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A model nonlinear network involving chemical reactions and diffusion is studied. The 
time evolution and bounds on the steady state solutions are analyzed. Spatially ordered 
solutions of the equations of the dissipative structure type are found by bifurcation 
theory. These solutions are calculated analytically and their qualitative properties are 
discussed. 

1. Introduction. Recent studies (Glansdorff and Prigogine, 1971; Nicolis and 
Portnow, 1973; Sattinger et al., 1973) have shown tha t  nonlinear chemical net- 
works may evolve to many different stable configurations. These configura- 
tions may be uniform steady state solutions or they could be spatially or tem- 
porally organized states. Which behavior is observed depends on the para- 
meters in the equation and/or the initial conditions of the system. As has been 
shown by Glansdorff and Prigogine (1971), one can only get space dependent or 
non-steady state solutions if one is more than a certain critical distance 
from thermodynamic equilibrium. These solutions have been termed 
dissipative structures and their properties may be contrasted with those on 
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the thermodynamic branch which are the extrapolation of the equilibrium 
behavior. 

There is experimental evidence for the formation of dissipative structures in 
both biological and nonbiological reactions. The Belousov-Zhabotinski re- 
action is a good, nonbiological, example (Winfree, 1974). I t  sustains many 
spatiotemporal patterns as well as uniform limit cycle type oscillations. There 
has been some controversy as to the role of diffusion in the formation of the 
horizontal bands observed in this reaction, as Kopell and Howard (1973) have 
argued that  they may be produced through a suitable synchronization of local 
limit cycle-type oscillators rather than by  a symmetry breaking induced by  
diffusion. 

Several biochemical reaction sequences at the cellular level exhibit dissipative 
structures (Prigogine et al., 1969; Go]dbeter, 1973). On a more fundamental 
level, development and morphogenesis (Turing, 1952; Babloyantz and Hiernaux, 
1974, 1975) as well as the prebiotic evolution of biopolymers (Eigen, 1971; 
Prigogine et al., 1972) have been analyzed within the framework of dissipative 
structures. 

The biological importance of the spontaneous emergence of order in a pre- 
viously structureless system is obvious and has been well-recognized. Ther- 
modynamic effects of self-organization have also been found. These include an 
increase of entropy production per unit mass upon the transition to a dissipative 
structure from the thermodynamic branch (Prigogine et al., 1972). 

In this paper we shall analyze the evolution and properties of the dissipative 
structures arising in nonlinear reaction-diffusion systems. Although our me- 
thods are quite general, our analysis will be limited to a particular reaction chain 
involving two chemical intermediates and a trimolecular step. This is the 
simplest stoiehiometric reaction which has instability on the thermodynamic 
branch (Hanusse, 1972; Tyson, 1973; Tyson and Light, 1973). Consequently 
this model may be considered as a prototype of any system leading to dissipative 
structures in a manner analogous to the role of the harmonic oscillator as a 
prototype in classical or quantum mechanics or to the Volterra-Lotka model in 
predator-prey interactions. 

The model reads: 
A - - > X  

B + X--> Y + D (1.1) 

2X + Y--> 3X 

X --> E. 

A, B, D, E are initial and final products whose concentrations are imposed 
throughout the system. All reaction steps are irreversible with rate constants 
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equal to unity, and the system (I.I) will be analyzed in the case of a l-dimen- 
sional medium. 

The equations for this system are: 

~X ~2X 
St = D I ~ -  (B + 1)X + X 2 Y  + A  

(1.2) ~ y  _ ~2y 
8--7= D 2 ~  + B X -  X 2Y. 

Here 0 < r _< 1 and t >_ O. X ,  Y,  A and B are the concentrations of the res- 
pective chemicals and D1, D 2 are the (positive) diffusion coefficients of X and Y 
respectively. We are assuming that  Fick's law holds. 

When A, B are constant throughout the system (1.2) admits a solution on the 
thermodynamic branch: 

Xo(r) = A Yo(r) = B /A .  (1.3) 

To avoid spurious boundary layer effects, one imposes the boundary con- 
ditions 

x ( o ,  t) = x ( 1 ,  t) = Ao (1.4) 

Y(0, t) = Y(1, t) = Bo/A o fo r t  > 0 

and to make this a well-posed problem one adds the initial conditions 

X(r,  0) = Xln(r ) Y(r, O) = Yin(r). (1.5) 

Some of the results of our analysis of (1.2), together with a qualitative com- 
parison of dissipative structures and Thorn's theory of morphogenesis have 
already been described (Nicolis and Auchmuty, 1974). In this paper we shall 
give a detailed analysis of the equations. 

In Section 2, it is shown that  for any non-negative initial conditions, (1.2) and 
(1.4) have a non-negative solution IX(r, t), Y(r, t)] which continues for all 
time. Some properties of the steady state solutions of these equations are dis- 
cussed in Section 3, while Section 4 presents a linear stability analysis of the 
thermodynamic branch (1.3). From this analysis, one can infer the bifurcation 
of new steady state and time periodic solutions. Section 5 is devoted to con- 
structing the new steady state solutions and in Section 6 we discuss the qualita- 
tive properties of the resulting dissipative structures. In Section 7, we s tudy 
the bifurcation when the condition of having a uniform medium is relaxed. In 
this case, spatial "dispersion" leads to localized dissipative structures. The 
final Section 8 is devoted to some concluding remarks on the thermodynamic 
aspects of dissipative structures and to other comments. 
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Throughout  this paper, m a n y  of  the mathemat ica l  details will only be 
sketched. This has been done to avoid introducing the often elaborate 
machinery  of the theory  of part ial  differential equations. However it  is hoped 
the  proofs are sufficiently descriptive to enable those familiar wi th  part ial  
differential equations to reconstruct  the complete details. 

i n  a following paper by  Mme. Herschkowi tz -Kaufman  (1975) the theoretical  
analyses of this paper are compared with the results of computer  simulation. 
The wave-like solutions of these equations will be analyzed in a forthcoming 
paper. Some other results on these equations have recently been obtained by  
Boa (1974). 

