreover, life-time transitions between long-lived memory cells 
and short-lived effector cells play an important role in the regulation of donal 
immune reactions (De Boer and Hogeweg, 1987a,b). Another minimal 
explanation for immunological memory would be the persistence of antigen 
(Gray, 1988; De Boer and Hogeweg, 1988). Moreover, the fact that symmetric 



390 R.J. DE BOER AND P. HOGEWEG 

idiotypic interactions fail to account for suppression during "non-manipu- 
lated" immune reactions supports the idea that idiotypic interactions do not 
play a functional role (Cohn, 1986). 

4.2. Absence of fading plus a connectivity threshold generate percolation 

Absence offading. The two clones in the previous section could only see one 
idiotypic partner [this is compatible with Hoffmann's (1980) plus-minus and 
Jerne's (1984) preferred partner arguments]. The connectivity of idiotypic 
networks is probably much greater (Holmberg et al., 1984, 1986; Holmberg, 
1987). On the basis of accessibility computations of a three-dimensional 
structure analysis of immunoglobulin molecules, Novotny et al. (1987) 
estimated that each molecule may be recognized by as many as 40 anti- 
immunoglobulin molecules. We therefore now go on to consider networks with 
a higher connectivity. 

First consider a network in which each clone has exactly two idiotypic 
partners. This defines circular networks (see Fig. 3A). In order to study the 
propagation of signals into the network, we analysed a number of such (100-D) 
systems. The network is first allowed to equilibrate in a virgin state (i.e. without 
antigen); we then introduce an antigen (Agl in a constant concentration of 
104 cells) that is recognized by only one of the clones (Xt). This antigen is 
removed after an (arbitrary) period of 25 days. In response to antigen X1 
proliferates, thereby activating X 2 and X n, which also start to proliferate. 
Because this usually activates X 3 and Xn_ ~, which in turn activates X 4 and 
Xn- 2, the signal provided by the antigenic stimulation propagates deeply into 
the network. On average the signal fades at level 10 (based on 10 networks each 
with two propagation branches). In our models, it generally takes the signal 
about half a year to reach level 10. The final equilibrium state usually 
corresponds to an alternating sequence of immune and suppressed clones (i.e. 
odd-numbered clones are immune (for N is even) and even-numbered clones 
suppressed). This is indicated in Fig. 3A by the shading of the (generally) 
immune clones. If cycles are short, both branches of the signal meet somewhere 
in the middle. This stops the propagation and results in similar equilibria. We 
conclude that the signal penetrates very deeply into the network; because this 
takes a long time it seems rather absurd. Moreover the intensity of the signal 
fails to reduce: clones keep on switching to the same type of immune and 
suppressed states. 

The absence of fading is further analysed in simple 4-D networks. In these 
networks X~ and X2, X 2 and X3, and X 3 and X 4 recognize each other; X~ is 
stimulated by antigen; and X 3 and X 4 see each other with maximum affinity 
(A34 = 1). If A23 is sufficiently large, and X 1 and X 2 switch to immune/sup- 
pressed, X 2 might stimulate X 3 (i.e. the anti-anti-idiotype) to switch to 
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Figure 3. Networks with two connections per clone. (A) 100-D cyclic network in 
which clone one (X 1) is stimulated by antigen. The shaded clones generally switch to 
immune. (B) The minimum affinity (A23) between two independent two- 
dimensional networks required for idiotypic signal to percolate. The curve is shown 
as function of the affinity (A12) between the clone stimulated by antigen and its 

partner; the other affinity (A34) equals one. 

immune�9 This would force X 4 to switch to suppressed (because A3, = 1). We 
thus study the connectivity (i.e. A23 ) between two networks (i.e. XI, 2 and X3,4) 
which is required for the idiotypic signal to propagate (and reach )(4). 
Figure 3B depicts the minimum A23 that is required for X 4 to switch in 
response to the antigenic stimulation of X1 (as a function of A~2 ). The figure 
shows that the affinity (A2a) that is required for X 4 to switch is much lower than 
the affinity (A12) required for X 2 to switch. Thus if an antigen triggers the 
switching of anti-idiotypic clones, we also expect the next idiotypic level to 
switch (and so on for the next levels). 

The verbal explanation for this result is simple. If an anti-idiotypic clone (X 2 
is able to sustain the proliferation (i.e. the immune state) of all cells of the 
previous, necessarily large, immune clone (XI), it is also able to activate the 
(few) cells of the clones of the next level (Xa) because these clones are small (i.e. 
virgin). In the present model,  the activation of all cells of a small (virgin) clone is 
easier, i.e. requires a smaller clone and/or  affinity, than the activation of all cells 
of a large (immune) clone. This (realistic) assumption is thus responsible for the 
absence of fading. 

