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A model nonlinear network involving chemical reactions and diffusion is studied. The
time evolution and bounds on the steady state solutions are analyzed. Spatially ordered
solutions of the equations of the dissipative structure type are found by bifurcation
theory. These solutions are calculated analytically and their qualitative properties are
discussed.

1. Introduction. Recent studies (Glansdorff and Prigogine, 1971; Nicolis and
Portnow, 1973; Sattinger et al., 1973) have shown that nonlinear chemical net-
works may evolve to many different stable configurations. These configura-
tions may be uniform steady state solutions or they could be spatially or tem-
porally organized states. Which behavior is observed depends on the para-
meters in the equation and/or the initial conditions of the system. As has been
shown by Glansdorff and Prigogine (1971), one can only get space dependent or
non-steady state solutions if one is more than a certain critical distance
from thermodynamic equilibrium. These solutions have been termed
dissipative structures and their properties may be contrasted with those on
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the thermodynamic branch which are the extrapolation of the equilibrium
behavior.

There is experimental evidence for the formation of dissipative structures in
both biological and nonbiological reactions. The Belousov—Zhabotinski re-
action is a good, nonbiological, example (Winfree, 1974). It sustains many
spatiotemporal patterns as well as uniform limit cycle type oscillations. There
has been some controversy as to the role of diffusion in the formation of the
horizontal bands observed in this reaction, as Kopell and Howard (1973) have
argued that they may be produced through a suitable synchronization of local
limit eycle-type oscillators rather than by a symmetry breaking induced by
diffusion.

Several biochemical reaction sequences at the cellular level exhibit dissipative
structures (Prigogine et al., 1969; Goldbeter, 1973). On a more fundamental
level, development and morphogenesis (Turing, 1952; Babloyantz and Hiernaux,
1974, 1975) as well as the prebiotic evolution of biopolymers (Eigen, 1971;
Prigogine ef al., 1972) have been analyzed within the framework of dissipative
structures.

The biological importance of the spontaneous emergence of order in a pre-
viously structureless system is obvious and has been well-recognized. Ther-
modynamic effects of self-organization have also been found. These include an
increase of entropy production per unit mass upon the transition to a dissipative
structure from the thermodynamic branch (Prigogine et al., 1972).

In this paper we shall analyze the evolution and properties of the dissipative
structures arising in nonlinear reaction-diffusion systems. Although our me-
thods are quite general, our analysis will be limited to a particular reaction chain
involving two chemical intermediates and a trimolecular step. This is the
simplest stoichiometric reaction which has instability on the thermodynamic
branch (Hanusse, 1972; Tyson, 1973; Tyson and Light, 1973). Consequently
this model may be considered as a prototype of any system leading to dissipative
structures in a manner analogous to the role of the harmonic oscillator as a
prototype in classical or quantum mechanics or to the Volterra—Lotka model in
predator—prey interactions.

The model reads:

A—->X
B+X—-Y+D (1.1)
2X +Y—-3X

X - E.

A, B, D, E are initial and final produects whose concentrations are imposed
throughout the system. All reaction steps are irreversible with rate constants
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equal to unity, and the system (1.1) will be analyzed in the case of a 1-dimen-
sional medium.
The equations for this system are:

X 2X
E%:Q?F—B+UX+PY+A
oY 2y (1.2)

= = Dz_a?i + BX — X?7Y.
Here0 < r < landt > 0. X,Y, 4 and Bare the concentrations of the res-
pective chemicals and D,, D, are the (positive) diffusion coefficients of X and Y
respectively. We are assuming that Fick’s law holds.
When A, B are constant throughout the system (1.2) admits a solution on the
thermodynamic branch:

Xor) = A Yor) = BJA. (1.3)

To avoid spurious boundary layer effects, one imposes the boundary con-
ditions
X(0,8) = X(1,%) = 4,

(1.4)
Y(0,8) = Y(1,8) = By/4, fort >0
and to make this a well-posed problem one adds the initial conditions
X(r, 0) = Xiy(r)  Y(r, 0) = Yyy(r). (1.5)

Some of the results of our analysis of (1.2), together with a qualitative com-
parison of dissipative structures and Thom’s theory of morphogenesis have
already been described (Nicolis and Auchmuty, 1974). In this paper we shall
give a detailed analysis of the equations.

In Section 2, it is shown that for any non-negative initial conditions, (1.2) and
(1.4) have a non-negative solution [X(r,t), Y (r, t})] which continues for all
time. Some properties of the steady state solutions of these equations are dis-
cussed in Section 3, while Section 4 presents a linear stability analysis of the
thermodynamic branch (1.3). From this analysis, one can infer the bifurcation
of new steady state and time periodic solutions. Section 5 is devoted to con-
structing the new steady state solutions and in Section 6 we discuss the qualita-
tive properties of the resulting dissipative structures. In Section 7, we study
the bifurcation when the condition of having a uniform medium is relaxed. In
this case, spatial “‘dispersion” leads to localized dissipative structures. The
final Section 8 is devoted to some concluding remarks on the thermodynamic
aspects of dissipative structures and to other comments.
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Throughout this paper, many of the mathematical details will only be
sketched. This has been done to avoid introducing the often elaborate
machinery of the theory of partial differential equations. However it is hoped
the proofs are sufficiently descriptive to enable those familiar with partial
differential equations to reconstruct the complete details.

in a following paper by Mme. Herschkowitz—Kaufman (1975) the theoretical
analyses of this paper are compared with the results of computer simulation.
The wave-like solutions of these equations will be analyzed in a forthcoming
paper. Some other results on these equations have recently been obtained by
Boa (1974). *

2. The Evolution Equations. In this section we shall prove some results about
the nonlinear parabolic system of equations (1.2) and (1.4)—(1.5). The main
result is that if the initial conditions X;,(r) and Y ,(r) are non-negative and if 4
and B both obey certain conditions, then there is a non-negative pair (X(r, £),
Y(r, t)) of solutions of the system defined for 0 < r < 1and 0 < ¢ < co. These
solutions are infinitely-differentiable functions of both r and £ on (0, 1) x (0, c0).

For much of this paper we shall be particularly interested in the case where A
and B are uniformly distributed and time-invariant so that

A{r,t)y = 45 > 0 B(r,t) = By > 0 for0<r<1,t>0. (21)

However, in this section we shall only require the following:

(i) A(r,t) = A(r) >0 and B(r,t) = B(r) >0 forO0O<r < landt > 0.
(ii) A(r) and B(r) are continuous on [0, 1] and infinitely often differentiable on

(0, 1).

(iii) 4(0) = A{1) = A, and B(0) = B(1) = B,.

To treat these equations it is convenient to introduce new variables which
obey homogeneous boundary conditions.

Let
x(r,t) = X(r,t) — 44 2.2)
y(r,t) = Y(r, ) — B(r)/4,.
Then (1.2) becomes
& _p 2%, e + A2 + h A(r) — 4,]
A 15?"‘[(’)“ Je + A%y + Az, y) + [A(r) 0 2.3)
o 0%
Z= D, 2L — Bir)e — 43y ~ bz, y) + br)
where
2
h(z, y) = Br) 42 + xy(24, + )  b(r) = D, d’B (2.4)

Az T A, dr? (x)-
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The boundary and initial conditions are
2(0,8) = a(1,8) = y(0,8) = y(L,t) = 0 ¢ > 0 (2.5)
and
x(r, 0) = a(r) = Xyu(r) —
y(r, 0) = yo(r) = Yiu(r) — B(r)/4,.
If w(r, £) = x(r, t) + y(r, t) then the equation for w is linear. Upon eliminat-
ing z from (2.3) in favor of w one gets

(2.6)

ow 2w %y
i D, — a7z T (Dg — DI)W —w +y + [A(r) — 4o] + b(r) 2.7)
oy
Y — D, ZY — By + [Bwr) - 43l - 9w, y) + )
where
glw,y) = (w — 9 B(r)[4do + (w — y + Ao’y — A3y (2.8)
w obeys the initial and boundary conditions
w(r, 0) = wy(r) = xo(r) + yo{r) 0<r<1 2.9)
w(0,8) = w(l,t) =0 fort > 0. (2.10)

To prove our results, we need to introduce some function spaces. L3(0, 1)
is the usual Hilbert space of real-valued Lebesgue integrable functions defined
on [0, 1]. The inner product is given by

(u,v) = f 01 u(ryv(r) dr

and the norm on L2(0, 1) is
lulle = (w, u)r2

For integral m, C™[0, 1] is the set of real-valued functions on [0, 1] which are
continuously m-times differentiable on [0, 1]. It is a Banach space under the

norm
m

le)m = Z max

=00=<r

)

Finally H}(0, 1) is the Hilbert space obtained by completing the subspace
C}[0, 1] of all functions in C[0, 1] which obey u(0) = u(1) = 0 with respect to

the inner product
((u, v)) du dv + wv|dr
= dr dr )

We shall write |[u],,, = ((», u))uz_
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THEOREM 2.1. There exists T > 0 such that (2.3)-(2.4) has a solution
(x(r, t), y(r, 1)) defined on [0, 1] x [0, T') and obeying the conditions (2.5)—(2.6).
The functions x, y are infinitely differentiable functions on (0, 1) x (0, T').