2. The Evolution Equations. In  this section we shall prove some results about  
the nonlinear parabolic system of equations (1.2) and (1.4)-(1.5). The main 
result is t ha t  if  the initial conditions Xin(r) and Yln(r) are non-negative and ff  A 
and B both obey certain conditions, then  there is a non-negative pair (X(r, t), 
Y(r, t)) of solutions of the system defined for 0 _< r < 1 and  0 _< t < oo. These 
solutions are infinitely-differentiable functions of both  r and t on (0, 1) • (0, oo). 

For  much  of this paper we shall be par t icular ly  interested in the  case where A 
and B are uniformly distr ibuted and  t ime-invariant  so t ha t  

A ( r , t )  =_ Ao > 0 B ( r , t ) -  B o > 0 f o r 0  < r ~< 1, t > 0. (2.1) 

However,  in this section we shall only require the following: 

(i) A(r,  t) = A(r)  > 0 and B(r, t) = B(r) > 0 for 0 < r _< 1 and t > 0. 
(ii) A(r)  and B(r) are continuous on [0, 1] and  infinitely often differentiable on 

(o, 1). 
(iii) A(0) = A ( 1 )  = A  o and  B(0) = B(1) = B o. 

To t rea t  these equations i t  is convenient to introduce new variables which 
obey homogeneous boundary  conditions. 

Le t  

x(r, t) = X(r ,  t) - A o (2.2) 

y(r, t) = Y(r, t) - B(r ) /A  o. 

where 

Then (1.2) becomes 

~x D1 ~2x ~--~ = ~ + [B(r) - 1]x + A~y + h(x, y) + [A(r) - Ao] 

~Y D2 82y B(r)x  - A2y - h(x, y) + b(r) 
s-i = Trr - 

B(r) x2 xy(2Ao x) h(x,  y)  = + + 

(2.3) 

b(r) = D2 d2B 
A0 dr 2 (r). (2.4) 
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The boundary  and  initial conditions are 

x(0, t) = . ( 1 ,  t) = y ( 0 ,  t) = y(1, t) = 0 t > 0 (2.5) 

and 

x ( r ,  o )  = xo ( r )  = Xin(r) -- A0 
0 _< r _< 1 (2.6) 

y(r, O) -= yo(r) -= Yin(r) - B(r ) /A  o. 

I f  w(r, t) = x(r, t) + y(r, t) then  the equat ion for w is linear. Upon eliminat- 
ing x from (2.3) in favor of w one gets 

Sw D1 Sew Sey 
S--i = -~75r = + (De - D ~ ) ~  - w + y + [A(r) - Ao] + b(r) 

(2.7) 

Sy D e S2Y B(r)w + [B(r) - AUo]y - g(w, y) + b(r) 
s-T = - ~ -  

where 
g(w, y) = (w - y)e B ( r ) /A  ~ + (w - y + Ao)2y - A~)y (2.8) 

w obeys the initial and  boundary  conditions 

w(r, O) = wo(r) = Xo(r) + yo(r) 0 <  r <  1 (2.9) 

w(0, t) -- w(1, t) = 0 for t > 0. (2.10) 

To prove our results, we need to introduce some function spaces. Le(0, 1) 
is the usual Hilbert  space of real-valued Lebesgue integrable functions defined 
on [0, 1]. The inner product  is given by  

(u, v) = ~l u(r)v(r) dr 
do 

and the norm on L2(0, 1) is 

II~lle = (u, ~)1/2. 

For  integral m, Cm[O, 1] is the set of real-valued functions on [0, 1] which are 
continuously m-times differentiable on [0, 1]. I t  is a Banach  space under  the 
norm 

II~Hm= ~ max  ~ ( r ) .  
k=0  0 ~ r < l  

Final ly  Hol(0, 1) is the Hilbert  space obtained by  completing the subspace 
C~[0, 1] of  all functions in C1[0, 1] which obey u(0) = u(1) = 0 with respect to 
the inner product  

ffaudv ] ((u, v)) -- ~r ~r + uv dr. 

We shah write II~111.= = ((~, ~)) .e .  
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THEOREM 2.1. There exists T > 0 such that (2.3)-(2.4) has a solution 
(x(r, t), y(r, t)) defined on [0, 1] • [0, T) and obeying the conditions (2.5)-(2.6). 
The functions x, y are infinitely differentiable functions on (0, 1) • (0, T). 

Proof: The equat ions m a y  be wri t ten  

~x ~2x 
D 1 ~ r  2 - [B(r) - 1]x - A~y = h(x, y) + A(r) - Ao, 

~y O2y 
St D 2 ~  + B(r)x + A~y = - h ( x ,  y) + b(r). 

Let  G(r, s, t, 7) be the Green's function for the  linear parabolic operator  given 
b y  the  lef t-hand side of this expression and the  boundary  conditions. Then this 
sys tem m a y  be rewri t ten as a nonlinear sys tem of integral equat ions 

y(r, t) [yo(s)J 

[ h(x(s, 7), y(s, 7)) + A(s) - A0] d s d r .  (2.11) 
• [ - h ( x ( s ,  ~'), y(s, 7)) + b(s) 

This Green's function is a 2 • 2 matr ix-valued funct ion and has the  p roper ty  
tha t  for each 0 < 7 < t, the  linear operator  defined b y  

~(t,  7) [x(r)]  = f ~  G(r, s, t, 7) 
[x(s)] 

ds (2.12) 
[y(r)J [y(s)J 

is a compact  map  of  C[0, 1] • C[0, 1] into C[0, 1] • C[0, 1]. 
Using successive approximations,  one can now prove tha t  for sufficiently 

Ix(r, t)] defined on [0, 1] • [0, T). x small T > 0 this equat ion  has a solution [y(r, t) 

and y are continuous functions. No w the usual  regulari ty methods  of  parabolic 
equat ions imply tha t  x and y are infinitely of ten differentiable. 

Let t ing 

X(r,  t) = A o + x(r, t) 

Y(r,  t) = B(r) /A o + y(r, t) 

one gets a solution of  (1.2) and (1.4)-(1.5) defined on [0, 1] • [0, T). 

THEOREM 2.2. Suppose (X(r, t), Y(r, t)) is a solution of (1.2) and (1.4)-(1.5) 
f o r O  <_ t < .r and that Xin(r) _> 0 a n d  Yin(r) >- 0. Then 

X ( r , t )  >_ O, Y(r , t )  >_ 0 f o r 0 _ <  r_< 1 , 0 <  t < T. 