This "absence of fading" argument no longer holds if the idiotypic network is 
not required to account for memory phenomena.  If idiotypic interactions are 
too weak to push clones stimulated by antigen into an immune state, they may 
also be too weak to activate virgin third-level clones. However, for functional 
networks of B cell interactions, we conclude that idiotypic signals are expected 
to propagate extensively because signals fail to fade. 

Connectivity thresholds. A randomly connected, symmetric, idiotypic 
network corresponds to a (isotrophic) random undirected graph in which 
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idiotypic connections form edges and clones correspond to nodes. Connec- 
tivity properties of isotrophic random undirected graphs (in which E edges 
connect N nodes equiprobably) were analysed by Erdos and Renyi (1959, 
1960), in Kauffman (1986). The following findings for random infinite graphs 
(Kauffman, 1986) are of interest for our (finite) random idiotype networks. If 
E,~ N only small isolated structures are found, in which any node is connected 
to a few others. As the ratio of E/Nexceeds 1/2, a threshold is reached and most 
nodes are interconnected in one enormous structure. As E/Nfurther increases, 
more isolated nodes are brought into this very large connected structure. For 
finite graphs these thresholds soften to sigmoids. In our idiotypic networks, an 
average of one edge per two clones (E/N= 1/2) corresponds to a connectance of 
one idiotypic partner per clone (nc = 1). The Erdos and Renyi theory thus 
predicts that one the idiotypic connectance exceeds one partner per clone, most 
clones suddenly become interconnected. Thus the properties of the network 
may suddenly change. [-Such a sudden change has been described before (De 
Boer, 1988) but did not refer to this theory.] 

High-D idiotypic networks. The combination of the Erdos and Reyni 
theory and our "absence of fading" findings predicts that the stimulation of one 
clone in a sufficiently connected network will finally affect all clones of the 
immune network, thus disrupting the virgin state of (nearly) all the clones. This 
prediction is analysed here. By analysing randomly conneted (100-D) networks 
(Figs 4A and C) we first confirm the applicability of the Erdos and Reyni theory 
to random idiotypic networks. Because biotic immune networks are not 
necessarily random, we additionally generate affinity matrices by the (non- 
random) complementary matching of random (idiotypic) patterns (see Fig. 1). 
It will be shown (Figs 4B and D) that the "threshold" connectivity properties of 
these "pattern" networks cannot be distinguished from those of random 
networks. 

In both types of networks ("random" vs "pattern") we analyse the effect of 
matrix connectance on the system behaviour. In both networks connectance is 
measured by the actual number (nc) of connections per clone (i.e. the number of 
non-zero A elements per row). In "pattern" networks the connectance is 
increased by elongation of the random pattern (i.e. by allowing for more 
idiotopes per idiotype). Because our complementary matching rule generates 
an exponential distribution of affinities (see Section 3), the average affinity of 
"pattern" networks is lower than that of an equally connected (uniformly 
distributed) "random" network. To compensate for this lower affinity between 
level one and level two (X 1 and X2) , "pattern" networks are triggered by a 
higher antigen concentration (105 instead of 104). Networks are first allowed to 
equilibrate into a 100-D virgin state (in the absence of antigen). Then they are 
stimulated for 25 days with a constant concentration of an antigen recognised 
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Figure 4. The effect of connectance in 100-D random and complementary matching 
(pattern) networks. (A) The actual dimension of the random network connected to 
the antigen (~)  and the number of clones that actually switch (to immune or 
suppressed) following antigenic stimulation (~). (B) The same for the pattern 
networks. (C) and (D) The maximum antibody level reached by the idiotypic signal 

in random (C) and pattern (D) networks. 

by only one clone (with at least one connection to the network). Two typical 
examples are shown in Fig. 5 (one around (nc = 1.04) and one slightly above 
(nc = 1.36) the Erdos and Renyi E/N= 1/2 threshold). In the equilibrium that is 
finally reached we score: (1) the "effective dimension" of the network, i.e. the 
actual number of clones that are connected to the clone stimulated by antigen; 
(2) the number of clones that are actually affected, i.e. that have left the virgin 
state; (3) the depth of signal propagation, i.e. the maximum idotypic level 
affected. The first score (1) measures the above-mentioned Erdos and Renyi 
property; the other two link this with "absence of fading". 

