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A stochastic model for the chemotherapy of experimental tumors is presented. The focus of 
this model is on the presence of drug-resistant mutants and their influence on eventual 
treatment outcome. Equations are derived for the joint probability-generating function for 
the number of chemo-sensitive and chemo-resistant cells. The model is extended to two 
drugs and it is shown how the model may be used to make deductions regarding the optimum 
scheduling of therapy. 

1. Introduction. Resistance to chemotherapy represents a well-recognized 
barrier to the effective t reatment  of cancer. The cause of this resistance has 
been the subject of intensive investigation in both animals and man. Several 
mechanisms have been identified which include intrinsic resistance, 
pharmacologic sanctuary, locational resistance, phase resistance, Go or 
resting cell resistance and acquired resistance. Before continuing to discuss 
the last of these we will briefly mention the nature of each of these proposed 
mechanisms. 

Intrinsic resistance is an ill-defined term used to indicate the de novo 
insensitivity of tumor  cells to specific anticancer agents. Possible causes of 
such resistance would include the carry over of resistance displayed by the 
normal cell type to certain anticancer agents. Alternatively the tumor 
initiating event itself may coincidentally produce changes in cellular 
biochemistry which inhibits the action of the drug. Pharmacologic sanctuary 
occurs when the tumor  arises or metastasizes to a site to which drug access is 
limited by the usual routes of administration, e.g. the brain. Locational 
resistance occurs where certain cells are not exposed to therapeutic doses 
because of their position within the tumor.  This would be likely to arise for 
cells located distantly from the capillary bed when treated with larger 
molecular drugs which have limited perfusion capability. Phase resistance 
occurs when a drug with cycle-specific activity is used upon a tumor  
containing cells in the various phases of the cell cycle. Cells not in the 
appropriate phases will escape unaffected and the tumor  as a whole may 
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exhibit resistance. Similarly cells in Go can escape the effects of cycle 
specific anticancer agents and may display a reduced sensitivity to all drugs. 

Acquired resistance represents insensitivity, at the cellular level, which 
can develop during the lifetime of the tumor. The isolation and transplanta- 
tion of cells displaying this phenomenon indicate that this process is under 
genetic control (Ling, 1982). A number of cellular mechanisms of resistance 
have been identified as arising in this way including decreased drug uptake, 
increased drug efflux, altered drug target and amplified drug target. These 
mechanisms vary in their specificity with some conferring resistance to a 
single drug whilst others may involve a spectrum of resistance to a variety of 
drugs. In vitro experimentation appears to indicate that these variants arise 
at random times when specific genetic changes occur in tumor cells which 
had nor previously been insensitive. In vivo evidence from mouse 
leukemias accords with the observations in in vitro systems although very 
little investigation has been done because of the great cost and complexity 
involved in in vivo experimentation (Law, 1952). Of course, evidence in 
man from spontaneous tumors is not available. Although the origin of 
acquired resistance in spontaneous human tumors has not been established, 
its existence has been inferred in several cases where phenotypic altera- 
tions, similar to those seen in experimental systems, have been observed in 
tumors not responding to chemotherapy (Carmen et al., 1984; Trent et al., 
1984). 

The relative importance in clinical disease of the different modes of 
tumor resistance on cancer chemotherapy failure is difficult to assess except 
in isolated cases. However, the observation of tumor response, followed by 
later regression at the same site in the face of chemotherapy represents a 
common clinical problem. The other mechanisms previously discussed can 
be amended to accord with the observation but only acquired resistance 
directly predicts this behaviour. Thus it seems both reasonable and 
desirable to model acquired drug resistance. 

2. Growth Model.  In order to model the development of drug resistance it 
is first necessary to specify a model for tumor growth. A large number of 
such models are available; however, we restrict attention to those which 
describe growth at the individual cellular level. From these we select one 
proposed by Till and associates (Till et al., 1964; MacKillop et al., 1983) in 
which cells are assumed to be in one of three compartments based on their 
proliferative potential. The structure of this model will be briefly reviewed 
here. The three compartments consist of stem cells, transitional cells and 
end cells and are defined as follows: 

(i) Stem cells (Co); cells capable of unlimited proliferation. At each 
division a stem cell will give rise to two stem cells with probability p, 
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two transitional cells with probability q and one of each type with 
probability 1 - p - q .  