The proof  of  this is sketched in the  appendix on the max imum principle. 
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We would now like to  show tha t  one can take  T = + ~ in Theorem 2.1. In  
other  words to  show tha t  the solutions of  the  equat ions can be continued for all 
t ime wi thout  "blowing up" .  To do this one needs to use results abou t  "weak"  
solutions of  (2.7)-(2.10), and the  fact  tha t  t hey  obey  the  a priori bounds  given 
in the  following lemma. 

In  the  nota t ion  of  Lions (1969) we are looking for solutions of  (2.7)-(2.10) in 
the set 

X = {u = (w, y): u e L2[O, T; H~(0, 1) x Hol(O, 1)] and 
du/dt e L2[O, T;  H o l ( 0 ,  1) x H~I(0 ,  1)]}. 

Let  

K = {(w, y): w �9 Hol(O, 1), y �9 H~(O, 1), y(r) > - B ( r ) / A o ,  w(r) > - A  o + y(r)}. 

We shall be par t icular ly  interested in solutions [w(t), y(t)] which lie in K. 
A weak solution of  the  sys tem (2.7)-(2.10) on the interval  (0, ~) is a pair  of  

functions (w, y) in X obeying 

d {(w(t), (p) + (y(t), ~h)} + a(w, y, r ~b) = (A(r) - A o, cp) + (b(r), (p + ~b) 

f o r O < t <  T 
and 

(w(O), ~) = (x o § Y0, ~) 

(y(0), r = (Yo, r 

for all % r in C~~ 1). 
Here  

f l  (~w ~y) ~ f ~  ~y ( ~  ~b) a(w, y, % ~b) = D 1 "~r -~r ~r dr § D 2 ~r ~r § 7r dr 
0 

+ w[~ § B(r)r dr + [A02~b - B(r)r - cp]y(r)dr § g(w, y)r dr. 
0 

LEMMA. Suppose (w(t), y(t)) is a weak solution of (2.7)-(2.10) on (0, -r) such 
that (w(t), y(t)) is in K for almost all t. Then there are positive constants a, fi and 
constants C1, C2, C3 such that 

l d  
2 dt [al]wH~ § flllyll~] < cl[]wl]~ + c2][y[I 2 § c3. (2.13) 

Proof: From (2.7)-(2.8) one has 

- - ~ w d r  = - D  1 \~ r ]  dr § (D 1 - D2) ~r ~r dr 

§ t "~ [y - w + b(r) § A(r) - Ao]w dr 
Jo 



33O 

and 

~y 

Thus 

l d  9. 

J.  F. G. A U C H M U T u  AND G. NICOLIS 

\Tr ]  d r -  [Bw + ( B -  A~)y  + g ( y , w )  + b(r)]ydr .  

Let 

I s = f2  

Then 

I1 <- - ~  \ T r ]  dr  < O. 

{ ( a - f i B ) w y -  aw 2 - fly2[(B - Ao) 2 + (w - ~ 4- Ao) 2 - Ao:]} dr. 

12 < I a - f iB I I]wl]2][Yll2 - aHwll~ + fl(2Ao B - B2)][yH~ 

using Schwarz's inequality 

< (l[a - fiB] - a)l[wl] ~ + [fl(2AoB - U s) + ~1 a - f~Ul][ly[l~. 
Similarly one has from Schwarz's inequality that 

f ~  [A(r) - Ao + b(r)]w < IIA(r) - Ao + b(r)H2][w[12 dr 

f 2  b(r)y < Hb(r)[]:]ly[] 2 dr  

Then 

f ~  aw f ~  ~y = a - ~ w d r  + fl - ~ y d r  

~w'~  2 dr - a (D  2 - 91 )  -~r -~r dr  - riD 2 \~r]  dr  = - a D 1  \ ~ r ]  

t" + ((a - f iB )wy  - aw 2 - fly2[(B - A~)) + (w - y + Ao)2]} dr 
o 

+ [A(r) - Ao]w dr  - -~o (w - y)2y dr + b(r)(w + y ) d r .  

The first part of the right-hand side may be written as 

1 1 =  - a D 1  [ ~  ( ~  - � 8 9  1)~r]~y~2dr + (fi-~a - ~(7 - 1) 2 ) ; \-~r][gY~2dr]" 

Here 7 = D2/D1. Choose a > 0 and fi so that 

- ( 7  - 1 ) 5  = 7D 1 > 0. (2.14) 
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and finally since y(r) > - B / A  o one has 

f ~  [3B 2 (1 2fiB 2 
fiBAo (w - y)2y dr -< A~ Jo (w y)2 dr -< ~ [llwl[~ + [lYll~a- 

Adding these inequalities one finds tha t  there are constants  k~, k2, k3, k4 such 
tha t  

l d  
2 at [~'llwll~ +/~llyll~] -< k~ll/ll~ + kdlyll~ + kdlwll2 + k41yll~ 

when a, fl are chosen to obey  (2.14). This implies (2.13) holds. 

COROLLARY 1. Under the above assumptions on w, y, there exist constants K ,  
K o and iz such that 

Ilw(t)ll~ < K e  "t + K  o and lly(t)]l~ < K e  "t + g 0. (2.15) 

Proof: Let  u(t) = aNw(t)ll~ + fl]ly(t)l[~ where a, fl as in the  lemma. Then 
(2.13) m a y  be wri t ten 

du  
- -  < tzu(t) + C3 with u(0) = allWo[l~ +/31[yoll~. d r -  

Thus  

C3 (eut 1) + u (0 )e  "t u ( t )  <_ - -  - 

and so (2.15) holds. 

COROLL~Y 2. Under the above assumptions on (w, y), there exists a constant c, 
depending on ~-, such that 

; f IIw(t)ll~.2 at < c and Ily(t)ll~,2 dt < c. 
o 

Proof: Return ing  to the  proof  of  the  previous lemma, one sees tha t  ins tead of  
(2.13) one could have wri t ten  

l d  
2 dt [llw(t)ll~ + Ily(t)[l~l + dly(t)ll~,= -< o111wll~ + VdlyIl~ + c3. 