The effective dimension (Figs 4A and B) of our 100-D systems does indeed 
switch from low to high-D interconnected networks around a connectanceof 
one idiotypic partner per clone (E/N-- 1/2). This switch is smoother in 50-D 
and steeper in 200-D networks (not shown); this explains why these results were 
less pronounced in our previous 50-D models (De Boer, 1988). The curve of the 
number of affected clones (Figs 4A and B: ~ )  is similar to (but somewhat 
smoother than) the "Erdos and Renyi" effective dimension curve (Figs 4A and 
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Figure 5. The behaviour of 100-D pattern networks (based on complementary 
matching). A network with on average 1.04 connections per clone (A), and (B) a 
network with 1.36 connections per clone. This is respectively just around and just 
above the Erdos and Reyni (1959, 1960) threshold of one edge per two nodes. The 
figure only depicts the clones that are actually connected to the network stimulated 

by antigen (all other clones remain virgin). 

B: [] ). Whenever clones are connected to five or more idiotypic partners, the 
(first) antigen affects nearly all clones. Moreover 2/3 of the affected clones are in 
the suppressed state at a connectance of five. As was demonstrated before (De 
Boer, 1988), the ratio of suppressed/immune clones increases if the connectance 
increases. Highly connected networks are thus highly unresponsive: almost all 
clones are suppressed. The maximum idiotypic level that is reached (Figs 4C 
and D) peaks around a connectance of two (nc = 2); in such networks signals 
penetrate deeply (here up to level 12). Maximum penetration depends on the 
dimension of the network. A 200-D network (with nc = 2) reached a maximum 
idiotypic level of 17; 50-D networks reached lower levels. This is probably 
related to the fact that in low-D networks pathways (connected structures) 
form closed loops sooner; as was mentioned above, this stops the signal. For a 
107-D biotic immune system (for nc >! 2) the maximum idiotypic level reached 
by any immune response is thus also expected to be very large. 

We conclude that the "random" and "pattern" networks are very similar 
with respect to these connectivity properties. Thus, symmetri c idiotypic 
networks that consist on one cell type (e.g. B cells) are statistically expected to 
form one interconnected structure whenever each clone, on average, has more 
than one idiotypic interaction. (Note that one interaction per clone is a 
minimal requirement for network interactions.) If this "interconnectance" is 
combined with our "percolation" results, we have to conclude that antigenic 
triggering of such a network will affect very many (i.e. most) of the clones of the 
network. 
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The virgin state. Another connectivity threshold is the existence of the 
virgin state. By choosing the clonal influx of virgin cells small (St ~ 10 cells 
day-  1), we deliberately kept the N - D  network virgin state devoid of idiotypic 
interactions. Virgin anti-idiotypic populations are thus too small to evoke 
idiotypic proliferation. In combination, a sufficiently large number of anti- 
idiotypic clones should however be able to initiate proliferation in the virgin 
state (e.g. De Boer, 1988). This occurs more easily (i.e. at a lower connectance) 
if the influx of virgin cells is somewhat increased. To illustrate the effect of 
connectivity on the preservation of the virgin state we set S t ~ 50 (we can only 
estimate the order of magnitude of such a parameter). 

Around a connectance of 10 idiotypic partners per clone (nc = 10) networks 
suddenly lose their virgin state, which means that clones switch to immune or 
suppressed without previous exposure to antigen (Fig. 6). None of the clones 
remains in the virgin state. This is a form of autonomous network activity. Note 
that this exact value of nc = 10 is parameter dependent, i.e. depends on the S~/PI 
ratio. If S ~  10 cells day-1,  the system switches around n c =  50; if S ~  100 it 
switches around nc = 2. The location of this threshold is, however, independent 
of the network dimension (De Boer, 1988): it is the sum of the idiotypic partners 
to which a clone responds. If antigen is introduced into such a highly connected 
system, the network appears unresponsive. Clones either fail to react because 
they are suppressed, or because they are already immune. Again the percentage 
of suppressed clones in this state increases as a function of connectance (not 
shown). 

LoglO Pol:). 

.0 100.0 200.0 300.0 400.0 500.0 
Time (days) 

Figure 6. The neonatal  state of a random 100-D network with a connectance of 10 
connections per clone. We increased the influx of virgin cells (5 x ,  i.e. S i ~ 50 cells 

per clone per day). 
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We conclude that highly connected networks: (1) do not have a virgin state; 
(2) are unresponsive to external antigens; (3) display autonomous activity, i.e. 
clones switch to immune states in the absence of external antigens. We 
speculate that these results account for the differences reported to exist between 
highly connected neonatal networks (Holmberg et al., 1984, 1986; Vakil and 
Kearny, 1986) and weakly connected adult networks (Pollok et al., 1982; 
Holmberg et al., 1986). The former do indeed display autonomous activity 
(Pereira et al., 1986). We have demonstrated here that this marked difference 
an be accounted for solely by the (possibly gradual) difference in the 
connectance of the two types of networks. 