(ii) Transitional cells (C); cells capable of limited proliferation. This class 
is comprised of disjoint subclasses, C1, . . . ,C~ where n is referred to 
as the clonal expansion number.  Transitional cells which are the 
immediate  result of a stem cell division are entered into subclass C1. 
Upon division a single C1 cell gives rise to two C2 cells. This is 
analogously repeated for cells in C 2 ,  . . . ,Cn+ 1. 

(iii) End cells (Cn+ ~); these are functionally dead cells incapable of further 
proliferation. Two end cells are formed by the division of a single C, 
transitional cell. 

Dividing cells ( C o , . . .  ,C,) are assumed to divide with a fixed and 
common interdivision time. All cells are assumed to behave independently.  
We will assume that cells may be lost from each compar tment  (representing 
migration to metastasis, cell death, etc.) at a rate li, for i = 0 , . . .  , n + l .  Let 
Ci(t), i=0,  . . . , n + l  be the number  of cells in class Ci at time t. 

The behaviour of the model  is quite complex because of the non- 
independence of the various classes Cg(t). However,  much research has 
been done in the asymptotic behaviour of the branching processes of this 
type and it can be shown using known results (Mode, 1971) that 

c(o 
n + l  
v c (t) 

i = 0  

-*v (1) 

where C=[C0(t), . . . ,C,,+fft)] and v is the left eigenvector associated with 
the maximal eigenvalue of the matrix, M, where M=(Mo,  �9 �9 �9 ,Mn+1)' 

M,=eIC(1) I 

n + l  

i~=o vi= 1 

and ei is the vector with 1 in the ith column and 0 elsewhere. The maximum 
eigenvalue 9 of M is also the asymptotic growth rate of the tumor  which can 
be explicitly shown to be: 

p=(1-1o)(l+p-q)= lim ZCi(t+l) 
t-~o~ ZCi(t) (2) 

We require that 9>1 so that the tumor  represents a growing system. 
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As we are usually concerned with large collection of cells in mature 
tumors, we will have, for a range of parameter values, that 

c(t) 
will be approximated by v. 

n + l  
c/(0 

i=0 

The deductions we wish to draw from this are that for a clinical tumor 
(with biologically plausible values for p, q, n, etc.) that growth will be 
approximately exponential with approximately fixed proportions of the 
various cell types and that elimination of the stem cell compartment is 
necessary and sufficient for cure of the tumor. 

This suggests that if we are only concerned in the long run with behaviour 
of the tumor, i.e. whether it is curable or not, we need only consider the 
behaviour of the stem cell compartment Co. The number of stem cells prior 
to treatment can be estimated by 

n + l  n + l  

PO i~O Ci(t), where/Z o Ci(t) 

is the total tumor size. Here we will restrict attention to the curability of the 
tumor and thus only consider the stem cell compartment. 

Now for the simplified case 11=12 = �9 �9 �9 =ln=l we have: 

v~ l 
(1 - 10)(1 + q - p )  +2(lo-1) 

where we assume 

2(1- l )  :~ 1. 

P 

We propose to develop a model for acquired resistance among stem cells 
in a continuous time framework since this permits somewhat simpler 
mathematical development and also should better reflect the growth 
process of tumor cells which do not have fixed interdivision times. From 
their perspective of the stem cell compartment,  a division of a stem cell 
which results in two stem cells is a birth of a new stem cell and will be 
referred to as a birth. A stem cell division which results in a single stem cell 
and a single transitional cell is a situation in which the total number of stem 
cells is unchanged and will be termed a renewal. Similarly, either the 
migration, death or the division of a stem cell to form two transitional cells, 
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is a loss and will be referred to as a death. If we assume that these events 
occur with probability bAt, cAt and dAt, respectively, to a single cell in the 
interval [t, t+At] then 

b ~p(1- lo)  

c ~ ( l - p -  q) ( 1 -  lo) (3) 

d ~ lo+q(1-]o) 

and by requiring that the expected growth rate be the same for both the 
continuous and the discrete models of tumor growth we have: 

b-d=ln(1-lo)+ln( l +p-q) .  (4) 

The relationships represented in (3) and (4) can then determine b, c and d 
for given p,  q and lo. Here t is measured in units of mean interdivision times. 
All subsequent discussion will relate to stem cells unless otherwise indicated. 