Integrat ing this from 0 to  v, one gets 

~ lly(t)ll~,= dt < C1 f: [Iw(t)l[~ dt + Cz f: IlY(t)ll~ dt ~[llw(~)II~ E 

+ l ly (~) l l~ ,  llw(o)ll~ - Ily(0)ll~l + c3~. 

Using (2.15) one gets the  desired result  for y, as ~ > 0. 
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Making use of  the  other  t e rm in the  expression for I1 one gets the other  
est imate.  

The  two a priori bounds given in these corollaries are crucial to  proving our  
main  result.  One can show b y  using the  Sobolev imbedding theorems and  the  
integral  formula t ion  (2.11) of  these equat ions t h a t  a weak solution is in fac t  a 
classical solution of  these equat ions  and thus  f rom Theorem 2.2 one has t h a t  i f  
(w(0), y(0)) is in K then  so is (w(t), y(t)) for 0 < t < ~ whenever  (w, y) is a solu- 
t ion of  (2.7)-(2.10) for 0 < t < T. Making use of  all these results, one gets the  
following theorem:  

THEOREI~'I 2.3. Suppose Xln(r ) > 0 and Ym(r) > O, then in Theorem 2.1, 
T - c~. 

Proof: I fXin(r)  > 0 and Yin(r) > 0 then  (w(0), y(0)) is in K.  
Using the  a priori bounds given in Corollaries 1 and 2 to  the  previous lemma 

one can use the  Faedo-Gale rk in  me thod  (cf. Lions, 1969) to  prove  there  is a 
weak  solution on [0, ~] for  any  T > 0. 

Th is  weak solution is a classical solution and  thus  one has the  result.  

An immedia te  consequence of  this theorem is the  fact  t h a t  the  solutions of  
(2.7)-(2.10) form a nonlinear  semigroup on the set K. Th a t  is if (w(r, t), y(r, t)) 
is the  solution of  (2.7)-(2.10) obeying w(r, O) = w0(r), y(r, O) = yo(r) and if  one 
defines T(t): K --> K by  

T(t)(Wo, Yo) = (w(r, t), y(r, t)). 

Then 

T(0) = I  and  T(t  §  = T( t )T(s )  f o r t ,  s > 0. 

The only  place in this analysis where we have  made  essential use of  the  fact  
t ha t  we are working in a 1-dimensional medium is in the  proof  t h a t  weak  
solutions are in fact  classical solutions. One would expect  a similar analysis to  
hold if  one assumed the  reactions occurred in a circular region, inside a sphere or 
in a ny  bounded  open set which has a smooth  bounda ry  in 2 or 3 dimensions. 
When  one has o ther  nonlinearit ies (different react ion schemes) one would not  
expect  in general, to  get a result  such as Theorem 2.2. In  such cases, one would 
have  to  assume a priori t h a t  the  chemical concentra t ions  X ,  Y are constrained 
to  be non-negat ive  and  then  replace (1.2) b y  a corresponding "var ia t iona l  
inequa l i ty" .  Mathemat ica l  problems of  this t ype  are t r ea t ed  in Lions (1969) 
Chapter  2.9. 

3. Steady State Solutions. A par t icular ly  impor t an t  class of  solutions of  this 
sys tem are the  non-negat ive  s teady s ta te  solutions. Such solutions for these 
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equations play a role analogous to the  role of critical points in the theory  of 
ordinary differential equations. They are t ime invariant  solutions of the  
equations and just  as for ordinary differential equations one often finds t ha t  
the  system evolves as t--> oo to such solutions. 

The s teady state solutions obey the equations obtained from (1.2) upon 
put t ing  ~X/~t = 0 and ~Y/~t = 0, viz;  

D d2X 1 ~ -  (B + 1)X + X 2 Y  = - A ( r )  

(3.1) d 2 Y 
D~ ~ + B X -  X 2Y  = 0 

and the boundary  conditions are 

X ( 0 )  = X ( 1 )  = A o Y(0 )  = Y(1 )  = Bo/A o. (3 .2)  

For  the  remainder  of  this paper we shall be interested in obtaining rather  
specific information about  the solutions of these equations so we shall assume: 

(A) The function A (r) is given by  

A(r)  = A o cosh [2a(r - �89 
cosh a a > 0 (3.3) 

and  

(]3) B(r) = B for0_< r_< 1. (3.4) 

Because of assumption (]3) we shall write B in place of B o henceforth. When 
A is defined by (3.3) one sees t h a t  

Ao 
(i) 0 < cosh-----~ < A(r)  <_ A o f o r 0  < r_4< 1. 

(ii) A(r) is a convex function of r. 

(iii) When a > 0, A(r) obeys the equat ion 

d2A 
DA-d~r 2 - A  = 0 

wi th  a = �89 li2 and A(0) = A(1) = A o. 

(iv) When a = 0, A(r)  ==- A o. 

In  this section we shall be especially interested in a part icular  family of 
solutions of (3.1)-(3.4), namely  those which m a y  be connected to the  unique 
solution (X, Y) of the system (3.1)-(3.4) wi th  B = 0. We shall show t h a t  for 
all B > 0, such solutions obey X(r)  >_ 0 and Y(r) >_ O. 

First  we shall prove a general result about  non-negative solutions. 
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THEOREM 3.1. Suppose B > O, A is given by (3.3) with a > 0 and (X(r), Y(r)) 
is a non-negative solution of (3.1)-(3.2). Then 

D2B DA [Ao - A(r)] 
X(r)  < Ao + DIA-~o + - ~  

B D1 DA [A ~ _ A(r)]. 
Y(r) < Too + ~ Ao + -~2 

Proof: Let Z(r) = D1X(r ) + D2Y(r ) + DAA(r ). Then from the equations 
and the assumptions of Theorem 3.1 one gets 

Z" = X >_ 0 and Z(0) = Z(1) = (D1 + DA)Ao + D2B/Ao. 

Here, and henceforth, the primes represent differentiation with respect to r. 
The maximum principle implies 

Z(r) < (D~ + DA)A o + D2B/A o 

Thus 

Similarly 

o r  

0 < D1X(r) + DeY(r) < D1Ao + D2B/A o + DA[A o - A(r)]. 