Interpretation. We think that our results, i.e. the absence of suppression 
and the extensive percolation ofidiotypic signals, suggest that immune systems 
do not function as profound idiotypic networks. The extensive percolation 
takes too much time and affects too many clones. By defining a minimal model 
we have maximally avoided the incorporation of ambiguous assumptions. 
Thus, because biotic immune systems are most probably based on a similar set 
of incorporated processes, our results might be general and not typical only of 
the models described here. It might, however, be argued that our results are 
artefacts arising from our simplifications. We therefore test the robustness of 
our results for the most obvious extensions of our model, i.e. "long-range 
inhibition", antibody molecules, and helper T cells. Incorporation of "long- 
range inhibition" and antibody molecules is relatively easy, and will be 
analysed in the next two sections; incorporation of helper T cells is more 
difficult, and will be reported elsewhere (De Boer and Hogeweg, submitted). 

4.3. Long-range inhibition and short-range activation. Segel and Perelson 
(1988) apply a general rule from theoretical biology in order to develop an 
interesting "shape-space" model of the idiotypic network. The incorporation of 
"long-range inhibition" and "short-range activation" in a model promotes 
instability, and hence pattern formation. It is therefore conceivable that our 
results hinge upon our assumption that the range of our stimulatory and 
inhibitory idiotypic interactions is identical. We here test the robustness of our 
"extensive percolation" results by allowing inhibitory interactions to be more 
general than stimulatory interactions. Intuitively, general suppression might 
indeed shut off the paths along which the idiotypic signal percolates into the 
network. Or as Segel and Perelson (1989) put it: 

"Intuitively it is reasonable to assume that short range activation can give rise to a regular 
array of peaks from areas of local activation surrounded by more dispersed annuli of 
inhibition." 

Additionally, an immunological argument can be made: stimulatory interac- 
tions require crosslinking of the B cell receptors, i.e. extensive binding by anti- 
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idiotypic receptors, whereas it is conceivable that this crosslinking (i.e. 
activation) process may be inhibited (blurred) by low-affinity binding of many 
other anti-idiotypes. 

We thus use two affinity matrices, one for activation (A) and one for the, 
more general, inhibition (B). The A matrix is identical to that used in the 
"pattern" networks; the B matrix can simply be made by using a smaller 
"mask" in the complementary matching algorithm. We here use a mask of 7 
sites for the B matrix, and 8 sites for the A matrix. Note that the A matrix is 
always included in the B matrix, i.e. if two clones are able to activate each other 
(i.e. A u > 0), then they are necessarily able to inhibit each other's crosslinking 
process (i.e. B u/> Au). Moreover, note that both matrices remain symmetric. 
For the above masks the connectivity of the B matrix is generally ten times 
higher than that of the A matrix. In order to incorporate "long-range 
inhibition" we implement the B matrix in our model: 

N 

odd, = E AijXj, (1) 
j = l  

N 

flld,= ~ BijXj, (1') 
j = l  

G(XI, Agi, ~ldi, flldi) = 
Agi + ~Idi P2 

x (2') 
P1 + FX~ + Ag i + ~xld i P2 + flldi ' 

d__,=~. S , - D ~  + P~G(X~, Ag,, ~ld,, flld,). (3') 
dt 

Typical examples of such networks are shown in Fig. 7. Figure 7A shows the 
same, weakly connected, network as was displayed in Fig. 5B (i.e. the A 
matrices are identical: nc= 1.36). This "long-range inhibition" network also 
displays extensive percolation: similar to what was described in Fig. 5B (see 
Fig. 4B), 35 of the 55 clones that were actually connected to the clone 
stimulated by antigen are affected by the signal (i.e. switch to an immune or 
suppressed state). Additionally, 33% of the 100 clones are finally more or less 
suppressed by the long-range inhibition (nc = 9.72 in the B matrix). Moreover, 
the network behaviour seems rather chaotic: the system oscillates irregularly 
and only settles into an equilibrium after two years. Another example of such 
"erratic" behaviour and slow settlement (> 3 years) into an equilibrium state is 
shown in Fig. 7B. This figure shows a network based on an average of 2.86 
stimulatory and 21.2 inhibitory interactions per clone. Without the "long- 
range inhibition" this network (see Fig. 4B) managed to settle into an 
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equilibrium in about  300 days. Networks  below the connectivity threshold 
(nc= 1), by contrast ,  do behave very similarly to those of Section 4.2. We 
conclude that,  above the nc = 1 threshold, "long-range inhibition" networks (1) 
can only slowly settle in equilibria (2) seem chaotic, and (3) also display 
extensive percolation. 

A B 
Log10 Pop. Log10 Pop. 

