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A simple mathematical model depicting blood flow in the capillary is developed with an 
emphasis on the permeability property of the blood vessel based on Starling's hypothesis. In this 
study the effect of inertia has been neglected in comparison with the viscosity on the basis of the 
smallness of the Reynolds number of the flow in the capillary. The capillary blood vessel is 
approximated by a circular cylindrical tube with a permeable wall. The blood is represented by a 
couple stress fluid. With such an ideal model the velocity and pressure fields are determined. It is 
shown that an increase in the couple stress parameter increases the resistance to the flow and 
thereby decreases the volume rate flow. A comparison of the results with those of the Newtonian 
case has also been made. 

I. Introduction. Microcirculation is the study of flow in small blood vessels, 
particularly in the capillary, which range in diameter from 20 #m (micron) 
to 500 #m in different species. In physiology the most important functions of 
the circulation of blood through capillaries are to supply nutrient to every 
living cell of the organism and also to remove various waste products from 
every cell. 

The capillaries are bounded by endothelial cells which have ultramicro- 
scopic pores through which substances of various molecular size can penetrate 
the surrounding tissue and also the capillary. One of the most important 
features of the capillary geometry which distinguishes it from arteries is the 
permeability of the wall. The deposition of cholesterol is believed to increase 
the permeability of the wall. Such increases in permeability also result from 
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dilated, damaged or inflamed capillary walls. Thus it is worthwhile to study the 
effect of wall permeability of the blood vessel from a fluid-mechanical point of 
view. 

One of the classical papers which include permeability is by Oka and Murata 
(1970). They considered the flow in the capillaries to be steady and included the 
wall permeability on the flow characteristics, neglecting the inertial terms in the 
equation of motion. Though their model is based on a number of simplifying 
assumptions, it conveys many features which are of physiological importance. 
They assumed the blood to be a Newtonian fluid. The experimental studies, 
however, on blood flows by Bugliarello and Sevilla (1970), Cokelet (1972) and 
Goldsmith and Skalak (1975) indicate that under certain flow conditions, 
blood flow may exhibit strong deviations from the Newtonian flow behaviour. 
The deviations occur in the form of non-parabolic velocity profiles for flow 
through tubes of small diameter (of the order of 50/~m). This is because of the 
presence of red blood cells in the plasma. Thus, when neutrally buoyant 
corpuscles are contained in fluid, corpuscles have rotary motion if there is a 
velocity gradient due to shearing stress. Furthermore, corpuscles have spin 
angular momentum in addition to orbital angular momentum. Therefore, the 
symmetry of stress tensor is not held in the fluid which has a spin angular 
momentum. The fluid containing neutrally buoyant corpuscles, if observed 
macroscopically, is considered to be a non-Newtonian fluid which has a 
constitutive equation expressed by the stress tensor. In such fluids the radius of 
gyration of the corpuscle is different from that of the fluid particle. This 
difference produces couple stress in the fluid. Thus, the fluid which has couple 
stress and spin angular momentum is called couple stress fluid. 

It has already been demonstrated by Valanis and Sun (1969) and Popel et al. 

(1974) that the couple stress theory presented by Stokes (1966) represents 
blood flow reasonably well and attempted to explain the theological 
abnormalities observed by Bugliarello et al. (1965). Since the rheological 
properties of the blood are mainly due to the suspension of red blood cells, 
white cells and platelets in the blood plasma, the study of blood flow with 
couple stresses may play an important role in understanding the theological 
anomalies associated with blood flows. The effect of couple stresses on blood 
flow in the capillary bounded by permeable wall has not been given much 
attention. Thus the purpose of this paper is to study the combined effect of 
couple stresses and the exchange of fluids across the capillary walls on the flow 
of blood in microcirculation. For this purpose we take a simplified model for a 
capillary and blood and solve the basic equations using Starling's hypothesis of 
fluid exchange, which states that the difference in hydraulic pressure between 
the blood and tissue fluid is not only responsible for the process of 
filtration--the difference in colloidal pressure between the blood and tissue 
fluid also plays an important role. Using certain physiological experimental 
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data, the computation of the theoretical results is carried out and the results are 
discussed in detail. 