X(r) <<_ A o + D2B/D1A o + (DA/D1)[A o - A(r)]. 

COROLLARY. 

solution of (3.1)-(3.2). Then 

Ao D2B 
X(r) <_ A o + ~ r(1 - r) + D1A------ ~ 

f o r O < r <  1 
B ~ D1Ao 

r ( r )  _< X~o + r(1 - r) + D2 

Proof: This time take 

Z(r) = D1X(r ) + D2Y(r ) - -~- r(1 - r). 
~5 

B D 1 DA [A ~ _ A(r)]. 
r(r) _< Too + Ao + 

Suppose B > 0, A(r) ~ A o and (X(r), Y(r)) is a non-negative 

Continuing just as in the proof of the theorem, one gets the result. 
I t  is worth noting that  the function Z introduced in these proofs is always 

convex on [0, 1]. 
We would now like to construct some non-negative solutions of (3.1)-(3.4) and 

to do this one first needs the following lemma. 
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LEMMA 1. W h e n  B = 0, there is a unique  solution (X(r), 0) of (3.1)-(3.4) and 

0 < X ( r )  <_ A o f o r O  < r < 1. 

Proof:  When B = 0, one has 

D2 Y "  - X 2 Y = 0 

subject to 
r (0 )  = ]7(1)= o. 

From the max imum principle, the only solution of this is 

Y(r)  = O. 

Now 

D ~ X "  - X = - A ( r )  X(O) = X(1) = Ao. 

This is an inhomogeneous linear equat ion with  a unique solution. Since 
0 < A(r )  < Ao, one gets from the  max imum principle t h a t  

0 < X ( r )  <_ Ao.  

T~EOREM 3.2. There  exists ~ > 0 such that f o r  0 <_ B < ~, there is a non-  

negative solution (X ,  Y )  o f  (3.1)-(3.4). 

Proof:  Let  

Then 

with 

and  

x(r) = A o - X ( r )  y(r) = Y(r)  - B / A  o. 

D l x  ~ + ( B  - 1)x - A ~y  = A(r )  - A o + k(x,  y)  

D2y ~ + B x  - A~y  = k(x, y). 

x(0) = x(1) -- 0 y(0) ---- y(1) = 0 

(3.5) 

k(x, y) = ( B / A ~ ) x  2 + x y ( x  - 2Ao). 

When B = 0, the  lef t-hand side of (3.5) is invertible and so using usual con- 
t inuat ion  arguments  (or the implicit function theorem), (3.5) has a unique 
solution (XB(r),  YB(r)) for 0 _< B < ~ while 

XB(r  ) --> Xo(r  ) and YB(r) -+ Yo(r) in C[0, 1] as B --+ 0. 

Using the max imum principle, one can show these solutions are non-negative 
(see Appendix 2). 

This result  m a y  be s t rengthened somewhat  by  the following. 

T~EOREM 3.3. There  exists B1 > 0 such that for  0 < B < B I ,  there is at most  

one non-negative solution of (3.1)-(3.4). 
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Proof: Suppose the theorem is false. Then there is a sequence {Bk} such that  
B~ converges to 0 and for each k, there are at least 2 different solutions of 
(3.1)-(3.4). Suppose (Xk, Yk) and (~k, :~k) are such solutions. These 
solutions obey the a priori bounds given in Theorems 3.1 and 3.2, so there is a 
limit point for each of these sequences in C2[0, 1] • C2[0, 1] (say). Suppose the 
limit points are (X, Y) and (~, ~). 

These limit points must both be solutions of (3.1)-(3.4) with B = 0. I f  
X # ~ or Y # /~ on [0, 1], this contradicts the preceding lemma. 

I f  X = 2~ and Y = :Y, then one has that  B = 0 is a bifurcation point for the 
equation (3.1)-(3.4) as in any neighborhood (X, Y, 0) in C2[0, 1] • ce[0, 1] • 
[0, ~ )  there is more than one solution of (3.1)-(3.4). In the next section, we 
shall show this is impossible. Thus the theorem holds by contradiction. 

Let 5 e = {(X, Y, B): (X, Y) is a solution of (3.1)-(3.4) for the corresponding 
B, BI> 0}. Then 

5p c 02[0, 1] x C2[o, 1] x [0, oo). 

~9 ~ may be considered as the set of all solutions of (3.1)-(3.4) for B >__ 0, and it is 
a closed subset of C2[0, 1] x C2[0, 1] • [0, oo). 

Let 9-" be a closed, connected subset of 5P in C2[0, 1] x C2[0, 1] x [0, ~) .  
Then ~- will be a "tree" of solutions of (3.1)-(3.4) as it consists of many 
"branches". Let 3"o be the tree containing (Xo, Yo, 0). 

THEOREM 3.4. I f  (Xs,  Ys,  B) is in ~J-o then 

Xz(r )  > 0 and YB(r) >-- 0 for0_< r < 1. 

The proof of this is in the appendix on the maximum principle. 
This theorem essentially says tha t  any solution of (3.1)-(3.4) that  is connected 

by branches of solutions to the unique solution at B = 0 is non-negative. 
When a = 0, the functions 

XB(r) = Ao Y s ( r ) -  B/Ao 0 <_ r <<_ 1 

are solutions for all B > 0. 
As we shall see in the next section, there are many branches of new solutions 

which bifurcate from this "thermodynamic" branch. Theorem 3.4 says that  
all solutions on these branches (and on any branches obtained by repeated 
bifurcation from the "thermodynamic" branch) are non-negative. One also 
sees tha t  when a = 0 there are steady state solutions of (3.1)-(3.4) for all 
B_>0 .  

I t  would be particularly interesting to know if, for this equation, 3- o = ~ .  
When a > 0, one may obtain formal power series solutions of (3.1)-(3.4) in 

terms of the parameter a. The first few terms of these series often give very 
good approximations to solutions tha t  have been found numerically. 
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Z(r) = X(r)  + (D2/D1) Y(r). 

D1Z" - X = - A ( r )  

D2B 
Z(O) = Z(1)  = A o + D1Ao. 