8- 8 

7-  

6- 

5- Ag 

4- 

3- 

2- 

1 -  t -  

O 
,0 200.0 4 0 0 . 0  6 0 0 . 0  800.0 

Time (days) 

7 -  

6- 

5- Ag 

4- 

3- 

2- 

1- 

0 
.0 

I I 
E 

l I I I [ 
200 400 600 800 1000 

Time (days) 

Figure 7. The behaviour of "longe-range inhibition" networks. (A) Each clone has 
on average 1,36 stimulatory interactions (i.e. the A matrix is identical to that of the 
network displayed in Fig. 5B) and on average 9.72 inhibitory interactions. The 100- 
D system also percolates extensively and takes about twice as long to settle in a 
stable state. (B) A similar network based on an average of 2.86 stimulatory and 21.2 
inhibitory interactions per clone. The seemingly chaotic behaviour is very 

pronounced in these "longe-range inhibition" networks. 

The explanation for these counter-intuit ive results is the fact that  our  
networks do not  discriminate between "activators" (e.g. helpers) and 
"inhibitors" (e.g. suppressors). Whether  a clone stimulates or inhibits its 
idiotypic partners depends on the local circumstances. Hence, the (long-range) 
inhibition of an immune  (i.e. inhibitory) clone will t ransform that  clone into a 
suppressed (i.e. s t imulatory) clone. Thus  "long-range inhibit ion" of immune  
clones implies "long-range activation". Our  idiotypic network cannot  fully 
discriminate between "inhibition" and "activation". Additionally,  these 
networks are more  chaotic because the "long-range" interactions disturb stable 
equilibria that  were at tained at previous idiotypic levels. Thus,  th rough the 
inhibition, idiotypic interactions at previous levels switch to other ratios, which 
locally initiates the percolat ion of new idiotypic signals. 

We conclude that  the incorporat ion of "long-range inhibition" cannot  
prevent the "extensive percolation",  but  adds an addit ional  "unreasonable  
implication", i.e. "extensive oscillations". We think that  the type of chaos 
displayed in Fig. 7 cannot  be characteristic for immune  systems. Fol lowing 
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antigenic stimulation the network oscillates unpredictably for periods of 
several years. It thus seems very likely that the clones that have to remain 
immune to the original antigen also become involved, and hence switch to 
suppressed states for extended periods of time (i.e. for months). Antigen specific 
immunity would thus become a rather chaotic phenomenon which switches on 
and off in time, until it unpredictably settles into "immune" or "suppressed". 
We are aware of the fact that some of the theoreticians and experimentalists 
think that immune networks do function by means of chaotic behaviour; we 
however think that this idea is altogether too "romantic". At least, we fail to see 
how this type of chaotic behaviour can be applied to our questions regarding 
antigen specific immunity and/or suppression. 

4.4. Results: incorporation of long-lioed antibodies. In the above models we 
simply lumped B-cells and their antibodies into one population (X). Idiotypic 
communication between populations of B cells however occurs via their 
respective antibodies. Because the life-span of cells and antibodies is quite 
different (most B cells are short-lived and antibodies generally are long-lived) 
(Jerne, 1984), and because B cells proliferate before they produce antibodies 
(Melchers and Anderson, 1986), it seems important to complicate our model in 
order to incorporate antibody production. We now distinguish populations of 
cells (X/) from antibodies (Abi): 

N 

~Idi= ~ A~jAbj, (1") 
j = l  

dAgi _ KAgiAbi 
dt K 1 + Ab i ' 

dAb~ 
dt 

Agi+~ldi 
- M X i M l + F X i + A g i + ~ I d  i -EAb i -CAb i~ Id  i. 

(4") 

(5) 

Parameters. The setting of the new parameters is relatively easy. We scale 
the antibody concentration into units produced per cell, i.e. M = 1. Antibodies 

Equations (2) and (3) of our original model remain identical. Idiotypic 
stimulation and inhibition of cells now ocurs via the total of anti-idiotypic 
antibodies [ctldi, equation (1")]. Antigen [equation (4")] is now eliminated by 
antibodies. Antibodies [equation (5)] are produced by cells if these are 
sufficiently (M 0 stimulated by antigen (Ag~) and/or the anti-idiotypic 
antibodies (~Idi). This interaction is again buffered (F). Each fully activated cell 
produces M antibody molecules; each molecule has a life-time of i /E  days. In 
the present model it is possible to incorporate antibody removal by the 
formation of antibody complexes (at a rate C). 
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are relatively long-lived. The half-life of IgM antibodies is about two days, that 
of IgG 4-8 days (Vieira and Rajewsky, 1988). We here take a lifespan of roughly 
five days (E=0.2); a life-span of about 10 days gives similar results (not 
shown). We will first ignore complex formation (C = 0). B cells differentiate into 
antibody-producing cells (plasma cells) after a number of proliferation cycles. 
This can be incorporated by setting M 1 >P1. Both models [i.e. equa- 
tions (1)-(3) and equations (1') and (2)-(4)] are however most equivalent if 
Mt '~P1, i.e. if the antibody concentration is proportional to the (cell) 
population density. Because the antibodies live five times longer than the B 
cells, such "equivalent" antibody concentrations are generally 5 times higher 
than the B cell population density. By rescaling P1 to 5 x 103, P2 to 5 x 106, and 
K 1 to 5 x 105 (i.e. by a 5-fold increase) we can easily compensate for this 
difference; this is "external equivalence" (Irvine and Savageau, 1985). 