2. Formulation of the Problem. 
2.1. Physical configuration and assumptions. As pointed out by Lighthill 

(1969), the effect of curvature can be neglected in the case of creeping flow. 
Hence, the capillary between an arteriole and a venule is taken as a tube of 
uniform circular cross-section with a permeable wall as shown in Fig. 1. We 

Figure 1. Capillary tube with porous walls. 

shall consider the steady flow of couple stress fluid in the capillary tube. A 
cylindrical system of co-ordinates (r, ~b, z) is chosen, in which the z-axis 
coincides with the axis of the tube. The flow is assumed to be axisymmetric. The 
permeability of the wall is governed by Starling's Law, which is a modification 
of Fick's Law and states that the net filtration pressure is given by the difference 
between hydrostatic and osmotic pressure between the blood and the tissue 
fluid. Filtered water which passes into the tissue is either reabsorbed into the 
capillary blood or returned to the blood via the lymphatic systems. Starling's 
hypothesis is usually expressed in the form: 

M = k(pc- p i -  nc + Trl) (1) 

where M represents the flow rate per unit area of wall surface. The constant k is 
the measure of the permeability of the capillary wall to water and is called the 
filtration constant, Pc, Pi, rcc and nl are hydrostatic capillary blood pressure, 
interstitial fluid pressure, osmotic pressure of the plasma and proteins in the 
interstitial fluid, respectively. When M is positive (i.e. when the hydrostatic 
pressure difference is greater than the osmotic pressure difference) filtration of 
fluid out of the capillary occurs. When M is negative reabsorption of fluid from 
the interstitial space into the capillary takes place. If the quantity M is defined 
as the flow rate per unit area of the total wall surface, then Pc cannot vary along 
the length of the capillary. In this case Pc should be replaced by an appropriate 
value. 
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2.2. Constitutive equations and boundary conditions. The constitutive 
equations and equations of motion for couple stress fluid flow in the absence of 
body moment and body couple are 

dvi (2) 
zji, j = p  dt 

e,ikT ~ + Mji.j=O (3) 

Tij = -- pfij + 2#dij (4) 

la o = 4qogj, i + 4q' o~.j (5) 

where p is the density, rij and T~ are the symmetrical and antisymmetrical parts 
of stress tensor T~j, v~ is the velocity vector, M~j is the couple stress tensor, lzij is 
the deviatoric part of Mij, oo~ is the vorticity vector, d~j is the symmetric part of 
the velocity gradient, q and q' are the constants associated with the couple 
stress, p is the pressure and other terms have their usual meanings in tensor 
analysis. 

As emphasized by Skalak (1972), the rate of inertia is not significant in 
microcirculation and hence this term can be neglected in the basic equation. 
Based on the couple stress theory of Stokes (1966) the equations of motion (2) 
and (3) using (4) and (5) can be written as 

where 

Vp = VZ(#q- qV2q), (6) 

The two-dimensional form of equation (6) is 

V _ izl. t Vrrrr + Vzzzz + 2Vrrzz + pr = ~ v,, + v , -  -~ + v= r vrrr 

2 3 2 3 3 "~ 
+ -r v,= - ~ v,, - --r 2 v= + ~ v, - ~ v ) ,  (7) 

p z =  # Urr + - Ur-t- Uzz --121 ~ Urrrr + Uzzzz + - Urrr 
r r 

! 1 1 )  
+ 2u,,zz + u , = - - ~ U , r + ~ g u , .  (8) 
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The continuity equation is given by 

1 
- ( r v ) ,  + u~ = 0 (9) 
r 

where # is the coefficient of viscosity of the fluid having dimension M/L T and r/ 
is the material constant characterizing the couple stress property of the fluid 
and has the dimensions of momentum (ML/T). Thus, 12(=r//#) has the 
dimensions of length squared. 