Proof: The equations may be written

ox Dax

% — Dz — [B0) — 1k — 43y = bz, y) + 40) — 4,

0
Y _ D, ZY 4 B + A3y = —hiw,9) + bir).

Let GY(r, s, t, 7) be the Green’s function for the linear parabolic operator given
by the left-hand side of this expression and the boundary conditions. Then this
system may be rewritten as a nonlinear system of integral equations

(r, O _ ' Zo(s) e T
[?/(7’, t)] - fo Glr, 5,4, 0) [yo(s)] ds + fo fo Gr, 5,8 7)
h{a(s, 7), y(s, 7)) + A@s) — 4
g [—W(S: 7), y(s, 7)) + b(s) 0] dsdr. (2.11)

This Green’s function is a 2 x 2 matrix-valued function and has the property
that for each 0 < = < ¢, the linear operator defined by

g, 7) [””(’] f &r, s, t, 7) [“Esg] : (2.12)
is a compact map of C[0, 1] x C[0, 1] into C[0, 1] x ([0, 1].
Using successive approximations, one can now prove that for sufficiently

small 7' > 0 this equation has a solution [ g t;] defined on [0, 1] x [0, T). =
and y are continuous functions. Now the usual regularity methods of parabolic
equations imply that z and y are infinitely often differentiable.

Letting

X(r,t) = Ay + z(r, t)
Y(T: t) = B(r)/AO + y(r, t)
one gets a solution of (1.2) and (1.4)—(1.5) defined on [0, 1] x [0, T').

THEOREM 2.2. Suppose (X(r,t), Y(r, 1)) is a solution of (1.2) and (1.4)—(1.5)
for 0 <t < 7 and that X,,(r) = 0 and Yi(r) = 0. Then

X(r,t) = 0, Y(r,t) = 0 for0<7'<10<t<'r

The proof of this is sketched in the appendix on the maximum principle.
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We would now like to show that one can take 7' = + oo in Theorem 2.1. In
other words to show that the solutions of the equations can be continued for all
time without ‘“blowing up”. To do this one needs to use results about ‘“weak’
solutions of (2.7)—(2.10), and the fact that they obey the a priori bounds given
in the following lemma.

In the notation of Lions (1969) we are looking for solutions of (2.7)-(2.10) in
the set

X ={u= (wy):uel?0,T; Hy0,1) x H}0,1)] and

du/dt € L2[0, T'; Hy*(0, 1) x Hg*(0, 1)]}.
Let
K = {(, y): we HY0, 1), y € HY(0, 1), y(r) > — B()/do, wlr) = —Aq + y(r)}.

We shall be particularly interested in solutions [w(t), y(¢)] which lie in K.
A weak solution of the system (2.7)-(2.10) on the interval (0, 7) is a pair of
functions (w, y) in X obeying

ad;{(w(t): ?) + (@), )} + a(w, y, ¢, P) = (A(r) — Ao, @) + (O(r), @ + )

for0<t<T
and

(w(0), @) = (xg + Yo, P)
(y(O), l/') = (yO’ 5[})
for all ¢, 4 in CZ (0, 1).
Here

_ tow  oy\ op Loy (o &
a(w’ y> P, ¢) - ‘leo (_5; - ar) ar d 2f 3 (ar + ar)
1 1
+ [ ulg + Bowar + f (436 = BOY — wlo(r) dr + [ gtw, g dr.
Lemma. Suppose (w(?), y(t)) is a weak solution of (2.7)~(2.10) on (0, 7) such
that (w(t), y(t)) ts in K for almost all t. Then there are positive constants «, B and

constants C, 02, 0'3 such that

2 Sl + BlyI3 < Culwl + Callyl + Co. (2.13)

Proof: From (2.7)-(2.8) one has

1 ow b fow dy ow
fo % wdr = leo (5;) dr + ( Dz)f o

+ f [y —w + b(r) + A(r) — AxJwdr
0



330 J. F. G. AUCHMUTY AND G. NICOLIS

and

1 ay 1 ay 2 1
[ Fyar=—pa [ () ar - [ 1B+ (B - 3y + v, w) + by .
0 o \0F 0

Thus

1d
5 ez + Blyla)

= f wdr+ﬂj tydr
- _al)f (3“’) dr — «(Dy — D, fl 3?/8”’ —Bsz: (Z—f)zdr

+ f {(« — BBYwy — cu® — By?[(B — A3) + (w — y + Ao)?]} dr

1 /gB 1 1
+ f [A(r) — dolw dr — —f (w — ¥y dr + f b(r)(w + y)dr.
0 Ao Jo 0
The first part of the right-hand side may be written as

e o[ (-2 o (10 [ (2]

Here y = Dy/D;. Choose « > 0 and B so that

€

[B B %(V B 1)2] ~ ¥D;

1 ay 2
Il < —Efo ('5;) dT < 0.
Let

1
I = fo {(o — BBywy — aw® ~ By’[(B — Ao)* + (w — 3 + 4o)* — Af]}dr.

Then

> 0. (2.14)
Then

Iy < |o = BB| |w:lyl. — «w]3 + B(24,B — By
using Schwarz’s inequality
< (§le — BB| — @)|w|F + [B(24,B — B?) + |« — BB]|ly[3.

Similarly one has from Schwarz’s inequality that
1
fo [A(r) — Ay + b(r)Jw dr < ||A(r) — Ao + b(r)]2]w]2

1
[ o ar < ppoltots
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and finally since y(r) = — B[4, one has

28 B2
B Ul + o3

BBJ‘l 2 BBZJ‘I
- - dr < — —y)Pdr <
4, ), W 9ydr<7g | (w-y?d

Adding these inequalities one finds that there are constants k;, ks, k3, k, such
that

1d
5 g Lolwls + Blyl3] < kifwld + Eaflylg + ksllwlz + kallyla
when o, B are chosen to obey (2.14). This implies (2.13) holds.

CorROLLARY 1. Under the above assumptions on w, y, there exist constants K,
K, and p such that

|w(t))3 < Ke* + K, and |yt)|3 < K e + K,. (2.15)

Proof: Let u(t) = a|w()|3 + Blly(t)||2 where «, B as in the lemma. Then
(2.13) may be written

S < ) + Oy with (0) = alwol + Blyol:
Thus
u(t) < s (e"t — 1) + u(0) e*
and so (2.15) holds. *

CoroLLARY 2.  Under the above assumptions on (w, y), there exists a constant c,
depending on T, such that

j’ lw@)|2,df < ¢ and f LY@z, dt < c.
0 0

Proof: Returning to the proof of the previous lemma, one sees that instead of
(2.13) one could have written

1d
5 S Ue]3 + [yOl3) + ly®l2.5 < Culwld + Callylz + C.
Integrating this from 0 to =, one gets

e f Ol dt < 0 [ ol ar + 0, f “ly@2 dt — Hjeo(n)[3
0 0 0

+ [y(D]3 - (w2 = y(0)]3] + Cor-
Using (2.15) one gets the desired result for y, as ¢ > 0.
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Making use of the other term in the expression for I, one gets the other
estimate. _

The two a priori bounds given in these corollaries are crucial to proving our
main result. One can show by using the Sobolev imbedding theorems and the
integral formulation (2.11) of these equations that a weak solution is in fact a
classical solution of these equations and thus from Theorem 2.2 one hasg that if
(w(0), (0)) is in K then so is (w(f), y(t)) for 0 < ¢ < = whenever (w, y) is a solu-
tion of (2.7)—(2.10) for 0 < ¢ < 7. Making use of all these results, one gets the
following theorem:

TrEOREM 2.3. Suppose Xi\(r) = 0 and Y,(r) = 0, then in Theorem 2.1,
T = oo.

Proof: If X, (r) = Oand Y,(r) = 0then (w(0), y(0)) isin K.

Using the a priori bounds given in Corollaries 1 and 2 to the previous lemma
one can use the Faedo—Galerkin method (cf. Lions, 1969) to prove there is a
weak solution on [0, 7] for any 7 > 0. :

This weak solution is a classical solution and thus one has the result.

An immediate consequence of this theorem is the fact that the solutions of
(2.7)~(2.10) form a nonlinear semigroup on the set K. That is if (w(r, t), y(r, t))
is the solution of (2.7)-(2.10) obeying w(r, 0) = wy(r), y(r, 0) = y,(r) and if one
defines 7T'(t): K — K by

T(t)(ww ?/0) = (w(r: t): y(r’ t))
Then /
T0y=1 and T(¢ + s)=T@HT(s) fort,s = 0.

The only place in this analysis where we have made essential use of the fact
that we are working in a 1-dimensional medium is in the proof that weak
solutions are in fact classical solutions. One would expect a similar analysis to
hold if one assumed the reactions occurred in a circular region, inside a sphere or
in any bounded open set which has a smooth boundary in 2 or 3 dimensions.
When one has other nonlinearities (different reaction schemes) one would not
expect in general, to get a result such as Theorem 2.2. In such cases, one would
have to assume @ priori that the chemical concentrations X, Y are constrained
to be non-negative and then replace (1.2) by a corresponding ‘‘varjational
inequality”’. Mathematical problems of this type are treated in Lions (1969)
Chapter 2.9.

3. Steady State Solutions. A particularly important class of solutions of this
system are the non-negative steady state solutions. Such solutions for these
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equations play a role analogous to the role of critical points in the theory of
ordinary differential equations. They are time invariant solutions of the
equations and just as for ordinary differential equations one often finds that
the system evolves as £ — oo to such solutions.