Figure 8A displays the 0-isoclines of a two-dimensional network of this 
"antibody" model for these (external) equivalence conditions (i.e. for M 1 = 1, 
P1 = 5 x 103, P2 = 5 x 106). In order to perform this two-dimensional graphical 
analysis (which is directly comparable to Fig. 2A) of this 4-D model, we made a 
quasi-steady-state assumption for the antibodies [equation (4)]. (We make 
this assumption just for this comparative static analysis; dynamically it is not 
justified, see below.) The isoclines and hence the equilibrium points are very 
similar to those of Fig. 2. The only difference is the population level to which 
clones are suppressed: clones remain larger here (even lower M 1 values give 
identical results). The suppression is reduced because a clone that suppresses 
another clone requires continuous idiotypic stimulation (by antibodies 
produced by the suppressed clone) in order to be able to produce its 
(suppressive) antibodies. Moreover, suppressive clones are typically large and 
hence require quite vigorous stimulatory interactions (due to the buffering). 
However, since the equilibrium states are very similar to those of the previous 
model, similar switching behaviour is to be expected. 

It seems more interesting however to incorporate the empirical finding that 
B cells produce antibodies after a proliferation period, i.e. to set M 1 > P1. This 
again hardly affects the equilibrium states (see Fig. 8B, M r = 5  x 104, 
P1 =5 x 103, P2 =5 x 106); only the region of attraction of the virgin state 
increases (which may be advantageous because it gets lost rather easily, Fig. 7). 
The effect of the M~ value on the isoclines is analysed more gradually in Fig. 9. 
If antibody production starts too late (e.g. M~ >> 106) the idiotypic proliferation 
region decreases; hence idiotypic interactions lose their effect. The balance of 
proliferation and differentiation (Grossmann, 1982) thus requires to be tuned 
accurately. If we do this (Mr = 5 x 10"), and if we stimulate this "quasi-steady- 
state system" with antigen it does indeed switch to the corresponding immune 
state. In this equilibrium the antibody concentration of the suppressed anti- 
idiotypic (X2) clone also suffices for activating the next (virgin) anti-anti- 
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Figure 8. A two-dimensional network incorporating antibodies (for A 12 = 1). The 
isoclines are drawn for a quasi-steady-state assumption for the antibody equations 
[equation (4)]. (A) A system which is externally equivalent to that of Fig. 2 (i.e. 
M 1 = 1, P1 = 5 x 10 a, and P2 = 5 X 106). (B) A system in which proliferation precedes 
antibody production (i.e. M t = 5 x  104, P1=5 x 103, and P2=5 x 106). The 
equilibria remain qualitatively the same to those of the previous model (Fig. 2). 

idiotype (X3) clone. Signals thus still fail to fade. We conclude that, for a 
sufficiently low onset of antibody production (e.g. M 1 ,,~5 x 104), we have 
succeeded in incorporating "antibody production after proliferation" but have 
9reserved the previous isoclines and steady states. 
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Figure 9. The X~ = 0 and X~ = 0 isoclines as a function of the onset of antibody 
production (M 1). The immune states exist only if Mt is sufficiently small. 

However if we analyse this model dynamically, i.e. if we relax the quasi 
steady state assumption for the antibodies [equation (4)-1, totally different 
results are obtained. In the virgin state Ag 1 is introduced in a dose of 105 cells; 
this dose suffices for antibody production (i.e. Ag 1 > M l = 5 x 104). Figure 10A 
shows a time plot of the system behaviour: antigen is rejected but the systems 
switches from virgin to cyclic behaviour: it never settles in any (immunity) 
equilibrium. Figure 10B shows the same behaviour, now plotted in the X1 vs 
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X2 (i.e. the idiotype vs anti-idiotype) state space. We conclude that although 
this model has similar equilibria, they are no longer attractive when antibodies 
are really made long-lived (i.e. by relaxation of the quasi-steady-state 
assumption). Thus the difference in the lifespan of cells and antibodies totally 
disrupts the neat switching behaviour of the previous model. Because in biotic 
immune systems antibodies and cells do have a different lifespan, the 
generation of memory phenomena by idiotypic interactions becomes even 
more questionable. 
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Figure 10. The behaviour of the antibody model (the quasi steady state assumption 
being relaxed). The two-dimensional network is stimulated with an antigen dose 
Ag x = 105. Antigen is rejected but the network fails to switch and enters an infinite 

cycle which is displayed in time (A), and in the X 1 vs X 2 space (B). 