The boundary conditions are 

u ,=0,  v=0  at r = 0  (10a,b) 

u=0 ,  v=k(p-ot) at r = R  (lla,b) 

/~=p, at z = 0  (12) 

/~=p, at z=L (13) 

where R is the radius and L is the length of the capillary, p is the average of the 
pressure p over the cross-section of the capillary, p, and p, are arterial and 
venous end pressures, respectively and are taken to be constant. The coefficient 
k is a measure of the permeability of the wall and 0t is equal to n c + P l -  ni which 
is assumed to be a constant. The boundary condition ( l la)  is the no-slip 
condition which is assumed to be valid at the porous interface since the 
permeability of the porous wall is very small and in couple stress fluid both a 
yield stress and shear-dependent viscosity exist so the fluid element which is in 
contact with the boundary adheres to it and thus has the same velocity as the 
boundary. The boundary condition (1 lb) is Starling's hypothesis which takes 
care of the smooth transfer of mass across the porous wall. 

3. Method of Solution for the Flow Field. To solve for the flow field we 
introduce the dimensionless parameter 

k/~ 
R (14) 

where # is the coefficient of viscosity of fluid. The filtration constant k varies 
widely for capillaries. The average value of muscle capillaries of dog and cat is 
2.5 • 10 -8 cm/(sec, cm H20 ). If we take r /= l  cP and R = 5  #m then we get 
~= 1 • 10-7 (Oka, 1981). Hence ~ may be regarded as very small. The order of 
u, v and p may be estimated as 1, e and 1, respectively. The derivatives ofu and v 
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with respect to z will be of higher order of e than that of the derivatives with 
respect to r. 

In view of the order analysis, a rough estimate of the orders of magnitude of 
the various terms in (7)-(9) is given below: 

Pz, u,, ur,, Urr,, U,,r '~0(1), 

Pr, Uz, Uzz, v,, v,,, Orr r, Vrrrr, ~ "~ O(e), 
1 V ) 

Uzzzz,  Urrzz, Urzzz, l.)rzz, -- (rV)r , 

v~, v~zz, Vz~zz --~0(e2). (15) 

We seek solutions for the basic equations (7)-(9) by splitting the solution 
into two parts, of the first and second order, in the form, 

u(r, z )=ul  (r, z) + u2(r, z) 

o(r, z)=vl(r,  z)+ v2(r, z) 

p(r, z)=pl(r,  z)+ P2(r, z) (16) 

where 

ul, Pl ~0(1); u2, P2, vl ~0(e); o 2 ~0(e2). 

Substituting (16) in (7)-(9) using the order analysis of the terms, we obtain 
the following simplified version for the first and second approximation. 

(i) First approximation: 

where 

dpl _ 0 (17) 
dr 

dPl = #D(1 - 12D)ui (18) 
~z 

1 f ,  (rv0 + Oul = 0 
r ~z 

(19) 
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with boundary  conditions 

OUl = 0 
dr 

D = r  ~ r r ~r (20) 

and v 1 =0 ,  at r = 0 ,  (21a,b) 

u 1 = 0  and v 1 =k(p  l - e ) ,  at r = R ,  (22a,b) 

Pl = Pa at z = 0 (23) 

/51 = Pv at z -- L. (24) 

(ii) Second approximation:  

OP2 ( 1 0 2 )  
Or = I~ D -  12D 2 - 3 O 

r 2 Or 2 r 3 Or vl (25) 

Op2 fO2U2 1 OU 2 02/A1 } 
~z = " ~ r  2 + r -~r + ~ z  2 -12(D2u' + Dau2) (26) 

where 

1 0  0u2= 0 
r Or (rv2) + Oz (27) 

02 1 0 1 
D l = ~ r  2-~ r Or r e (28) 

04 04 2 0 3 

D 2 = ~z 4 + 2 Or20z2 ~ (29) r OrOz 2 

04 2 ~3 1 ~2 1 3 
D3 = d-~ -~ t (30) r Or 3 r 2 Or e r 3 Or 

with boundary  conditions: 