The steady state solutions obey the equations obtained from (1.2) upon
putting 0X/ot = 0 and 8Y /ot = 0, viz;

2
%;2-( — (B + 1)X + X2Y = —A(r)
&2y . (3.1)
Dy—% + BX - X2Y =0

D,

and the boundary conditions are
X(0) = X(1) = 4, Y(0) = Y(1) = B,/A,. (3.2)

For the remainder of this paper we shall be interested in obtaining rather
specific information about the solutions of these equations so we shall assume:
(A) The function A(r) is given by

cosh [2a(r — 3)]

Alr) = 4y cosh «

>0 (3.3)
and
(B) Biri=B for0<r <1 (3.4)

Because of assumption (B) we shall write B in place of B, henceforth. When
A is defined by (3.3) one sees that

i) 0 < cofﬁaSA(r)S A4, for0<r < 1.

(ii) A(r) is a convex function of r.
(ili) When « > 0, A(r) obeys the equation
dz4
DA—(i—r? —_ A = 0
with ¢ = $ D312 and 4(0) = A(1) = A4,.
(iv) When a = 0, A(r) = 4,.

In this section we shall be especially interested in a particular family of
solutions of (3.1)—(3.4), namely those which may be connected to the unique
solution (X, Y) of the system (3.1)-(3.4) with B = 0. We shall show that for
all B > 0, such solutions obey X(r) > 0 and Y(r) > 0.

First we shall prove a general result about non-negative solutions.
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TrEOREM 3.1. Suppose B > 0, A is given by (3.3) with « > 0and (X(r), Y (r))
18 @ non-negative solution of (3.1)—(3.2). Then

D,B

DA+ o - Al

X(T) < Ao +

Y(r) < E + 5 D1 Ao+ g'i [4, — 4]

Proof: Let Z(r) = DIX(r) + D2Y (ry + D A{r). Then from the equations
and the assumptions of Theorem 3.1 one gets
Z"=X =20 and Z(0) = Z(Q1) = (Dy + D)4, + D.B|A,.
Here, and henceforth, the primes represent differentiation with respect to r.
The maximum principle implies
Z(r) < (Dy + DY)A, + D,B/A4,
or

0 < D X(r) + D Y(r) < D14y + DyB/Ay + D[4, — A(r)].
Thus

X(r) < Ao + DyB/D, Ay + (D4 D)4, — A(r)].
Similarly

Y(r) < — B

D1 D,
a, EAO + E[Ao — A(n)].

It

CororLLaRY. Suppose B = 0, A(r) = A, and (X(r), Y(r)) is a non-negative

solution of (3.1)~(3.2). Then

A, D,B
(7‘) < AO + 55 Dl (1 - 7‘) + DlAO
B 4 DA foro<r<1
0 _ 140,
Y(T)SZE+-2——_D—27’(1 7‘)+——D2

Proof: This time take
Z(r) = D X(r) + D, Y(r) — %"r(l ~ 7).

Continuing just as in the proof of the theorem, one gets the result.

It is worth noting that the function Z introduced in these proofs is always
convex on [0, 1].

We would now like to construct some non-negative solutions of (3.1)—(3.4) and
to do this one first needs the following lemma.
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Levuma 1. When B = 0, there is a unique solution (X (r), 0) of (3.1)-(3.4) and
0 < X(r)< Agfor0<r< 1.
Proof: When B = 0, one has
D, Y" — X2Y =0
subject to
Y(@©) = ¥Y(1) = 0.
From the maximum principle, the only solution of this is
Y(r)=0.
Now
DX - X = —A() X(0) = X(1) = 4,.
This is an inhomogeneous linear equation with a unique solution. Since
0 < A(r) < A,, one gets from the maximum principle that
0 < X(r) < A,

THEOREM 3.2. There exists 8 > O such that for 0 < B < 8, there is a non-
negative solution (X, Y) of (3.1)—(3.4).

Proof: Let

a(r) = 4o — X(r)  y(r) = Y(r) — BJ4,.
Then
Dix" + (B — 1z — A2y = A(r) — Ay + k(z, ) (3.5)
Dyy" + Bx — A2y = k(z, y).
with
2(0) = (1) = 0 y(0) =y(1) =0
and

k(z, y) = (BlA§)a* + xy(x — 24,).

When B = 0, the left-hand side of (3.5) is invertible and so using usual con-
tinuation arguments (or the implicit function theorem), (3.5) has a unique
solution (X g(r), Y u(r)) for 0 < B < 8 while

Xp(r) — Xo(r) and Yg(r)— Yo(r) in C[0,1] as B — 0.

Using the maximum principle, one can show these solutions are non-negative
(see Appendix 2).
This result may be strengthened somewhat by the following.

THEOREM 3.3. There exists B, > 0 such that for 0 < B < By, there is at most
one non-negative solution of (3.1)—(3.4).
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Proof: Suppose the theorem is false. Then there is a sequence {B,} such that
B, converges to 0 and for each k, there are at least 2 different solutions of
(3.1)~(3.4). Suppose (X, Y,) and (X, ¥,) are such solutions. These
solutions obey the a prior: bounds given in Theorems 3.1 and 3.2, so there is a
limit point for each of these sequences in C?[0, 1] x C%[0, 1] (say). Suppose the
limit points are (X, ¥) and (X, ¥).

These limit points must both be solutions of (3.1)-(3.4) with B = 0. If
X # Xor Y # ¥ on [0, 1], this contradicts the preceding lemma.

If X = Xand Y = ¥, then one has that B = 0 is a bifurcation point for the
equation (3.1)-(3.4) as in any neighborhood (X, Y, 0) in C%[0, 1] x C?[0, 1] x
[0, o) there is more than one solution of (3.1}-(3.4). In the next section, we
shall show this is impossible. Thus the theorem holds by contradiction.

Let & = {(X, Y, B): (X, Y) is a solution of (3.1)~(3.4) for the corresponding
B, B > 0}. Then

& < 0, 1] x C?[0, 1] x [0, o).

& may be considered as the set of all solutions of (3.1)~(3.4) for B > 0, and it is
a closed subset of C?[0, 1] x C?[0, 1] x [0, c0).

Let 7 be a closed, connected subset of & in C?[0, 1] x C[0, 1] x [0, o).
Then 9~ will be a “tree” of solutions of (3.1)-(3.4) as it consists of many
“branches”. Let J 4 be the tree containing (X,, Y, 0).

THEOREM 3.4. If (Xg, Yj, B) isin T then
Xgr) =20 and Yg(r) =0 forO0<r< 1.

The proof of this is in the appendix on the maximum principle.

This theorem essentially says that any solution of (3.1)-(3.4) that is connected
by branches of solutions to the unique solution at B = 0 is non-negative.

When o = 0, the functions

Xg(r) = 4, Yp(ry = Bjd, 0<r<1

are solutions for all B > 0.

As we shall see in the next section, there are many branches of new solutions
which bifurcate from this “thermodynamic” branch. Theorem 3.4 says that
all solutions on these branches (and on any branches obtained by repeated
bifurcation from the “thermodynamic’ branch) are non-negative. One also
sees that when « = 0 there are steady state solutions of (3.1)-(3.4) for all
B = 0.

It would be particularly interesting to know if, for this equation, 7, = <.

When « > 0, one may obtain formal power series solutions of (3.1)-(3.4) in
terms of the parameter «. The first few terms of these series often give very
good approximations to solutions that have been found numerically.
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Let
Z(r) = X(r) + (Dg/Dy) Y(r)
Then
D,Z" — X = —A(r)
and
D,B
Z(0) = Z(1) = 4, Don
Write
A(r) = 4y + Pofe, 1)
X(r) = Ay + &®x{a, 1)
and
Z{r) = Ay + DDAB + o?2(a, 1).
Then
x(ee, 0) = z(e, 1) = 2(e, 0) = 2(c, 1) = 0
and
oterr) = 28 (i 1) = gl ~ 4 W)

for « near 0.
The equations for z, z are

1
D" + [(2y2 — 1)B — yA%2 — 1]z + yA22z = —a(a, r) + po h(z, z)
Dlz" — X = “'a(‘x: T)
where
otB

y = D, and Az, 2) = etya[(z — 2)(24, + yoa2x)] + — 2.
D, 4o

If one neglects the terms involving the derivatives, one gets

z(a, r) = afa, 1) (3.6)
and

90,2
e, 1) = (1 - (—‘VM—%”B) ale, 7). (3.7)

More generally, if one writes

X(r) = i X, (r) and Z(r) = z a2 Z,(
k=0
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and substitutes into the original equation one gets a recursive system of linear
equations for the functions (X, Z,), k£ > 1. Obviously Xy(r) = 4, and
Zy(r) = Ay + DyB|D, Ay, are the first terms in this series.

Finally, one can use the maximum principle to obtain more detailed infor-
mation about the solutions of (3.1)-(3.4). For example one can easily prove the
following result.

THEOREM. Suppose (X, Y)1is a solution of (3.1)~(3.4) and 0 < X(r) < A, for
0<r<l1,then Y(ry = Bl/Agfor 0 < r < 1.

4. Linear Stability Analysis. In this section we shall study the stability of
some steady state solutions of (3.1)-(3.4). To do this, we shall perform a
linear stability analysis of these solutions. One may show that for these
equations, linear stability or instability implies the actual stability or instability
of the solutions. In particular we shall show that there is a critical value B, of
B such that for B > B, the uniform steady state solutions (1.3) of (3.1)-(3.4) are
unstable. Using the results of this section we will be able to find the new stable
steady state solutions of these equations.