3. Development of Resistance. If a cell is sensitive to a particular drug we 
will say it is in state R0, if resistant we will say it is in state R1. By resistant 
we mean that a cell is less likely to be killed by exposure to a fixed dose of 
the drug than the parent (sensitive) line of cells. We will assume that 
transitions from R0 to RI will occur at frequencies determined by the 
following parameters: 

c~= probability that a single resistant cell will be produced during a birth 
occurring in a sensitive stem cell 

13= probability that a single resistant cell will be produced during a 
renewal occurring in a sensitive stem cell 

~= rate (in time) at which cells convert spontaneously from sensitivity to 
resistance. 

All progeny of resistant cells will be assumed to be resistant. Let Ro(t) 
and RI(0 be the number of sensitive and resistant cells respectively at time 
t, and define Pij(t) a s  follows: 

Pij(t)=P{Ro(t)=i, Rl(t)=j}. 

Assuming that the probability of two events in time At, is of o(At), then 
we may use the Kolmogorov forward equations to give the following series 
of differential equations for Pq(t). 

dPij(O _ [(b + d)j+ (b + d+ rl)i]Pq(t) + b(1 - o0( i -  1)Pi-lj(t) 
dt 

+[b(j-1)+abi]Pq_~(t)+d(i+ l)Pi+i/+dfj+ l)Pij+~(t) (5) 

+(~)(i+ l )Pi+ ~j_,(t) 

where Pq(t)=O for i<0 or f<0  and "q=13c+'y. 
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Now if we let ~(sl,s2;t) be the probability-generating function of the 
process, i.e. 

oo oo . . 

+(sl,s2;t) =i~o j~o Pij(t)sl'sj 

then using equation (5) we can obtain the following differential equation for 
d~(sl,s2;t) (by multiplying s~s~ and summing over i and j) 

2 0~b 0~) 

0..._~ = 0 t  i=1 • [bsi-d][si-1] ~s i + (o~bSl+'q)(s2-s,) os 1- . (6) 

This equation may be solved by the method of characteristics (John, 
1982) and yields the following solution: 

where 

~b(S 1 ,S 2;t) = +(x(t),y(t)) 

and 

i.e. 

d(1 -$2) q- (bs2- d) exp ( - 80 
y(t) = b (1 - s2) + (bs2- d) exp ( -  80 

f(t) 
x(t)=y(t)+ dv 

f(  t) = e-(a+ ~d+,),[b ( 1 --s2) + ( bs2 - d)e- ~t] -2 + ot 

8 = b - d  and I~(S1,$2)=r ). 

From this relationship we may obtain directly expressions for 

mo(t)=E[Ro(t)] and ml(t)=E[R,(t)] 

mo(t)=mo(O)eCa-~b-v) ' 

m, (t) = [m, (0) + too(O) (1 -- e-(~b +~),)lea,. 

Let N(t)=Ro(t)+Rl(t), then we have the well-known relationship 

lim n{N(t)=O}=lim ~(Sl,S2;t)=~(e, e) 
t - - -~ ~ I - - ~  oo 

where e=d/b. 

(7) 

(8) 
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Thus the probability-generating function in equation (7) includes 
tumor growth patterns destined to become extinct. In wishing to examine 
the development of resistance in tumors of clinical dimension we more 
reasonably require P{Ro(t),RI(t)[N(t)=N} where N is the observed 
number of stem cells. This distribution is difficult to obtain and a number of 
approximations are possible (Day, 1984; Birkhead and Gregory, 1984). As 
a first approximation to conditioning upon N(t)=N, we will consider the 
distribution P{Ro(t),Rl(t) [ N(oo)>0} which excludes spontaneously extinct 
tumors (Coldman and Goldie, 1985). It is possible to show that the 
probability-generating function of this distribution +'(s,,s2; t) (Coldman 
and Goldie, 1985) is given by 

~ b ' ( s l , s 2 ; t ) = [ l - t ~ ( e  , 8)] -1  [f~(S1,S2;O--dp(ES1,ES2;O]. (9)  

The distribution of the number of stem cells, at time t, is then approxi- 
mately geometric with mean (1-e)-me ~t (Coldman and Goldie, 1985). Thus 
fixing the mean number of stem ceils uniquely specifies this distribution and 
we may compare the probability-generating function of resistant cells for 
various parameter values and for fixed distribution of tumor sizes using 
equation (9). Equation (9) may not be easily inverted to give the distribu- 
tion of the number of resistant cells, however, we can use it to calculate 
several quantities of interest. 