Ou 2 
dr = 0  a n d v : = 0 ,  a t r = 0 ,  (31a,b) 

u 2 = 0 and v 2 = kP2 at r = R, (32a,b) 

/52 = 0  at z = 0  (33) 

P2 = 0 at z = L. (34) 



336 DULAL PAL, N. RUDRAIAH AND RATHNA DEVANATHAN 

Solutions for small permeability. As per the physiological data, the 
permeability of the porous capillary is very small, say, of the order of 10 -6 . 
Hence, without giving a descriptive method of solution, we directly write the 
simplified solutions of velocity and pressure fields for small permeability 
obtained for first and second approximations using the analysis of Oka and 
Murata (1970) as follows: 

u~(~, ~ ) ( 1 -  (2) + h--~ {go(O- 1} 

x 1 1 - 3 ~ p p + 6 ~ p ~ - 3 ~  z . (35) 

~RAp 16 {g~(~,-1 ~a}l (36) 

p~(~. ~)=p,-~Ap4 20 3fl 2 1 -3  Apf 3 ~pp 43 

eApR 2 e 
u2(~'r [ (  1 a-~2o) ~8e\4+a8~(2st+~o)g~ 

4 [1 m 1 f12"~ -(16~-+~-~1+s'  l m 1 fl2)~2__~_.~_1+ ) 
64 1 m 1 ] 

x {1 -go(O}  - ~-~ 6~(~) + ~ ~ -  f12 - 1~ (38) 

vz((, 0 = 0  (39) 

P 2 ( ( ' 0 = -  2----~- App-~ ~2 fl2(l+2fla)h~(O6io(a) 

+ h2( 0 + f13 t (40) 

where, r = z/L is the normalized axial distance from the arteriolar end of the 
capillary, a = R/l is the couple stress parameter, 

R Ap=pa-pv , Act=pa-ct, f l=~ ,  

16 [Ii(a) 1 1 
( = R '  2~  2 a ' 

go([)  = lo(~a)/Io(a), gl (~) = 11 (~a)/Io(a). (41) 
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/is the modified Bessel function and other constants appearing in the equations 
(38)-(40) are defined in the Appendix. 

Finally, combining the first and second approximations for the velocity and 
pressure fields we obtain the solutions in a neat form as: 

4) 
U((, 4)= (R2Ap/4ktL) 

I 4 1 = ( 1 - ~ 2 ) + ~ { 0 o ( 0 - 1 }  x[l+efl(O,O]+~f2(~,O) (42) 

4) 
v(~, 4 ) -  (RZAp/4#L) 

-f12 ~ ~ p - ~  2~-~3+~-5x Oo(~)-~a , (43) 

P((,  4) = Pa --  ~Ap + eO2((, ~)Ap, (44) 

where fo(~, 0),fl(0, 4) and 02((, 4) are given in the Appendix. 
Incidentally, in the limit one can deduce the Poiseuille flow solutions from 

(42)-(44) by taking e-~0 and a~oo,  i.e. 

R2Ap (1 - (2), 
u = 4/~L 

v=0, p=pa-~Ap. (45) 

It is also to be noted that our results coincides well with those of Oka and 
Murata (1970) as a--, ov (i.e. Newtonian fluid). 

Solution for streamlines. 
streamline pattern, the streamlines are determined by the equation 

dr dz 
- (46) 

V U 

Integration of (46) and using (42) and (43), yields 

61(() [1 + ell (0, 4)] + 62(()= C (47) 

where 61 (() and ~2(() are given in the Appendix and C is an arbitrary constant. 