The linear stability equations for a solution (X,, ¥, B) of the steady state
equations are obtained by linearizing the equations for

u(r,t) = X(r, 8) — Xo(r) v(r,t) = Y(r, t) — Yy(r)

about v = v = 0. The resulting equations give a linear parabolic system and
to analyze its asymptotic behavior in time it suffices to find the eigenvalues 2,
and the eigenfunctions (u,, v,,) of

D, Z—?—; — (B + 1) — 2X,(r)Yo(r)]u + Xe(r)v = Au
d?y (4.1)
Dy 35 + [B — 2Xo(n) Yo(n)]u — Xj(rjo = o
subject to
w(0) = u(1) = v(0) = v(1) = 0. (4.2)

When all the eigenvalues A, of (4.1)~(4.2) obey
Red, <0 m=1,2,...

then the steady state solution (X, Y, B) is said to be linearly stable.

If for some m, one has Re A, > 0, then the solution (X,, ¥, B) is linearly
unstable.

The eigenvalues A, and the eigenfunctions (u,, v,) of (4.1)~(4.3) must, in
general, be calculated numerically. When « = 0, and X, = 4,, Y, = B/4,
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one can get explicit formulae for the eigenvalues and eigenfunctions. In this
case, (4.1) becomes

D" + (B — u + 4% = du Dp" — Bu — Ay = . (4.3)

This is a linear system of equations with constant coefficients. Its eigen-
functions must have the form

(um(r)) = (cl) e*" sin mar.
vm(r) Co

Substituting these in (4.3)-(4.5) one finds v = 0 and the eigenvalues A obey the
characteristic equation

A% 4 (Bp — ap)A + A%B — o8, =0 (4.4)

where ¢, = B — 1 — m?n2D,, B, = 4% + m?*»?D,. (Here and in the rest
of this section we shall omit the subscript on 4,).
The solutions of (4.4) are

An = How — Bn = VI(en + Ba)? — 44°B]} (4.5)
From these expressions one gets the following results

(i) Re A — —o0 as m — +o0.
(1) A real eigenvalue A} has positive real part whenever

B>1+ -lzlAz + A + D,m?=2. (4.6)
D, D,m?n?
(iii) The eigenvalues A* are complex whenever
(Bn + ap)? —442B < 0 or B%2 — 2(4%2 4+ 8)B + (42 - 82 < 0
where § = 1 + m?z%(D, — Dy,).
This only occurs if § > 0 and
(A — /82 < B < (4 + V)3 (4.7)

In particular there are no complex eigenvalues if Dy, — D, > 1/#2.
(iv) A complex eigenvalue A} (or A;) has positive real part provided (4.7)
holds and
B > 1+ A% + m?z%3(D,; + Dy,). (4.8)
Combining (4.7) and (4.8) one has that there are such eigenvalues whenever
3> 0and
A2 + 1V 4+ m?ms?(D, + D) < B < A2 + 1
+ m2n2(D; ~ Dy) + 244/[1 + m?x(D, — D,)].
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Relation (4.7) may be rewritten as

mta*(Dy — D))? + 2(42 + B — 1)(D, — D;)m?=>
+[(42 — B — 1)> — 4B] < 0. (4.9)

Thus if D, # D,, there can only be finitely many complex eigenvalues of this
system.

However when D, = D,, then either all the eigenvalues are complex or else
they are all real as the first two terms in relation (4.9) vanish.

From (4.8) one sees that the solution (A4, B/A) of (3.1)-(3.4) (in the case
where A(r) = A) becomes linearly unstable through a real eigenvalue if
B > B, where

. 2
Bo= min |y Doy A\ poaps) (4.10)
miaruntigler D, Dyrr*m

The expression on the right-hand side of (4.6) is quadratic in m2. When m
is treated as a continuous variable this expression is minimized when

A

2 2 — . 1
m I (DD (4.11)
Also
D 1/2 2
B, > [1 + (—1) A] . (4.12)
D2

The critical wave number m, is the integer m which gives rise to B,. m, is
either given by (4.11) or it is one of the two integers closest to u. There
could be two critical wave numbers, but this is a singular case as small changes
in D,, D, or A will select one of these numbers.

Depending on the values of D, D, and A, it is also possible that the solution
(4, B/A) of (3.1)—(3.4) first becomes unstable through a complex eigenvalue.
Suppose D; — D, > —1/z% and let

B, =1+ A% + #*( Dy + D,)
and

Dy < % VIl + 74D, — Dy

Then if B; < B,, the first unstable eigenvalues are given by the complex
conjugate pair Af.

In particular if D; = D, = D then the first unstable eigenvalue is complex
whenever

D < Al=2.
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To study the bifurcation of solutions of (3.1)~(3.4) from (4, B/A) one needs
to know the eigenfunctions corresponding to the eigenvalues with real part zero.
If Af = +iw, where w, # 0, the new bifurcating solutions are time-periodic
solutions of (1.1). We shall make a detailed study of these in a subsequent
paper. In this work we shall confine our attention to bifurcating steady state
solutions and thus to eigenfunctions corresponding to a zero eigenvalue.

Such an eigenfunction has wave number m provided

c‘mﬁm = A%B
ie.,
2 2
meD, Dy — %[Dz(B — 1) — D,A7] + % =0 (4.13)
or
— Dl 2 2 2 A2
Bm_1+EA —}-le77 +W' (4.14)

From this one notes that
D1 1/2 2
B, > [1 + (E) A]

80 B = 0 can never be a bifurcation point. This substantiates the claim in the
proof of Theorem 3.4.

The eigenvalue 0 is a simple eigenvalue of this system provided there do not
exist two positive integers m,, my such that {4.13) may be written
D, Dy(m? — mF)(m* — m3) = 0.

When m, is an integer solution of (4.12) this condition is equivalent to the con-

dition that
1 (B-1 A2 2
(o - p)
is not a square.
When A = 0 is a simple eigenvalue of the system, the corresponding nor-

malized eigenvector is
Un(P _ (C1) ..
(?Jm(r)) = (Cz) sin marr (4.15)
where

2 +¢2=2 and (Dm?n® — B, + l)e;, — A%, = 0.
Thus ¢; = 4/2/4/(1 + 82) and ¢, = V/25,/4/(1 + 82) where
Dym2x% +1 — B

C2 m
Sy = 2 =

¢y A?
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If m = m, is the critical wave number and is approximated by (4.11) and B,,
is approximated by (4.12) one sees that

9_2_~__:I'__1_)__]:1l2 &1/2
5 = A(Dz) 1+ A4 D, < 0.

One often writes (4.3) symbolically as

Ly (Z) — A (Z) (4.16)

where Ly is a densely defined, closed linear operator on L0, 1) x L2(0, 1).
The adjoint L} of Ly is the closure of the operator defined by

L%: C3(0, 1) x C3(0, 1) — L?(0, 1) x L0, 1)
where
e (%) = D" + (B — 1)u — Bv
B\v) — \Dyp" + A% — A%
and C%3(0, 1) is the set of functions which are twice continuously differentiable
on (0, 1) and which obey
w(0) = u(1) = 0.

The eigenvalues of L} are the same as those of Ly and if 0 is an eigenvalue of
Lg, then the eigenfunction corresponding to the eigenvalue 0 of L} is given

by
4 sin mrr
d, &
where
3 +di =2 and —(Dym?n® + A%dy + A%, = 0
_ V2 V2
Thus dl = €n m) d2 = ———*\/(1 T e,zn) (4.17)
and
2
€y = 1+ Dj: m2.

Finally one should note that the shape of the critical mode (4.15) depends
crucially on the boundary conditions. If instead of prescribing the concen-
trations at the boundary, one prescribes zero fluxes then one would have

() = (0 s
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Thus the bifurcating steady state solution would be qualitatively quite
different; there is a macroscopic gradient across the system (Babloyantz and
Hiernaux, 1975).

5. Bifurcation of Dissipative Structures. Inthe last section we showed that there
is a critical value B, of B with the property that when B > B, the homo-
geneous solution (4, B/4) of (3.1)(3.2) is linearly unstable. In this section
we shall construct some other steady state solutions of the equations, some of
which are stable for various ranges of B. These new solutions are not homo-
geneous, but instead have a number of well-defined maxima and minima.
They arise mathematically as new branches of solutions of the steady state
equations. They have been called dissipative structures as they can only occur
in open systems operating far from thermodynamic equilibrium.

To construct these dissipative structures we shall use bifurcation theory.
For a review of the subject see Stakgold (1971) or Sattinger (1973). We shall
restrict our calculations in this section to the case where

A(r) = A,

When « # 0, [i.e., 4(r) # 4,] some interesting new phenomena arise, such as
natural boundaries for the dissipative structure. These will be treated in
Section 7.

Even in this analysis, one has a very surprising phenomena. Namely one
gets qualitatively different results depending on whether the critical wave num-
ber m, is even or odd.