When the tumor has grown from a unicellular origin, i.e. t~(sl,se)=Sa we 
have the following mean values 

rr6( O=(1- e )- lm~ t) (10) 

m{(O=(1-e)-aml(O 

where too(t) and mx(t) are as before. 
Let 

m'(t) = rn6(t) + m;(O - ( 1 - e) -le~t (11) 

that is m'(O is the expected number of stem cells at time t. In most cases of 
human cancer the age t of the tumor is unknown. If the observed mean 
number of stem cells is N, then we may use (11) to estimate the age of the 
tumor (if t is unknown). That is 

t=8- ] ln[N(1-e) ] .  (12) 

Consider the expected fraction of resistant stem cells, F, say where 

F= mffO 
m ' ( O  " 
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Using (10) and (12) we have 

F = ( 1 -  e-(~b+~)9 = 1 - [ N ( 1 - e  )] -(,~6+~)/~ 
(13) 

Examination of (13) shows that as d increases F increases. That is, the 
more rapid the rate of natural cell death the larger is the accumulation of 
resistant stem cells for a given overall number of stem cells. This result is 
not surprising since as d increases, the growth rate of the tumor slows, thus 
giving a longer time for resistant cells to emerge. Equation (13) may be used 
in experimental cases to estimate the mean proportion of resistant cells, 
however, it is quite variable and observing this quantity in experiments does 
not permit accurate estimation of the parameter (o~b+-q). 

An important quantity, which is of clinical interest, is the likelihood that 
the tumor may be eliminated by chemotherapy. The probability is, of 
course, influenced by a large number of factors other than intrinsic 
resistance. We will assume here that other forms of treatment failure can be 
ignored, so that we may use the equations developed to estimate the 
curability of the tumor. Under  circumstances where the drug-mediated kill 
of sensitive cells is high, and the kill of resistant cells zero, this likelihood is 
equal to the probability that, at the time of application of the drug, any 
existing resistant cells go spontaneously extinct (due to their inherent death 
rate). Let this probability be It, where t is the time of application of 
therapy, then one can show (Coldman and Goldie, 1985) 

Pt=rb' (1,e ;t). (14) 

Now using (12) and (9) we may consider Pt as a function of N where N is 
the size of the stem cell compartment when the treatment is first applied. 
Equation (14) is plotted as a function of N in Fig. 1, where we see that Pt 
declines as the tumor increases in size. However P, is not strongly depend- 
ent on d, in contrast to what we found for F [equation (13)]. In fact for given 
values of the other parameters the curves Pt are essentially coincident for all 
d. Thus the increase in the number of resistant cells with increasing d is 
balanced by their increasing death rate so that Pt is unchanged. To 
summarize we can see that if all parameters are fixed except d, then those 
tumors with higher death rates will have a higher proportion of resistant 
stem cells, but their curability will not be affected. 

The function specified by equation (14) is quite complex but can be 
approximated by a function of simpler algebraic form (Coldman and 
Goldie, 1985). This function may be used in the analysis of destructive 
experiments where cell lines are exposed to a drug. The probability of a cell 
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Figure 1. A plot of the probability of 'cure' PN as a function of the number of 
stem cells N, that is equation (14) using the substitution for t in equation (12). 
The curve to the left plots the function for c~ =5 • 10 -4, "q = 5 • 10 -4 and the one to 
the right is for c~=5 • ]0 -6, ~1=5 x 10 -6. The curves are essentially coincident for 

all values of d. 

line surviving is then given by equation (14). However, care must be taken 
in using this equation since it assumes that resistant cells survive administra- 
tion of the drug with probability one, that the cells considered are all stem 
cells and that they are treated at the same fixed time after initial plating (or 
implantation). More complex experimental situations may be examined 
using the equations developed in this and the next section. However, 
simultaneous estimation of all the required tumor parameters would 
typically involve a series of different experiments, designed to estimate each 
parameter. 

In cases where the effect of the drug on resistant cells is appreciable, then 
the previous considerations may be unimportant since the drug may be able 
to make the net growth of both the sensitive and resistant stem cells sub- 
critical and thus extinguish the tumor. Alternatively, if the drug cannot 
make the net growth of the sensitive cells subcritical then the tumor will 
always be incurable with this drug and again the previous considerations do 
not apply. 