A(r) = Ao + a2a(a, r) 

X(r) = Ao + ~2x(~, r) 

D2B 
Z(~') = Ao + ~ + ~2z(~, r). 

x(~, o) = z(~, 1) = z(~, o) = z(~, 1) = o 

Ao //cosh 2a(r  - �89 \ ~ - A ~  [1 - 4(r - �89 
a(a, r) = -~  \ c-~sh a - 1. _ 2 ~ a 

for  a n e a r  0. 

T h e  e q u a t i o n s  fo r  x, z a re  

1 
Dlx" + [(272 - 1)B - 7Ao 2 - 1]x + 7A~z = -a (a ,  r) + -~ h(x, z) 

Dlz" - x = - a ( a ,  r) 

w h e r e  

D 1 a4B x2. 
7 = D--2 a n d  h(x, z) = a47x[(z - x)(2Ao + ~'a2x)] + 

I f  one neg lec t s  t he  t e r m s  invo lv ing  the  de r iva t ives ,  one  ge t s  

a n d  

x(~, r) = a(~, r) 

z(~, r) = (1 

More  genera l ly ,  i f  one  wr i tes  

X(r) = ~ a2kX~(r) 
k = O  

~A~, ! a(~, r). 

a n d  Z(r) = ~ u2kZk(r ) 
k = O  

337 

(3.6) 

(3.7) 
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and substitutes into the original equation one gets a reeursive system of linear 
equations for the functions (Xk, Zk), k > 1. Obviously Xo(r ) =-A o and 
Zo(r ) =- A o + D2B/D1Ao, are the first terms in this series. 

Finally, one can use the maximum principle to obtain more detailed infor- 
mation about the solutions of (3.1)-(3.4). For example one can easily prove the 
following result. 

Tm~OR]~M. Suppose (X, Y ) i s a s o l u t i o n o f  (3.1)-(3.4)and 0 < X(r)  < Ao for  
0 _< r _< 1, then Y(r) >_ B /Ao fo r  0 <_ r <_ 1. 

4. Linear Stability Analysis. In this section we shall s tudy the stability of 
some steady state solutions of (3.1)-(3.4). To do this, we shall perform a 
linear stability analysis of these solutions. One may show tha t  for these 
equations, linear stability or instability implies the actual stability or instability 
of the solutions. In particular we shall show tha t  there is a critical value Be of 
B such tha t  for B > Be the uniform steady state solutions (1.3) of (3.1)-(3.4) are 
unstable. Using the results of this section we will be able to find the new stable 
steady state solutions of these equations. 

The linear stability equations for a solution (X o, Yo, B) of the steady state 
equations are obtained by linearizing the equations for 

u(r, t) = X(r,  t) - Xo(r ) v(r, t) = Y(r, t) - Yo(r) 

about u -- v = 0. The resulting equations give a linear parabolic system and 
to analyze its asymptotic behavior in time it suffices to find the eigenvalues 2~ 
and the eigenfunctions (urn, vm) of 

d2u 
D 1 ~ - [(B + 1) - 2Xo(r)Yo(r)]u + X~(r)v = 2u 

(4 .1 )  d2y 
D2 ~ + [B - 2Xo(r)Yo(r)]u - X~(r)v = 2v 

subject to 

u ( 0 )  = u ( 1 )  = v (0)  = v (1 )  = 0.  

When all the eigenvalues 2m of (4.1)-(4.2) obey 

ReAm < 0 m - -  1 , 2 , . . .  

(4 .2 )  

then the steady state solution (Xo, Yo, B) is said to be linearly stable. 
I f  for some m, one has Re A m > 0, then the solution (X0, Yo, B) is linearly 

unstable. 
The eigenvalues 2m and the eigenfunctions (urn, vm) of (4.1)-(4.3) must, in 

general, be calculated numerically. When a = 0, and X o = A0, Yo = B/Ao 
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one can get  explicit  formulae for the  eigenvalues and  eigenfunetions. In  this 
case, (4.1) becomes 

D l u "  + ( B  - 1)u + A 2 v  = Au D2v"  - B u  - A 2 v  = Av. (4.3) 

This is a linear sys tem of  equat ions  wi th  constant  coefficients. I t s  eigen- 
functions mus t  have  the  form 

Vm(r)] c2 

Subst i tu t ing these in (4.3)-(4.5) one finds v = 0 and the  eigenvalues A obey the  
character is t ic  equa t ion  

A2 + (tim - a,n)A + A 2 B  - a,nflrn = 0 (4.4) 

where a m = B -  1 - m%r2D1,  fi,n = A 2  + m2rr2D2 �9 (Here and in the  rest  
of  this section we shall omit  the  subscript  on Ao). 

The solutions of  (4.4) are 

A~ = l{a m - tim -+ ~/[(am + tim) 2 -- 4A2B]} �9 (4.5) 

F r o m  these expressions one gets the  following results 

(i) Re A~ --> - ~ as m --> + ~ .  
(ii) A real eigenvalue A + has posit ive real pa r t  whenever  

/ )1  A2 A 2 
B > 1 + D 2  + D2m2~r 2 + Dlm2~r 2. (4.6) 

(iii) The  eigenvalues A~ are complex whenever  

(tim + am) 2 - 4 A 2 B  < 0 or a 2 - 2 ( A  2 + ~ ) B  + (A 2 - ~)2 < 0 

where ~ = 1 + m%r2(D1 - D2). 

This only occurs if  ~ > 0 and  

(A - %/'8) 2 < B < (A + %/~)2. (4.7) 

I n  par t icular  there  are no complex eigenvalues if  D2 - D1 > 1/~ 2. 
(iv) A complex eigenvalue Am + (or A~) has posit ive real pa r t  provided  (4.7) 

holds and 

B > 1 + A 2 + m2rr2(D~ + D2) .  (4.8) 

Combining (4.7) and (4.8) one has t ha t  there  are such eigenvalues whenever  
> 0 and 

A 2 + 1 + m 2 r r 2 ( D  1 + D2)  < B < A 2 + 1 

+ m%r2(D1 - De)  + 2A~/[1 + m2rr2(D1 - D2) ]. 
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Relat ion (4.7) m a y  be rewrit ten as 

m4~4(D2 - D1) 2 + 2(A 2 + B -  1)(D 2 - D1)m2rr 2 
+ [ ( A  2 - B - 1)  2 - 4B] < 0. (4.9) 

Thus i f  D2 # D~, there can only be finitely m a n y  complex eigenvalues of this 
system. 