To find these solutions one uses the steady state analogs of (2.3). These are

d3z 2
Dy g5 + (B — 1w + AGy = —h(z,y)
a2y (5.1)
Dy 55 — Br — Afy = h(z, y)
z(0) = (1) = y(0) = y(1) = 0. (5.2)

Note that from Theorem 3.1, if (z, y) is any solution of this system and if
B > 0, then

X(r) = 4o + 2(r)  Y(r) = Bldo + y(r) (5.3)

is a positive solution of (3.1)-(3.3).
Equations (5.1)—(5.2) may be written

- k(w, ?/)
"y hiz, y) ¢4
where Lj is the linear operator defined in (4.16) and A is given by (2.4).
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When 0 is not an eigenvalue of Ly, then Ly is invertible and (5.4) is equivalent
to the nonlinear integral equation

x(r) - ! Gll(B’ r, 8) G12(B, 7, 8) _h’[x(s)) y(s)]
(?/(7')) - f (G21(B: 7,8) Gao(B, 1, 3)) ( k(s), y(s)]) ds
_ f ! ([Gm(B, 7, 8) — Gy (B, r, 8)]hlx(s), ?/(8)]) s
o \[Gaa(B, 1, 8) — Goy(B, 1, 8) k= (s), y(s)))

Here we are using vector notation and

o0 = (g §)

is the matrix Green’s function of L;. From the theory of ordinary differential
equations, the operator Gg: 0(0, 1) x C(0, 1) — C(0, 1) x C(0, 1) defined by
U [ (Gu(B,1,8) Gia(B, T, s)) (u(s))
6 () 0= J, (om o) oz o) o)
is a compact linear operator. It depends continuously (in fact analytically) on
Bfor B, < B < B, ,, where m is a positive integer and B,, is given by (4.14),
.Bo = O.
The functions
z(r) = 0, ylr) =0
are solutions of (5.4) for all values of B.

From a basic theorem in bifurcation, new branches of steady-state solutions
can bifurcate from the solution (0, 0) only when

B = B,, for some integer m > 1.

This is just a necessary condition, it is not a sufficient condition. To see
whether there is bifurcation, one usually tries to calculate the new bifurcating
solution.

We shall use a method similar to that of Sattinger (1973).

In this method one assumes both the solution and the parameter B have a
power series expansion in a new variable e and the method may be justified in a
manner similar to his theorem (3.4.1).

The calculation will be done for B close to any one of the possible bifurcation
values B, given by (4.14), and we will assume the corresponding zero eigenvalue
is simple. However, we shall be particularly interested in the first bifurcating
solution, in which case, m = m, is the critical number, B is near its critical B,
and m,, B, can be approximated by (4.11)-(4.12).

To calculate these bifurcating solutions one writes

R RO R
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and
B — B, =¢ey, + yy +---. (5.7)

Substitute these expressions in (5.1) which may be rewritten as

x x —h(z, y)
Lo, (;) + 8- B (_3) = ( ) 5.8
B (:1/) ( -2 h(z, y) (58)
Upon identifying terms with equal powers of €, one gets the system of equations
L (x") = (—~ak(r)) 0<k<oo 5.9
B\t a(r) (5.9)

with

2 (0) = (1) = yx(0) = yx(1) = 0. (5.10)

Here a,(r) is an expression involving the parameters in the equation, y,,
Yar - - > v and z;(r) and y;(r) for 0 < ¢ < k — 1. The first few expressions for
the a, are

alo('r) = O
a,(r) = yi% + (Bn/43)23 + 24,70y,
2B,

ao(r) = vy + (}’1 + Zg‘xo + 2Aoyo) @, + 24520y, + vix3/Ae + 280
Thus

xo("’)) (61) s

= sin mmnr 5.11
(?/o(" ) Ca i ( )

where this is the normalized zero eigenvector of Ly given by (4.15).

Since Lp has 0 as a simple eigenvalue, (5.9) has a solution if and
only if, the functions a,(r) obey a solvability condition. This condition deter-
mines the coefficients y,, v,, . . ., v, and is given by the Fredholm alternative.
For this problem it is

1
f a{ri(d, — dy) sin mar dr = 0.
0

Here d; and d, are given by (4.17). Since d, can never equal d,, this may be
written

1
f a(r) sin mar dr = 0. (5.12)
0

The solutions of the system of (5.9) have very different properties depending
on whether m is even or odd, so we shall treat these cases separately. In the
following analysis we shall only calculate the first few terms in (5.6), as these
already give quite good approximations to the solutions obtained numerically.
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5a. m is even. When m is even and one uses the expression (5.11), in the
compatibility equation (5.12), one finds

v1 = 0.
(%1, ¥,) are given by the solutions of (5.9)—(5.10) with £ = 1 and

a,(r) = (i_m ¢ + 2/102) ¢y sin® marr. (5.13)

Here, and in the rest of this section we’ll drop the subscript from A,.
To solve these equations, assume that (z,, y,) have a Fourier series expansion

xl(?‘)) S (20:) :
= sin lrrr. 5.14
(?/1(7') z; 4 7 ( )
Substituting this in (5.9) one gets that

_Dllzﬂ'z + Bm _ ]. A2 pl _ "‘bl)
( _B, —Mﬂwm%ﬁ@)‘(b, (5.15)

where b, = 2 [¢ a,(r) sinlar dr, 1 < I < 0.
Using the expression (5.13) for @,, one sees that

0 if I is even
bl = — Samz

77'(l2—-—-47n—2)l if I is odd
where
o« = (%" ¢, + 2Acz) Cq-
When ! is odd, (5.15) has the unique solution

2,2
() =% (-0 o) 310
where A; = D, Dyl*z* + [(1 — B,)D, + D,A%)?7% + A2
When [ is even, one has
Pr=q =0. (5.17)
These expressions can be substituted back in (5.14) to get the expressions for

1> Y1-
When m ~ pand B,, = B,, these expressions may be simplified using (4.11)
and (4.12). In this case one gets

—8u2c? [2(Dy(um)? + 1) — B, l sin larr
D | PR R e

together with a similar expression for y,(r).

xy(r) =
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Using these expressions for (x,, ¥,), one may now find y, from (5.12) with
k = 2. This can be written

1 1
Ya f xo(r) sin mar dr = —24 J (%oyy + Yoxy) sin marr dr
0 0

2B, (1

2oy sin marr dr
4 Jo

1
- f X2y, sin mar dr.
0

Substituting (5.11), (5.14) and (5.16) into this equation one sees that

YO 32 _ 9 (B_m‘iz _ L T
2 86162 A.2 + Acz l%:d 7T(l2 - 4m2) 2A61 lozdd W(lz - 4m2)

The infinite series appearing here may be summed using the calculus of
residues. The calculations are shown in Appendix 1 and one gets

¥o _ 3 (Bp— 1~ Dm®?®)  2ADm? +1) - B,
2 4 A2 A
3 10 s 9 o , DimPn? + 1 — B,
% {QA T 9D, (m*n%)4 [1 + sDym?n® + A

= ¢(m, 4, B,, D,).
When m = m, = u, B, = B, and one has (4.11) and (4.12), one finds

.},_2__1 D, 1/2 D2 1 A2D,
c§‘4A(D2) t+4g,) |2\

3 D\Y"2T11 (DN\Y? D, 1 8 /(DN D,
Ao (@) 3@ n-a3 @) T -o (e 3)
The expression (D,/D,)*3f(4, D,/D,) is a cubic in 1/4 and is quadratic in

(Dy/D,)Y? and may be either positive, negative or zero.
Returning to (5.7) one sees that

B—'.Bc_"_'éz')/z + .-

near B = B, so one sees that when y, > 0 one has

- 1/2
€~ + (B B”) for B > B,
Y2

while if y, < 0 one has

€~ +

— R\1l/2
(Ec———B) and B < B,
Y2
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The bifurcating steady state solutions near B = B, are approximated by

1 . (B- B)  8m?
= —_ 1/2 - 4 c
@) = (B = B)'® X mmg—p 7Dy S0 M ¥ F 7 DhD,) X DA

l sin lnr
— 2.2
x [B, — 2(1 + Dym2n?)] x l%ﬂ T mf X Fam? (5.19)

when v, > 0, B > B,, together with a similar expression for y.
If y, < 0 one has that (5.18) holds for B < B,, where one replaces the factors

B — Bc 1/2 b BC _ B 1/2
(f”z(A, DI/DZ)) Y (—f(A, DI/D2>) '
When y, > 0, the new bifurcating solutions are stable when B > B,. How-

ever, when y, < 0, they are not stable. The bifurcation diagrams for this

system may be depicted as below, Figure 1 illustrates the situation when y, > 0,
Figure 2 when y, < 0.

< >
g E
= (a) 3 @ \ ..
< N £
< <
Bc B BC B
Figure 1 Figure 2

When y, = 0, one has to continue the calculations still further. However it
is a singular case and small changes in either 4 or D, /D, will bring one into one
of the regimes depicted in Figures 1 and 2.

5b. m is odd. In this case, the compatibility condition (5.12) implies that

“ e [+ 4 ()]
"7 Zma [_Z + 24 ¢y

In particular, when m = m, is odd one gets

Y1 _ —8 [2(DymZx* + 1) — B.] - A. B..D

¢, = 3mc7r A - g(mcy s e 1)
~ 8 (Dll)z)ll4 Azﬂl -1} (5'20)
=37 482 D,

(%1, ¥,) can now be determined from (5.9) using
a,(r) = y16, sin mar + «sin? mar

where y, as above and « = [(B,/d)c; + 24c,]c; as before.



NONLINEAR REACTION-DIFFUSION EQUATIONS 349

Assume a Fourier series expansion (5.14) for z; and y,, then one gets the
system of equations (5.15). This time

0 if 1 is even
- RzTiliW) if Lis odd, I # m
= -

2’;_61_:9’_;% when [ = m.

The solutions (p,, ¢,) are given by (5.16) and (5.17) except when ! = m. In

that case
Y10 %
2 3mm

my _ x Ca
- A%(c; + ¢3) + DymPn?c, —c |

Consequently one gets a solution for z,, ¥, which is almost identical to that
obtained when m is even.