4. Resistance to Two Drugs. In many clinical and experimental tumors, 
more than one drug is available to treat a tumor. If these drugs may be 
given together then as a first approximation we may treat their combination 
as a single drug and model the development of resistance as before. 
Alternatively if they cannot be given together then we must consider a more 
complex situation where a variety of drug-resistant states occur. We will 
assume that the drug-resistant cells arise in the same way as before. 

Thus consider two drugs, T1 and T2, and define the following states R0, 
R1, R2, R3 where a stem cell is in Ro if it is sensitive to T1 and 7'2, in R1 if it is 
resistant to T1 and sensitive to T2, R2 if it is sensitive to T1 and resistant to 
T2, and in R3 if it is resistant to both. 
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Generalizing the considerations for single drug resistance we may define 
Ro(t), Rift), R2(t) and R3(t ) as the number of stem cells in states Ro, R1, R2 
and R 3 at time t. Letting ai, [3i, '~i ( i= 1,2) be the rates at which sensitive cells 
become resistant to Ti (see section on single resistance), and let or3, 13 3 and 
"Y3 be the rates at which sensitive cells become resistant to both drugs. 
Define, in addition, rates ai,3, [~i,3 and ~,3 as the rates by which cells 
resistant to T~ become resistant to both drugs (that is acquire resistance to 
the other drug). 

We may proceed as before to write down the Kolmogorov forward equa- 
tions for this process. However these equations may not be simply solved. 
The process may be considerably simplified if we assume that the stem cells 
grow exponentially, i.e. Ro(t)=A exp {kt}. We will assume that only one 
stem cell is present at time t=0 and that this cell is sensitive. In this case we 
will assume that A = ( 1 - e )  -1 and k=~-al-a2-a3 where ai=aib+~3iC+~li for 
i=1,2,3. This choice of A and k ensures that the growth rate of the stem 
cells is equal to the expected growth rate when they grow randomly, after 
growth paths which result in spontaneous extinction have been excluded 
[see equation (10)]. 

Let Pqk(t)=e(Rl(O=i, R2(t)=j, R3(t)=k } be the distribution function for 
resistant cells which have arisen from sensitive cells, and 

o o  ~ o o  

�9 (s;t)=~(sl,Sz,S3;t) = iX=o jX=o kZ=oPijk(t) S{ S~ S~ 

then we may use the Kolmogorov forward equations to obtain a series of 
linked ordinary differential equations for Pijk(t). Using these equations we 
may derive the following differential equation for qb(s;t) [in the same way as 
(6)]. 

O~ _ • [bsi-d][si-1 + a 3 ( $ 3 - 1  ) Ro(t)~ 
Ot i=1 

q- i~ll ai (Si - -1)Ro( t )d~q-(S3-Si ) (oLi3bs i~- 'q i3)Of~t ,  , Osi ' 

where -qi,3= ~i,3C-{-~ti,3 for i= 1,2, ai=etib +'qi= 1,2,3. 
This equation may be solved using the method of characteristics to yield: 

where 

2 
In �9 (s;t)=IoA+A Z aili(si) (15) 

i=1 
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, e k(t-v) dv 
10= (al +a2 +a3)g(s3-1). ~ 

b(1 ~s3~ ~ ~bs3 ~ d~e ~ 

l i, 
e kC'-") gi(u) du 

t 

[g2-,~,.; (s--s3)]-' -b (1 -a i .3 )  I 0 gi(v)dv 

gi(v)=e-(~+d"i.~+"'.-O '' [b(1-s3)+(bs3_d)e-~V]-2+~,.3. 

This represents a rather complex function and it is not easy to deduce the 
underlying joint distribution. 

Evidence from experimental tumors indicates that a constant proportion 
of homogeneous cells survive administration of a drug at fixed dose 
(Skipper, 1978). Assuming that cells respond to therapy independently this 
implies that there is a probability, rr(D), that a cell will survive administra- 
tion of the drug at dose D. Thus define 

wi.i(D)=probability a cell in state Rj (j=0,1,2,3) will survive a 
course of drug T~ at dose D. 

If we let X; 4 be a random variable which takes on the value 1 if a cell in Rj 
survives administration of the Tg and 0 if is does not survive then the 
probability-generating function for Xij, ~ij(s), is 

~i,j(S) ~-~ 1 - ' t r i . j (D  ) + ITi,j(D)s j. 