The cycles take place in the complete absence of antigen: antigen was 
rejected around day 60. Figure 10A shows the explanation for the cycles: 
around day 60 the high and suppressive Ab 1 concentration slowly decays (due 
to antibody turnover). This means that after a while the suppressive Ab I 
concentration becomes stimulatory again (i.e. when Abl < P2). This reactivates 
idiotypic proliferation until the Ab~ concentration becomes inhibitory again. 
Again Abl slowly decays (due to turnover) and the cycle repeats itself. Thus, as 
was the case in the "long-range inhibition" model, clones switch from 
"stimulatory" to "inhibitory" by moving along the bell-shaped dose response 
curve. This type of switching is based on our most fundamental assumptions: 
(1) no distinction between "helpers" and "suppressors"; (2) the bell-shaped 
growth functions. Here, the switching (and cycling) is essentially determined by 
the autonomous slow decay of the antibodies. 

Complex formation. The (possible) removal of antibodies by the formation 
of idiotypic anti-idiotypic antibody complexes is a process that reduces the 
intensity of idiotypic interactions between cells. This occurs when antibody 
concentrations are large (compare our bell-shaped dose response function). 
The rate of complex formation is determined by our C parameter (C was zero 
above). If we replace our bell-shaped curve by a saturation function (i.e. set P2 
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to ~) ,  and incorporate complex formation (i.e. set C>  0), we obtain Fig. 11. 
This "antibody complexes" model generally has only one virgin state and no 
immune states (if C is extremely small (e.g. 10-a) the system has one immune 
state at unrealistically high populations (101~ cells)). We conclude that 
complex formation on its own cannot account for interesting switching 
behaviour. Furthermore, by complex formation alone, a large idiotypic 
population (antibody and/or cells) can never "suppress" a small anti-idiotypic 
population just because the latter is too small to remove the former. 
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Figure 11. The X~ = 0 and X~ = 0 isoclines as a function of the rate of antibody 
complex formation (C) for P2 = oo (i.e. when complex formation is the only 
inhibitory interaction in the system). For realistic population densities this system 

never has immune states. 

Complex formation can also be combined with our bell-shaped dose 
response curve (i.e. keep P2 = 5 x 10 6 and set C>0).  Such models only have 
multiple stable points if C is sufficiently small, i.e. whenever complex formation 
plays a sufficiently small role. At very high antibody concentrations however, 
such small C values give rise to complex formation. Thus suppressive antibody 
levels are more quickly reduced to stimulatory levels. Hence complex 
formation accelerates the cycle displayed in Fig. 10, and fails to play a 
stabilizing role in the present models. 

5. Discussion. We have analysed a simple model which incorporates only 
fundamental idiotypic network assumptions. This model nevertheless dis- 
played unexpected and/or unreasonable behaviour. We concluded that, if 
idiotypic networks switch from virgin to immune states, such switches 
propagate infinitely into the network. Moreover, the idiotypic control of 
proliferation seems impossible because proliferating clones suppress their anti- 
idiotypic suppressors. Highly connected networks display autonomous 
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behaviour but are unresponsive to foreign antigens. Long-range inhibition 
cannot solve these "percolation problems". The simple difference in the lifespan 
of antibodies and cells generates complex cycling behaviour. This behaviour is 
governed by the autonomous slow decay of antibodies and totally disrupts the 
fine tuning of the idiotypic interactions. 

The absence of interesting network behaviour in our model contrasts 
strongly with the abundance of experimental results on idiotypic networks. 
This discrepancy might suggest that our assumptions are wrong or, more 
likely, insufficient. Alternatively, however, we might question the validity of the 
experimental results. In our model, with all its "unreasonable implications" we 
can easily obtain "interesting results" by "experimental manipulation" of the 
system. In the model idiotypic control of proliferation can be achieved by the 
introduction of a large dose of anti-idiotypic antibody (or cells) (De Boer and 
Hogeweg, 1988). Such manipulation eliminates the "natural" advantage of the 
clone responding to antigen. Moreover, we can manipulate the neonatal 
repertoire (i.e. the equilibrium state) of highly connected networks by 
introducing one of the clones (or antibodies) during the neonatal development. 
Our "manipulated" network however remains unresponsive to most (but 
different) antigens, and hence remains non-functional. These examples show 
that "interesting" empirical data do not necessarily prove the functionality of 
the network, but can be a consequence of the experimental manipulation. 