Now one finds y, in a manner similar to that used when m is even. However,
since y; # 0, there are 2 extra terms and one finds after a calculation that

Y2 _ 3By — 1 — Dym?a? + 2(Dym?a% + 1) -~ B,
¢ 4 A2 A

3 (B, —1— D;m2n?) (128 .
x {Z—Z + A2 (Dlﬂﬂ) (mar)* Sy(m)
128 4y
- 2 - 1
s [Sa(m) + DSy} = - 13— hm, 4, B, Dy)

where 8, and S, are the series defined in Appendix 1.
Subsituting this and (5.20) into (5.7) one gets

B — B, = ec,g + %2h. (5.21)

When m = m, ~ p and B, = B, one sees that the least value of B for which
(5.21) is well defined is

-8 _Z
B = B, 7 when A > 0. (5.22)

In this case, one also gets from (5.21) that near the bifurcation point

B —- B, 2(B- B,)%*
q - 3
Substituting this back in (5.1) for x(r) one has

+ O[(B — B.)’]

Ecl ~
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z(r) = (B _g B, _ ;—QL(B _ Bc)z) sin mr
8(m2a%) (B — B,)? 1 _
- Dl;l”'s g° ° voda (P — mg)? i 4m? sinlar. (5.23)
1#m,

Again there is a similar expression for y(r).

In this case one sees that the bifurcating solution is defined for B on both
sides of B,. The new bifurcating solution is stable on the supercritical branch
where B > B, and unstable on the subcritical branch where B < B,. From
Theorem 3.4, one knows that there is a minimum value of B for which there are
2 distinet solutions and consequently the new branch can only be defined for
B > B, > 0. It appears that B given by (5.20) is a good approximation to
Bmin°

The bifurcation diagram for this system can be depicted as in Figure 3.

Amplitude X
\\g

/
—
n
—

’
’
=
0
—

g
[

s+ | ST N
3
=)
[2)
m

Figure 3

The branches (a), (b) and (d) are stable, while (¢) and (e} are unstable.
When B > B, and there are 2 stable steady-state solutions, the system tends
asymptotically as ¢ — oo to one or other of these solutions depending on the
initial conditions. This is a phenomenon which is very similar to hysteresis.

The computer simulation, reported in the paper of Herschkowitz-Kaufman
(1975), also obtained these two branches of solution and the hysteresis effect.

One can formally approximate the solutions on the branch (d), by taking the
other solution to (5.21) rather than the one used previously. That is,

g _(B-B)

€; = — 7 T + O[(B — B,)%].
Substituting this in (5.6) one gets
_ {9  B- B\ . _T(9\* , 2B — B)] _8mi
o) = = (f+ 55 simmar - [ () + 2] 5
] (5.24)

X

1
. 1 — 2
lodd (lz - mg)z x 2 — 4mg sin lmr + O[(B B.)].

l#m;
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6. Qualitative Properties of Dissipative Structures. The new bifurcating solu-
tions obtained in the last section have many interesting qualitative features,
some of which will be discussed below.

6a. m, s even. (1) The new solutions given by (5.19) have a critical exponent
of } and are degenerate. This is a striking example of a symmetry breaking
transition at the bifurcation point.

(2) The infinite series in (5.19) introduces subharmonic terms which only
vanish under very special conditions. These terms are a nonlinear effect and
they introduce spatial asymmetry into the solutions. A typical comparison of
exo(r) and z(r) is given in Figure 4.

X
gL ... x(r)
I,” \\\\
/ll \\ .

D) 7 e I T = 0T

- A e d
/1t

\\ I/'

~\s /,’

-€L SN €sin 2mr
Figure 4

(3) The expression (5.17) indicates that the new solutions may be considered
as a superposition of the critical mode (proportional to sin m rr) and a dis-
tortion. The dominant contributions to the distortion are given by terms
proportional to sin Inr, where ! is an odd integer near p or 2u.

(4) The total amount of the constituent X in the system is not conserved in
the transition to the dissipative structure. To see this one evaluates

z = flx(r)dr __B-B X L6m;
0 f(A, D1/Dz) D1A7"4

x [B, — 2(Dym2Zn? + 1)]

1 1

x Z @ —mip " = amd)

This infinite series may be summed using the method in Appendix 1 and one
has that

1 1 —7?
voda (B — p?)? 7 1P — 4p®  124f

Using (4.11) and (4.12) this can be simplified to

razmy > ww(z) (- 7)

r =
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(5) The contribution to Z comes from the terms proportional to (B — B,).
Thus Z is an approximate invariant, as it doesn’t depend on terms proportional
to (B — B,)'2

The distortion is a function with mean ¥ and when Z > 0 one sees it tends
to raise the value of xz(r) above that given by the dominant term. When
Z < 0 it tends to lower the values of z(r). Figure 4 depicts a case where
z > 0.

6b. m, is odd. (1) This time the solutions (5.23) or (5.24) only exhibit
symmetry-breaking for B > B, as there is only one branch crossing the critical
point. Instead one has an effect similar to hysteresis near the bifurcation point.
When B < B, there are also two dissipative structures, one of which (that on
branch (d) of Figure 3) requires an abrupt transition from the uniform solution.
The other subcritical dissipative structure is unstable for B close to B,.

(2) The expression (5.23) shows that, in this case, the new solution may be
considered as a superposition of the critical mode (proportional to sin m,7r) and
a distortion. This distortion is proportional to (B — B,)? and introduces
spatial asymmetry to the solutions.

In (5.24), this spatial asymmetry occurs in the leading terms, and does not
disappear when B = B,.

(3) Again, in this case, the total amount of the constituent X is not conserved
in the transition to the dissipative structure. From (5.23) one sees that

z= f ' er)dr = —>— (B - B) + O[(B — B,

] g(mem)
Or, using (4.11), (4.12)

Z=—34(B - B,) x {1 — D, . (6.1)
Similarly,

DA\1/2 D 1/2 DAL
7~ 3B — =1 1 2 (1 — 422} . ;
7216 - 8 (g) v ar ()] (1 -3 (62)
Thus Z is not conserved even in the dominant order, contrary to the case
where m, is even.
If one uses (5.24) one gets
29 g\? 16m?2 1 1
hm g (h) DiAn* Gy (2 — m?) *EC 4am? + OB — Bo)]
I#mg

T = —

6c. m # m,. When m is not equal to the critical wave number m,, there will
be bifurcation of a new branch from the uniform solution at B = B, at least
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when 0 is a simple eigenvalue of Ly . These new solutions will be similar to
those bifurcating from B = B,, which have been described above. When m is
even, the new branches will be degenerate and have a critical exponent of 1,
while if m is odd, the new branch will be similar to those described in 6b.

Unfortunately we do not know in what regions, if any, these new branches are
stable.

When B is much greater than B,, there will be many possible dissipative
structures, some of which will be stable to small perturbations and others which
won’t be. In her computer simulation Herschkowitz-Kaufman found values
of B for which there were a number of different stable solutions arising from
different branches. The situation may be depicted by Figure 5.

Amplitude X

Figure 5

In this figure branch (1) bifurcates when B = B,, but branches (2) and (3)

bifurcate when B > B,. One sees that when B > By, there are seven possible
solutions of the equations.

6d. Entropy production. The entropy production of the system is also
affected by the transition to dissipative structures. To study this we introduce
small inverse reaction rates, t in the scheme (1.1).

The total entropy production is

1
P =f [( — kX)In = A + (BX — kYD)In BX + (X2Y — kY?3) 1n—Y—
0

kX kYD kX
X L Dy (2X\2 | Dy (072 (6.3)

We are interested in this for & small, so upon keeping the terms of 0(1) and
0(In &) but not of 0(k), one gets, using (1.2),

P = f [AlnA BX]nE—XlnE]dr+D1 (lnXaX) +
D or o

D, (m YW)O 2B+ )Ink(A +7) + Dy In X(”f)o. ©4
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As an example, we shall calculate this expression to 0(B — B,) in the case
where m is odd. From (5.23) one obtains after subtracting the entropy
production at the uniform steady state

AP =P — P, ={Bln%—lnE — 2(B + l)lnk}a_c

6.5)
D\Y2 _ D)\'2 B (
When Z # 0 and § # 0, the dominant terms in this expression are
D.\12
AP ~ — [2(3 +1)+ 4 (T)l) ].vzln k. (6.6)
2,

For k < 1, this term has the same sign as z. When (42D,)/D, > 1, AP will
be enhanced on the supercritical dissipative structure, and diminished on the
(unstable) suberitical branch. From (5.23) and (6.1) one sees that the enhance-
ment of AP will be larger for larger B and critical wave number m,.

It is also interesting to compare the differences in the entropy production per
unit mass between the uniform steady state and the dissipative structure.
The dominant term in (6.3) may be written as

P~ —Ink[d + XY + (B + 1)X]. (6.7)

Let M,, M be the total mass at the uniform state and at the dissipative
structure. We want to compute:

P\ P, +AP P, 1 AM
A () = sam o = 3 (A7~ Po g

We have just calculated AP in (6.7). From (6.1), (6.2) one gets

A2D D D12
_ 7 7= 3(B _ - 1 tt} 1 — .
su -z g=108 -8 (1-552) < {4 () + () - 4f

However from (6.7)

) for small AP, AM.

Py~ —2Ink(4 + AB).