Thus if we let tk be 
probability-generating function for {Rl(t),R2(t),R3(t)} then we have 

the time of the kth treatment and 4'(s;t) be the 

and 

~i(IS) : (~i.1 (S), ~i,2 (S), ~i,3 (S)) 
(16) 

go(tk) ----"rfi,oRo(t-k). 

where drug Ti is given at time tk. 
Between treatments the existing tumor cells will divide and new resistant 

cells will be produced. If we take a single cell in Ri(i= 1,2) at time 0 then the 
probability-generating function of the number of,cells in R i and R 3 at time t 
derived from this cell is ~/(s;t) where ~i(s;t) is given by 4'(sl,s2;t) in equation 
(7) with et=eti,3, "q---lqi,3 , Sl=Si and s2=s3 for i=1,2. Similarly for a single cell 
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in R3 at time 0, the probability-generating function of the number of cells 
derived from it at time t, ~3(s;t) is given by y(t), [equation (8)] with s2=s3. 

Thus for t~t<tk+l we have 

qb(s;t) =+( ~(s;t--tk) ;tk)~(s;t--tk) (17) 

where 

~(S;U)- ' - (~I(S;U) ,  ~2(S;U), ~3(S;U)) �9 

Thus by recursive use of equations (16) and (17) we can calculate the 
probability-generating function at time t in terms of that at time tl. The 
probability-generating function at time tl is given by (15). These functions 
are quite complex and it is not possible to calculate the joint distribution of 
resistant cells. In analogy to equation (14) however, we can calculate the 
probability that the resistant cells will be eliminated by the therapy PE, as 

PE=qb(e, e, e;tj) (18) 

where b is the time of the last cycle of therapy. 
We can similarly calculate the marginal probability that the cells of one 

particular type are eliminated. For example, the marginal probability that 
the R1 cells are eliminated in qb(e,l,1;ti). Using these formulae [equations 
(16) and (17)] we can calculate the effect of various treatment protocols on 
eliminating the various subpopulations of cells. 

The probability that the sensitive stem cells are eliminated can be 
estimated by e n~ although this is of course approximate. Examples of 
calculations made using this (Coldman and Goldie, 1983) and other (Day, 
1984) models have been presented elsewhere and will not be repeated here. 

We may use these calculations to examine the effect of various strategies 
in applying two treatments so that PE is maximized. When the treatments 
are equally effective, i.e. O~l~---Ot.2, Oq,3-~-~Ot2,3, qql=l]2,  ~1,3=1]2,3, Trl,0='ri'2,0, 
~r1,l=Ir2,2, ~a,2=w2,1 and 7rl,3='ff2,3 it can be shown (Coldman and Goldie, 
1983) that strategies which alternate TI and T2 are optimal in the sense that 
they minimize E[N(t)]. Protocols which maximize Pz cannot in general, be 
uniquely identified without explicit knowledge of the parameters involved. 
However, it is possible by examining the effect of various strategies of 
applying 7"1 and T2, for models with likely values for the various tumor 
parameters, to construct general rules for the structure of optimum proto- 
cols (Day, 1984). Alternatively, one may consider the parameter values to 
be random variables which follow a distribution. The distributions may be 
thought of, in this circumstance, as reflecting the level of ignorance as to the 
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true value of the parameter .  In principle it is then possible to examine the 
effect of various levels of ignorance on the resulting opt imum protocol.  
However ,  little work has been done using this approach, al though the case 
of single resistance has been examined (Coldman and Goldie,  1986). For  a 
comprehensive discussion of this problem in a quite general setting, see Day 
(1984). 

5. Conclusion.  Intrinsic cellular resistance has been recognized, both 
experimentally and clinically, as a substantial problem in the planning of 
effective cancer chemotherapy.  Using basic probabilistic models for the 
development  of this phenomenon  it is possible to examine the effect of 
various t rea tment  protocols and design strategies which maximize the 
likelihood that  this phenomenon  can be overcome. These models are still 
quite rudimentary  and require further development  to more accurately 
model human cancer and its response to t reatment .  However ,  if the 
development  to date is reasonably representative,  we believe that they will 
provide greater insight into t rea tment  failure and aid in the logical p lanning  
of cancer therapy.  
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