Other experimental data, by contrast, confirm our idea that immune systems 
do not function as a profound network ofidiotypic interactions (reminiscent of 
neural networks). These data suggest that the network is not "open ended" but 
that idiotypic interactions remain confined to specific and limited structures. In 
these experimental systems (Wikler et al., 1979) it was shown that Ab3 is 
idiotypically related to Abl  (although Ab3 does not bind antigen), and that 
Ab4 resembles Ab2. Thus, experimental data were recently interpreted in terms 
of "fiat" networks, e.g. the "broken mirror" hypothesis (Urbain, 1986) or 
Jerne's (1984) system of "preferred partners", and not in terms of profound 
networks. This accords with our results. However, such structures do not arise 
spontaneously (see e.g. our "pattern" networks), i.e. idiotypic profiles are 
expected to diverge. We therefore plan to investigate the type of idiotypic 
interactions that would generate such (or similar) confined immune network 
reactions. 

In conclusion, the present results contradict our intuitive expectations about 
the functioning of this simple (fundamental) network. This can be taken as 
another argument supporting the idea that (biotic) idiotypic networks are non- 
functional (Cohn, 1986; Langman and Cohn, 1986). Alternatively, the results 
can be taken as an argument that the idiotypic network must be more complex 
than we assume in our models. This would certainly be important because it 
would pinpoint the additional network assumptions that have to be made if 
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idiotypic network theory is to adequately account for the functioning of 
immune systems. We have here tested two such complications, i.e. (1) "long- 
range inhibition" and (2) the difference between the lifespan of cells and 
antibodies, and have concluded that the additional complexity can only 
hamper the functioning of the network. 

The incorporation of T-B cell cooperation is the next obvious extension of 
the our simple B cell idiotypic network model. Production of anti-idiotypic 
antibodies has indeed been demonstrated to depend on helper T cells (Trenker 
and Riblet, 1975). Elsewhere (De Boer and Hogeweg, submitted) we will 
analyse the role that helper T cells play in T-B cell idiotypic networks. These 
models are however compliated. Firstly, for the T-B cell idiotypic interaction, 
one has to distinguish between (1) MHC-restricted helper T cells, and (2) 
helper T cell receptors that bind directly to B cell idiotypes. Secondly, we 
distinguish antigen-specific and idiotype-specific helper T cells, Thirdly, we 
have to consider percolation pathways consisting of either B cell clones (each 
helped by a helper clone) or of mixtures of B and T cell clones. The most 
important conclusions are: (1) MHC restricted T-B idiotypic interactions are 
expected to be asymmetric; (2) symmetric and asymmetric helper inteactions 
may stop the percolation along the Ag-B1-B2-B3 pathway at level of the 
second B cell clone; (3) MHC-restricted helper interactions avoid percolation 
along Ao-B1-T2-B 3 pathways. These results (De Boer and Hogeweg, 
submitted) suggest that for B cell idiotypic interactions helper T cell activation 
is of crucial importance. Furthermore, the results suggest that helper 
interactions fail to account for limited percolation, i.e. for localized network 
responses. 

The sensitivity of idiotypic B-B interactions to helper T cell activation 
implies that (theoretical and experimental) network models that neglect helper 
T cells can only be valid for helper-independent idiotypic interactions. 
Although it has never been demonstrated experimentally, B cell idiotypic 
interactions of the IoM networks of early (i.e. developing) immune systems 
(Holmberg et al., 1984, 1986) are possibly helper independent. These early IoM 
networks are supposed to develop before T cells emerge (Martinez-A et al., 
1988). Thus, if helper interactions are indeed so crucially important, the present 
B-B idiotypic network model would only be valid for the early IgM network 
situation. Moreover, as was discussed at the end of Section 4.2, extensive 
percolation is probably realistic in these highly connected IoM networks. The 
autonomous network activity (Fig. 6) does not have to account for antigen- 
specific immunity, but may, instead, play a role in the selection of B and/or T 
cell repertoires (Vakil and Kearny, 1986; Martinez-A et al., 1988; own 
unpublished results). 

Because we robustly fail to find a solution for the unrealistic percolation 
problems that arise in the various idiotypic networks that we are analysing, we 
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have become very critical of the hypothesis that the phenomenon of 
immunological memory is generated by (cognitive) state switches in profound 
networks of idiotypic interactions. 

We thank Ms S. M. McNab for linguistic advice. 
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