Thus
P\ _ _ D\Y>_ 2421+ B) _ . _
DN\1/2
= — a‘clnk{z (B, +1)+ 4 (-—1)
D,

1+ B 1 /D\2 D
_ 24 - ¢ _ | _ 1 .
24 (A2 T Bc) (1 y (D) D)}
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Remembering that B, varies as A2, one sees that A(P/M) is positive for 4
large and negative for A small. When A4 is large, one sees from (1.1) that the
production mechanism for X is very fast and occurs on a different time scale to
the other chemical transformation. This agrees with Prigogine ef al., (1972)
and Prigogine and Lefever (1974) who pointed out that the occurrence of fast
pathways always tends to enhance the rate of dissipation per unit mass. The
entropy production itself [see (6.6)] will also increase sharply as 4 — co.

Similar conclusions apply for m, even. The difference is that in this case
both AP and A(P/M) will vanish in the dominant degree [0(B — B,)'/?] and
one has to continue the calculation to 0(B — B,).

6e. Dependence on length. Hitherto we have normalized the length of the
interval to be 1. When (1.2) are solved on the interval 0 < r < L, the length
L may be treated as another parameter in the system.

The analysis of the case of arbitrary length can be deduced from the preceding
analysis by making the change of variables

s = r[L.
If the boundary conditions were
X(0,t) = X(L,¢t) = 4,
Y(0,t) = Y(L,t) = By/A,

then under this change of variables one gets the boundary conditions (1.4),
while (1.2) becomes

X D, X
oY D, X
= = _L’;’ Frihs BX - X?Y.

Thus changing L may be viewed as changing the diffusion coefficients in our
problem. All the preceding results hold provided one substitutes D;/L? and
D,/ L? for D, and D,. One sees that u [from (4.11)] goes up as L is increased
but that B, is approximately constant. Similarly, the expressions obtained in
Section 5 for the bifurcating steady state solutions can be transformed to give
the corresponding solutions on 0 < r < L. The qualitative nature of these
analyses do not change as one varies L but the specific values at which certain
transitions occur often (but not always) involve the length (Hanson, 1974;
Babloyantz and Hiernaux, 1975).



356 J. F. G. AUCHMUTY AND G. NICOLIS

7. Localized Spatial Structures. The dissipative structures described in the last
two sections arose under the assumption that 4 was uniformly distributed
throughout the system. In this section we shall extend some of the previous
calculations to the case where 4 has an inhomogeneous distribution, given by
(3.3) for « > 0. As will be seen, this “spatial dispersion” of A will result in the
localization of the dissipative structures within natural boundaries.

We shall assume that A(r) is defined by

cosh [2a(r — 1)]
cosh «

A(r) = 4, @ > 0. (3.3)

Then one can find approximations to the solutions on the thermodynamic
branch as described at the end of Section 3. Let (X,, ¥,) be such a solution
pair. We are interested in studying the form of the solutions bifurcating from
(Xo, Y,o) when A = 0 is an eigenvalue of the linear stability equations. To do
this, one considers (4.1)—(4.2) with A = 0,
Adding the two equations in (4.1) one gets
Dlu" + DZ’U” —y = 0.
Let
ko= Dlu + Dzv,
then (4.1) may be written as the single fourth order equation
D,D,2" + [(2XoYy — B — 1)D, — D, X22" + X% = 0. (7.1)
Assume this equation has a solution of the form

2(r) = e°® (7.2)

where ¢(r) is a rapidly varying function of r.
Neglecting all derivatives of ¢ except the first (in a manner similar to the
WKB approximation) one obtains

Dy Dy(¢')* + [(2XoYo — B — 1)D, — D, X§]p"? + X3 = 0. (7.3)
The solution of this equation is
1
W0 = + 350 |1+ 5 X8 - )|
1 2 (1.4)

t 53 VIFO) = BL@)IF() - B.()
where

F(r) = 2Xo()Yo(r) = B B,(r) = [Xo(r) (-g—;)m 4 1]2.
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From (7.3) and (7.4), one observes that one can never have
P'(r)? =0

as if this were the case then [X3(r)]/(D,D,) = 0 which is impossible. However
@'(r) can change from real to complex values when the right-hand side of (7.4)
changes from real to complex values. In fact one sees from (7.4) that ¢'(r) is
real only when

Firy<1+ %X%(r) (7.5)
2
and
F(r)y = B,.(r) or F(r) < B_{r). (7.6)

For this problem, we shall see that these conditions hold in certain regions of
space and are violated elsewhere. The boundaries between the two types of
behavior will be called the turning points of the equation. At a turning
point

F(ry= B_(r) or F(r)= B_{(r). (7.7)

On one side of a turning point the solutions z(r) will be monotonic [and ¢'(r} will
be real] while on the other side z(r) will be oscillatory [and ¢'(r) will be com-
plex].

This condition for a turning point in this problem is somewhat different to the
definition for the second order equation

2" + f(r)z = 0. (7.8)
For (7.8) a turning point must obey
g'r) = 0 (7.9)

which, as we have seen, is not the case for our problem.
When F(r) > B (r), one observes that (7.5) is contradicted, so that one can-
not get a turning point in this manner, and one only finds delocalized structures.
If F(r) < B_(r) then (7.5) automatically holds. The turning points are thus
given by the equation
D 2 2
2Xo(r)Yo(r) — B = [Xo(r) (7)‘2) - 1] . (7.10)

Using our approximations (3.6) and (8.7) for X, Y, this becomes

P—r+B8=0
where
1 B
2

/g = &_)\ - m and A = AO(D1/D2)1/2.
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The roots of this are given by
re =% & 34/(1 — 4f).

When 0 < 8 < 2 one sees that 0 < r_ < r, < 1,and r_, r, are symmetri-
cally situated about »r = 4. When 0 <7 <r_ or r, <r <1, 2(r) will be
monotonie, but in the middle r_ < r < r, it will be oscillatory.

As B tends to 0, one sees that these turning points are pushed to the boun-
daries r = 0 and r = 1. In terms of B, this requires

1/2 2
B<B,,=[Ao(%;) _1].

The size of the dissipative structure is approximately

e 2o 2] o

and this is a decreasing function of A for large A.

To find the approximate form of z(r) near the turning points, one has to
approximate ¢'(r) near those points. Using only the first terms in the Taylor
series expansions about r_, one finds

2D () = — {F(r-) PG —r) - 1

- % [X3(r_) + 2Xo(r_)Xo(r_)(r — r_)]}

r_ )1/2

t W{[F@r_) — B, (r )ljr, — r_|}-(_r____a__()\ — 12,

Keeping only the highest order terms, one gets

v/ (2Dy)g'(r)

I

+ {[1 + —%X%(r-) -~ F(r_)]”2

'A1/2 P | —r_ 1/2
+ ( 2M)((:—)a7‘ ) V({Fr_) - B )re —r_}

+[L(r_) + iBr_)r — r_ )7

where &7 (r)2 = — F(r) + 1 + (D;/Dy)X3(r).
Thus

z(r)oc exp [i 2D;,) "2 (r ) + 2?;(2D1)‘1’2%‘(r_)(r - r_)s’z]

and this is non-sinusoidal.
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However, near r = 4, one gets a very different form for the solution. Using
(3.6) as an approximation to X,(r), one gets
(22
B.@3) ~ B.(0) - T A

Thus
2D,¢'(r)?

A (3)? + i|B — B.(3)|"?|B — B_(HI** + 0[(r — )]
= po=i + Of(r — 47
near r = 3.
The corresponding expression for z(r) is

p \12 . 0 o p \M2 8
z(r)oc exp [ + (2_D1) {r — %) cos —2-] exp [i ) (m) (r — %) sin §:|

and this is approximately sinusoidal. The approximate wavelength near
r=14%1s

1 p \7¥2 1

27 (2_D1) sin /2

When B, (r) and B_(r) vary considerably on [0, 1] and ¢’(r) is complex then

the complex part of ¢’(r) also varies considerably. As a result, the correspond-
ing oscillatory solution does not have a uniform wavelength. The successive
maxima and minima are at differing distances from one another. Near the
turning points given by (7.10) the oscillatory solution has a long wavelength.
This is often sufficiently large that the oscillations appear negligible and so the
exact boundaries of the dissipative structure are hard to identify. This we
believe is the explanation of why the computer simulation reported in the
paper by Herschkowitz-Kaufman obtains solutions with highly oscillatory

regions which are always smaller than those predicted by (7.11).
Finally it is worth noting that when

D 1/2 2
e[
the solution (7.2) becomes oscillatory near the boundary and the dissipative

structure is no longer localized to the interior of the interval. This is obtained
directly from (7.4) by noting that at the boundary

D 1/2 2
Xo=A4, Y,=BJ/A, F=B and B¢=[A(D‘l) il]-
2
Again in this case the distances between successive maxima and minima vary

considerably and sometimes the solution does not appear to be oscillatory near
the boundary. '
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These equations have a wealth of detailed structure and these calculations
provide only a rough indication of the nature of some of the phenomena
encountered.

8. Concluding Remarks. This paper has been devoted to the analysis of the
steady state solutions of a system of nonlinear parabolic equations which
describe a chemical system undergoing reactions and diffusion. Although the
analysis has been performed for a very particular system, one would expect
similar results for other reaction schemes.

The main results include the proof of the existence of non-negative solutions
of these equations for all positive time and the construction of new steady state
solutions of these equations using bifurcation theory. These new steady states
have many interesting properties. They show the possibility of symmetry
breaking transitions, of bistable behavior and of hysteresis effects, while the
type of solution depends on the symmetry of the critical mode. Also the
transition to the new steady states may be accompanied by an enhancement of
the dissipation per unit mass in the system.