However when D 1 = D 2, then  either all the eigenvalues are complex or else 
t h e y  are all real as the first two terms in relation (4.9) vanish. 

F rom (4.8) one sees t ha t  the  solution (A, B / A )  of (3.1)-(3.4) (in the case 
where A ( r ) = - - A )  becomes l inearly unstable through a real eigenvalue if  
B > B c where 

Bc = min 1 + + ~ + D17r2m 2 (4.10) 
m > 1 D 2  D27r2m 2 " 

m in tege r  

The expression on the r ight-hand side of (4.6) is quadrat ic  in m 2. ~Vhen m 
is t rea ted  as a continuous variable this expression is minimized when 

A m 2 = /,2 = (4.11) 
,rr2( D 1 O 2 )  1/2" 

Also 
[ D I ~  1/2 

Be>_ [ 1 + \ ~ 2 2  ] A]  2. (4.12) 

The critical wave number  mc is the integer m which gives rise to B c. me is 
either given by  (4.11) or it  is one of the two integers closest to  /~. There 
could be two critical wave numbers,  bu t  this is a singular case as small changes 
in D1, D 2 or A will select one of  these numbers. 

Depending on the values of D1, D 2 and A, i t  is also possible t ha t  the  solution 
(A, B / A )  of (3.1)-(3.4) first becomes unstable through a complex eigenvalue. 
Suppose D1 - D2 > - I / r  e and let 

B1 = I + A 2 + ~r2(D1 + D2) 

and 

A 
D 2 < ~-~ ~/[1 + 7r2(D1 - D2)]. 

Then if  B1 < Be, the first unstable eigenvalues are given by  the complex 
conjugate pair A~:. 

I n  part icular  i f  D 1 = D2 = D then  the first unstable eigenvalue is complex 
whenever 

D < A/Tr 2. 
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To s t u d y  the  b i furca t ion  of  solutions of  (3.1)-(3.4) f rom (A,  B / A )  one needs 

to  know the  eigenfunet ions corresponding to  the  eigenvalues wi th  real  p a r t  zero. 

I f  ;~  = _+ i~o m where  w m r 0, the  new bi furca t ing  solutions are t ime-per iodic  
solutions of  (1.1). We  shall m a k e  a deta i led s t u d y  of  these in a subsequent  
paper .  I n  this work  we shall  confine our  a t t en t ion  to b i furca t ing  s t eady  s ta te  

solut ions and  thus  to  eigenfunct ions corresponding to  a zero eigenvalue.  

Such an e igenfunct ion has wave  n u m b e r  m prov ided  

a~fl~ = A 2 B  

i.e., 

o r  

m e A 2 
m4D1D2 - - ~ [ D 2 ( B  -- 1) - D 1A 2] + . ~  = 0 (4.13) 

c~ + c 2 = 2 and  (Dlm%r 2 - B m-t- 1)c 1 - A2c2 = O. 

Thus  cl = ~/2/V'(1 + ~2m)and ce = ~/2~m/~/(1 + ~ ) w h e r e  

~,~ -= c~ = D l m 2 ~  e + 1 - B m  

c 1 A 2 

where 

D1 A2 A 2 
Bm = 1 + -~2 + m2D17r: + D2m 2~r------~" (4.14) 

F r o m  this  one notes  t h a t  

so B = 0 can never  be  a b i furca t ion  point .  This  subs tan t i a tes  the  claim in the  
p roof  of  Theo rem  3.4. 

The  eigenvalue 0 is a s imple e igenvalue of  this  sy s t em prov ided  there  do not  
exis t  two  posi t ive  integers  mi ,  m2 such t h a t  (4.13) m a y  be wr i t t en  

D1De(m 2 - m~)(m e - m~) = O. 

W h e n  m I is an in teger  solution of  (4.12) this condit ion is equiva len t  to  the  con- 
di t ion t h a t  

v = p  

is no t  a square.  

W h e n  ,~ = 0 is a s imple e igenvalue of  the  sys tem,  the  corresponding nor-  
mal ized e igenveetor  is 

Vrn(r) ] C2 
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I f  m = mc is the critical wave number and is approximated by (4.11) and B~ 
is approximated by  (4.12) one sees that  

c 2 1 {D1~1/2 [ {DI~ 1/21 
c-~ ~ - - ~ \ ~ !  I + A ~ !  j < o .  

One often writes (4.3) symbolically as 

where L s is a densely defined, closed linear operator on L2(0, I) x L2(0, 1). 
The adjoint L* of L B is the closure of the operator defined by 

* -  ~ Co2(0, 1)-~ L B. Co(O, 1) x L2(O, 1) • L2(O, 1) 

where 

~D2v'  + A~u  - A %  

and C02(0, 1) is the set of functions which are twice continuously differentiable 
on (0, 1) and which obey 

u(0) = u(1) = 0. 

The eigenvalues of LB* are the same as those of L s and if 0 is an eigenvalue of 
L~, then the eigenfunction corresponding to the eigenvalue 0 of L* is given 
by  

where 

and 

dl)  sin m~rr 
d2 

d~ + d~ = 2 and - ( D e m 2 n  2 + A2)d2 + A2d l  = 0 

V2 V2 
Thus ~1 = ~m V(1 + ~ )  4 - V(1 + ~m) (4.17) 

D2 ~r2 m 2. Era= 1 + - -  ~ 

Finally one should note that  the shape of the critical mode (4.15) depends 
crucially on the boundary conditions. I f  instead of prescribing the concen- 
trations at the boundary, one prescribes zero fluxes then one would have 

(cl) 
~--- COS m'ff~*. ~y(r)! c2 
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Thus the bifurcating steady state solution would be qualitatively quite 
different; there is a macroscopic gradient across the system (Babloyantz and 
Hiernaux, 1975). 