In order to understand the behaviour of the 

Volume offlow per unit time. It is interesting to calculate the volume of flow 
per unit time, which is of practical importance. The volume of the fluid per unit 
time across the cross-section at a point z is given by 
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(.R 

Q* = J o  2nur dr. (48) 

Using (42), Q is obtained from (48) as 

0*(4) re2~ [ 4eA~ (49) 
- 2 { l + e f l ( 0 ' ~ ) } +  2g J 

\ 4/~r ] 

where 2 o is given in (41) and A o is recorded in the Appendix. 
The net outflow M of water into the tissue per unit time across the capillary 

wall can be calculated by M =  Q*(0)-Q*(1). By using equation (49), we have 

M =  . T  L - (501 \Ap 

m 1) 
= - -  = k ( p  m - o~)  

" s 

or m'=k(pm-Pi-rcc+ni) (51) 

where m' is the net outflow of water per unit time averaged over the whole 
surface area of the capillary S (= 2rcRL) and Pm is the arithmetical mean of p, 
and Pv. It is to be noted that Pc in equation (1) is replaced by Pro" 

From equation (50) it is seen that M =  0 when Aa/Ap = 1/2, i.e. outflow and 
inflow are balanced across the wall and only outflow for Aa/Ap > 1/2 since 
M > 0 .  For the case when Aa/Ap < 1/2, there is no outflow. 

4. Discussion of Results. A mathematical model describing blood flow 
through a capillary emphasizing the role of permeability of the vessel has been 
developed and closed form solutions have been obtained. Based on the 
physiological experimental data (Oka and Murata, 1970), the results have been 
found out. For example, the average filtration constant k is 60 • 10 -8 cm 
(sec. cm H20 )- 1 for normal mesentric capillaries of the frog and 2.5 • 10- 8 cm 
(sec. cm H20 ) for mesentric capillaries of the dog and cat. In general, the 
parameter e is very small and in particular, it takes the value 4.9 • 10-s for 
mesentric capillaries of the frog. 

As seen from equation (50), A~/Ap must be equal to 1/2 to have the balance of 
outflow and inflow across the wall. Then in such a case ~ = (Pa + Pv)/2 which is 
calculated from the relation A~/Ap = (Pa - ~)/(P, -Pv). Generally, the balance of 
water is not always kept in capillaries (Oka and Murata, 1970). Here, we are 
interested in the case when there is only outflow across the wall so the value of 
Aot/Ap is chosen to be greater than 1/2, i.e. 0.7 and the value of ~ is calculated 
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from the relation ~=0.3  p~+0.7 p~. Since in this case A~/Ap>I/2 so 
< (P~ + pv)/2. Thus, if we choose p~ = 35 mm Hg and p~ = 15 mm Hg then we 

have ~ = 21 mm Hg which is less than half the sum ofp~ and p~ i.e. 25 mm Hg. 
Although several assumptions are involved in our theory, the results 

obtained express fairly well the flow characteristics of blood in a capillary with 
a permeable wall. Both axial and radial velocity components have been 
depicted graphically. The axial velocity profile is depicted in Fig. 2 and it is seen 
that it becomes minimum at the point ~ = A~/Ap while it decreases or increases 
with ~ in the region r < A~/Ap or ~ > AQt/Ap respectively. Thus the axial velocity 
has a decreasing tendency in blood flows as compared to Newtonian fluids. On 
the other hand, the axial velocity increases as a ( =  R/l) increases such that it 
coincides with a Newtonian profile when a is very large (Fig. 3). The streamline 
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Figure 2. Profiles of longitudinal velocity component U for Newtonian and couple 
stress fluids for a = R/I = 3.0, ~ = 4.9 x I0 - 6, A~/Ap = 0.7. 
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Figure 3. Comparison of profiles of longitudinal velocity u for Newtonian and 
couple stress fluids for Aot/Ap = 0.7 and e = 4.9 x 10-6. 
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Figure 4. Streamlines for couple stress fluid. 

patterns of the flow is shown in Fig. 4. The streamlines direct themselves in 
such a way that some are clustered along the central part, while the others 
towards the wall. This might be the reason why the red cells in the blood, in real 
situations, accumulate near the axis of the capillary and the plasma tends 
towards the wall. 