These results provide a first answer to the question of the role of diffusion in
nonlinear chemical systems. One sees that one can obtain a great variety of
spatial organization and pattern formation when one is away from thermody-
namic equilibrium. Most importantly, the introduction of diffusion provides a
mechanism for obtaining spontaneously a self-organizing process in a previously
homogeneous medium.

For certain values of the parameters, one may also obtain wave-like solutions
of these equations. These waves may be either standing waves or propagating
waves and some results about them will be deseribed in a forthcoming paper.

Finally there are many interesting questions about these systems that still
are unanswered, especially those concerning the behavior of this system when
one is far from the first bifurcation point of this system.

We have greatly benefited from discussions with Professor 1. Prigogine and
Drs. M. Herschkowitz-Kaufman, B. Laloux, J. K. Platten, Th. Erneux and
Y. Schiffman and we would like to thank the Battelle Foundation for catalyzing
this work.

APPENDIX I
SUMMATION OF THE SERIES IN SECTION 5

We would like to evaluate the expressions

1 1
Sl = Z (l2 _ mz)z (12 . 4m2)2

lodd

(A1)
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and
? 1
Sz = Z (l2 _ mz)z (l2 . 4m2)2

lodd

(A2)

where m is even.
Consider the meromorphic function

_ 1 9 1
IO = e — e X {2 T 1 — dmep
The function has double poles at z = }(—1 + m) and at 2 = }(—1 + 2m). Also,
lim zf(z) = 0.

From the ealculus of residues, one has the well-known formula, for § > 0
0= [*2 2f(2) cot mz dz

— o +16
= 2mi {Z;‘; _of() + 7 x [residues of f(z) cot 7z at poles off(z)].} (A3)
The residues a; at the double poles z;, ¢ = 1, 2, 3, 4, are
M= 0T gy BT 0T Fieme
Substituting this in (A3) and using the symmetry in I one finds that for m even
572
81 = Fiome
Similarly if one uses
(22 + 1)2

96) = [ T 1P — mPPi2z + 1F — dmPP

one has that when m is even,

w2

= Tomt

S

APPENDIX II
THE MAXIMUM PRINCIPLE

Throughout this paper, we have used various forms of the maximum principle to obtain
information about the solutions of our equations. In this appendix, we shall give explicit
statements of the theorems we have used and complete the details of the proofs depending
on the maximum prineciple.
The simplest form of the maximum principle is a statement about convexity. Ifuisa
C2-function on an interval [a, b] obeying
d%u
-(1_7'2. =
then
u(r) < max [u(a), u(b)].
This is all that was required to get the upper bounds in Theorem 3.1.
A more general form of the maximum principle is the following

TarorEM Bl. Suppose u is continuous on [a, b] and of class C? on (a, b) and that g and h
are continuous on [a, b], with h(r) < 0, fora < r < b. If
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w(r) + glr)w'(r) + h{r)u(r) = 0 fora <r <b

then
u(r) < max [0, u(a), u(b)].
If
wi(r) + gr)w'(r) + h{ryu(r) < 0 fora <r <b
then

u(r) = min [0, u(a), u(b)].
This theorem is a direct consequence of Theorem 3, Chapter 1 of Protter and Weinberger
(1967).
To prove Lemma 1 in Section 3, we first use both parts of this theorem to get Y(r) < 0
and Y(r) = 0 and thus
Y(r)y =0 on]0,1].
From the equation for X, one sees that
X(r) = min (0, Ay) = 0.
If X(7) = 0 for some 0 < 7 < 1, then X”(#) = 0 (as it must be a local minimum) and so,
from the equation

D X"(7) = — A(H).

But this is impossible as the left-hand side is non-negative and — A(r) < 0for0 < r < 1,
8o X(7) # 0. Thus one has the strict inequality X(r) > 0.

To get the upper bound, let u(r) = X(r) — 4,. Then

D —u=A4, — A(ry = 0
u(0) = u(l) = 0.
From the first part of the maximum principle, one gets
ur) <0 or X(r) < A4,.

Similarly Lemma 2 in Section 3 depends on a direct application of the second part of the
maximum prineiple.

Our other applications of the maximum prineiple were to elliptic and parabolic systems.
Firstly we shall give an appropriate form for semilinear parabolic systems. We shall only
treat the case of one space variable but it is easy to generalize the results to an arbitrary
number of space variables.

We shall be interested in forms of the maximum principle which apply to semilinear
parabolic systems of the form

i

ou, %u, ou R
a_ti = o(r, t)_aT; + by(r, 1) 7;3 ooyt Uy ty) 1 <4< k. (B1)

Here we assume 0 < r < 1, 0 < ¢t < T, that a;, b, and ¢; are continuous functions of their
variables, and that

afr,t) 28>0 foralll<i<k O<r<1,0<i¢< T.

We are not using a summation convention here; such systems are called weakly coupled
as in the i equation, the functions u;, for j # ¢, enter only through the lowest order terms.
Assume that

uy(r, 0) = wug(r) (B2)
is given and that
(0, %) = ey(t) and w(l,t) = Bit) (B3)
are also prescribed. Assume also that

3
C(rs ty Uyy ooy Uy) = Z ci(rs b, U, o ooy Uty + €{r, 8,0,0,...,0). (B4)
i=1
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TaEOREM B2. Suppose u:[0, 1] x [0, T) — R¥ is a classical solution of (B1)—~(B4). If

(1) ug(r) > 0forl < i< kand0<r<1,
(i) elt) = 0, Bi(2) = Oforlsiskand05t< T,
(iii) eyl by sy, ..., ) < Oforl <4< kandallr, ¢, u,
(iv) cy(r, t, 4y, - . ., w) = O whenever ¢ # j and all r, £, u and
(v) ¢(r,t,0,...,0) > 0 for all 4,7,¢
then u(r,t) = 0forl < i<k, 0<r<land0<it< 7.

Proof: Let L, be the parabolic operator defined by

% v v
Lﬂ) = 0/1(7', t) "5"—1‘2 + bl(r’ t) 57: - _a‘z'

From (B1) and (v) one sees that
L{u/i + Cl(”', t, Uiy oo ey uk) - Ci(’r, z, 0, cry 0) <0
or

¥
Lo + 3 eylrs b uy, - - o, wiuy; < 0.
1

Applying Theorem 13, Chapter 3 of Protter and Weinberger {1967) to this expression one
gets that
—uyr,t) < 0 foralls,r, ¢
Thus one has the theorem.
In the application of this result to our system, one has k = 2, by(r, t) = 0 and a)(r, t) =
D;. Also
¢, t, X, Y) = A(r) — [B(r) + 11X + X2Y
co(r, t, X, Y) = B(r)X — X2Y
oi(t) = Pi(t) = Bo/Ao = 0 and ay(t) = Ba(t) = Ao > 0.
This system obeys all the requirements of the above theorem and so Theorem 2.2
holds.
Next one would like to have analogous maximum principles for weakly coupled semi-
linear elliptic systems. To get such results one should first look at weakly coupled
linear elliptic systems. When one has only one space variable these may be written

dZuy L3
()dz +b¢()—+ 2 ci,(r)u:,:d,(r) 0<r<l. (B6)

Here ay, b;, d; and c¢;; are assumed to be continuous on [0, 1] and ar) = & > 0 for
O0<rx<l.

If one merely assumes, as in the previous two theorems, that di(r) = 0 and ¢,(r) < 0 for
1 <4 < kand ¢y{r) = 0 for ¢ # j, one need not always get a maximum principle. For
example, consider the system

3} for0<r<1
Uy = 1

Uy — Uy + aug

subject to the boundary conditions
%1(0) = u;1{1) = 0 and u3(0) = § wu(l)=1.
The solutions of this system are given by
ug(r) = H1 + #2) and uf —wy = 1 — o) — %

When ¢ = 0, a maximum principle holds, but when ¢ > 1, one has that %,(r) > 0 and a
minimum principle holds for u,.
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However, one does have some results when the functions w(r) are constrained to be
nonpositive on the boundary, and certain spectral properties hold. Such results areproved
using homotopy methods and here we shall use similar methods to prove Theorem 3.4.

First one should note that if Xg(r) = 0 for 0 < 7 < 1 then from Theorem Bl and from
the equation

D,Y” — X2Y = —BX

and the boundary conditions for Y, one gets Y(r) > 0.
Thus for Theorem 3 to hold, it suffices to prove the following.

TueoreM B3. If (X, Y, B)isin.T o, then X(r) = O for 0 < r < 1.

Proof: If (X, Y, B) is in J 4, then there is a continuous mapping X: [0, B]— C2%(0, 1)
such that for each 0 < b < B, X(b) is the X-component of a solution of (3.1)-(3.4) and
X(0) = Xy, X(B) = X.

Let

m(b) = inf =z(r).
Osr<l1

Then from Lemma 1, m(0) > 0, and since X is continuous, m(b) is a continuous function of
b.

Let bg = inf {b: m(b) < 0}. Then m(by) = 0 and when B = by, there is a solution
X(by) = X of (3.1)—(3.4) and a point 7 in (0, 1) such that

XF =0 and X”(7) = 0 (as X attains its minimum at 7).

But from (3.1) D,X"(#) A(F)
1ar) = —Alr).

Since 4(r) > Oforall 0 < r < 1, this is impossible and so there is no such b,. Thus the
theorem is proven.
In fact this proof shows that if (X, Y, B)isin J ¢, then X(r) > Ofor 0 < r < 1.
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