The radial velocity is shown in Fig. 5, which clearly indicates that it vanishes 
at ~ = Aot/Ap while it becomes positive or negative according to ~.6 A~/Ap, 
respectively. Furthermore, there appears outflow and inflow at the wall in the 
region ~<A~/Ap and ~ >A~/Ap. On the other hand, the radial velocity 
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~ . 0 ~ 2 . 0 _  
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Figure 5. Radial velocity profiles for Newtonian and couple stress fluids for 
A~/Ap = 0.7. 
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Figure 6. Relationship between Q and ~ for Newtonian and couple stress fluids for 
Aa/Ap=0.7 and e=4.9 x 10 -6. 

decreases as a increases such that  it coincides with the Newtonian profile for 
large a. Just as in the behaviour of axial velocity, the radial velocity also 
decreases in blood flows. 

We can clearly see from Fig. 6 that  the volumetric rate is min imum at 
= A~/Ap and the effect of couple stress fluid is to decrease the volumetric rate 

of fluid flow. It is also interesting to see that  as the value of a increases the 
volumetric rate increases and finally it becomes a constant  for a Newtonian 
fluid. The decrease of the flow rate with increase in ~ in the region 0 < ~ < A~/Ap 
is caused by filtration and the increase of the flow rate with ~ in the region 
Aoc/Ap < ~ < 1 is caused by absorption. The net outflow will cause the edema. 
However, under  normal  physiological conditions, it may be considered that  
lymphatics will play a role in protecting the tissues against edema. 
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A P P E N D I X  

Constants and functions appearing in (35)-(44), (47) and (49) are as follows: 

1 +221: 312 all z 
a 2 - 21o(a) , a~ = 4/--~' bl - lo(a)' 
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12 
b 2 ~  {16/o(a)(1 + a 2 ) + 3  }, b 3 =12(412-22212 +a3),  

2 

12 / l(a)  b,=4~-7~(ll+8~212+8to(a)(~21~+J)), b6=io(a ), 

12b2 22/2 2 24b3 
d l =  1 - -~-T-+4---~-(a  +24)  ---~-+4812aib6, 

8 16 
d2=l  - - ~ + ~ b  6 , 

b 1 {2alo(a)(a2+l)_i,(a)(a2+4) ) _  2b2 b,l /o(a)_ ~ b5 )~212 
d 3= 1 2R212a 3 R2a 2R 2 2R 2 2 ' 

2 1)__ b~ (a2+4), (d4~!,o'~ 1/2 ' 
d4.=~~ ( a2+ i l l =  t d2 ) 

320d3-d t  f12 fllfl2 
f12= fl~d2 ' f13=l 6 3 ' 

12 
- -  {Ii(a)(a  2 + 2)-alo(a) } , f14= a 

f lS=~ - bs-R2,~212- / l (a)  -+ 12 , 

2f12fl, ~ 4 
f16 = 2fl3 3R21o(a)(1 + 2 f l ~ ) + ~  -~f l s '  

2fl, I 1 ((a) 
flT=RZlo(a), fls=fllfl2fl7, g,(~)= I ~ '  

m 1 - - -  ill( 1 +f16) m2 =fl2fl  2 (1 +f18) 
I+/~7 ' (1 + /b ) '  

m3=l+16io(a ) a22o 1 -  , 21=b6-- ~, 

,6~ 32< , a, 8~,(1 8~ 3 ,~ , '~  

+--;+~) 
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hl(()=lo(~aj(l+~a2 ) II( (a),-2 2 ,, 

2bl 4b 2 /o(~a) 
h2(~)=~-hl(()  (2a2 l 2 (b412-2bl)-),212R2 +bs, 

~a 1 1 if3 
<h(O = o,(0-~, <h(O=(do,(O- ~,  

3 
t~3(~)={1_~8~ + ~ } { l _ g o ( r  

4 
fo(~, o) = ~ {Oo(0-1}, 

8 2 ( _ ~ _ 2  A~ z _  

l r l 6 e  32 
f2(r 0)=Too/a2& {g0(O-r 2(1 -r  + ~  {g0(0-C}m3 - ~ 6  63(r 

+ y  a- ~ {4(1-Oo(Ot-a ~ x (1-~)} + ~,a--- ~ ~ (1-~2) 

h,(:)]t I 
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