5. Bifurcation of Dissipative Structures. In the last section we showed that  there 
is a critical value Bc of B with the property tha t  when B > Be, the homo- 
geneous solution (A, B/A)  of (3.1)-(3.2) is linearly unstable. In this section 
we shall construct some other steady state solutions of the equations, some of 
which are stable for various ranges of B. These new solutions are not homo- 
geneous, but instead have a number of well-defined maxima and minima. 
They arise mathematically as new branches of solutions of the steady state 
equations. They have been called dissipative structures as they  can only occur 
in open systems operating far from thermodynamic equilibrium. 

To construct these dissipative structures we shall use bifurcation theory. 
For a review of the subject see Stakgold (1971) or Sattinger (1973). We shall 
restrict our calculations in this section to the case where 

A(r) - Ao. 

When a ~ 0, [i.e., A(r) ~ A0] some interesting new phenomena arise, such as 
natural boundaries for the dissipative structure. These will be treated in 
Section 7. 

Even in this analysis, one has a very surprising phenomena. Namely one 
gets qualitatively different results depending on whether the critical wave num- 
ber m c is even or odd. 

To find these solutions one uses the steady state analogs of (2.3). These are 

d2x 
D1 ~ + (B - 1)x + A~y = - h ( x ,  y) 

(5.1) 
d2y 

D2-~5  - B x  - A~y = h(x, y) 

x(0) -- x(1) = y(0) = y(1) = 0. (5.2) 

Note that  from Theorem 3.1, if (x, y) is any solution of this system and if 
B > 0, then 

X(r)  = Ao + x(r) Y(r) = B/Ao + y(r) (5.3) 

is a positive solution of (3.1)-(3.3). 
Equations (5.1)-(5.2) may be written 

where L B is the linear operator defined in (4.16) and h is given by (2.4). 
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When 0 is not an eigenvalue of LB, then L B is invertible and (5.4) is equivalent 
to the nonlinear integral equation 

y(r)] !~G21(B , r, s) G22(B , r, s) h[x(s), y(s)]] 
(5.5) 

(1  [[G12(B, r, s) - G l l ( B ,  r, s)]h[x(s), y(s)]~ ds. 

30 \[G22(B, r, s) G21(B, r, s)]h[x(s), y(s)]] 

Here we are using vector notation and 

G(B,  r, s) = \G21 G2u] 

is the matrix Green's function of Ls. From the theory of ordinary differential 
equations, the operator G,: C(0, 1) • C(0, 1) -~ C(0, 1) • C(0, 1) defined by 

G, (r) = \G2 (B, r, s) r, s ) / \ v ( s ) /  

is a compact linear operator. I t  depends continuously (in fact analytically) on 
B for Bm < B < Bm+l where m is a positive integer and B~ is given by (4.14), 

B0 = 0. 
The functions 

x(r) = 0, y(r) =- 0 

are solutions of (5.4) for all values of B. 
From a basic theorem in bifurcation, new branches of steady-state solutions 

can bifurcate from the solution (0, 0) only when 

B = B m for some in tegerm > 1. 

This is just a necessary condition, it is not a sufficient condition. To see 
whether there is bifurcation, one usually tries to calculate the new bifurcating 
solution. 

We shall use a method similar to tha t  of Sattinger (1973). 
In this method one assumes both the solution and the parameter B have a 

power series expansion in a new variable e and the method may be justified in a 
manner similar to his theorem (3.4.1). 

The calculation will be done for B close to any one of the possible bifurcation 
values Bin, given by (4.14), and we will assume the corresponding zero eigenvalue 
is simple. However, we shall be particularly interested in the first bifurcating 
solution, in which case, m = mc is the critical number, B is near its critical Bc 
and m~, B~ can be approximated by (4.11)-(4.12). 

To calculate these bifurcating solutions one writes 

+ (5.6) 
y(r)] = ~ \yo(r)] \ y l ( r ) ]  + ca \y2(r)] + " "  



/ 
a2(r ) = ~,gx o + I~'1 

Thus 
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and 
B - B m = E~I + e2y~ + - . . .  (5.7) 

Subst i tute  these expressions in (5.1) which m a y  be rewrit ten as 

Upon identifying terms with equal powers of e, one gets the system of equations 

Yk \ ak(r)] - 
with 

xk(0) = xk(1 ) = yk(0) = yk(1) = 0. (5.10) 

Here ak(r ) is an expression involving the parameters  in the  equation,  ~1, 
~2, . . . ,  Sk and  x~(r) and y~(r) for 0 < i < ]c - 1. The first few expressions for 
the a~ are 

ao(r ) -- 0 

al(r ) = ~,lXo + (Bm/A~)x~ § 2AoxoYo 

2B,~ ) 
+ ~ Xo + 2AoYo xl + 2Aoxoy~ + 71x~IAo + x~oyo. 

( x~ = (cl) sin mTrr (5.11) 
Yo(r)] c2 

where this is the normalized zero eigenvector of LBm given by  (4.15). 
Since L,~ has 0 as a simple eigenvalue, (5.9) has a solution i f  and  

only if, the  functions ak(r ) obey a solvabili ty condition. This condition deter- 
mines the  coefficients Yl, ~2 . . . . .  Yn and is given by  the  Fredholm alternative.  
For  this problem it  is 

f 2  ak(r)(dl -- d2) mlrr = s in  dr  0. 

Here d 1 and  d2 are given by (4.17). Since d 1 can never equal d2, this m a y  be 
wri t ten 

f ~  ak(r ) mrrr = (5.12) s in  dr 0. 

The solutions of the  system of (5.9) have very  different properties depending 
on whether  m is even or odd, so we shall t rea t  these cases separately. I n  the 
following analysis we shall only calculate the  first few terms in (5.6), as these 
a l ready give quite good approximations to the solutions obtained numerically.  
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5a. m is even. When m is even and  one uses the expression (5.11), in the 
compatibi l i ty  equat ion (5.12), one finds 

Yl = O. 

(xl, Yl) are given by  the solutions of (5.9)-(5.10) with k = 1 and 

a l ( r )=  ( ~ c l  + 2Ac2) cl sin2mlrr. (5.13) 

Here, and  in the rest of this section we'll drop the subscript from A 0. 
To solve these equations, assume tha t  (x 1, Yl) have a Fourier series expansion 

y l ( r ) !  z=l qz 

Subst i tut ing this in (5.9) one gets t ha t  

-Dll2~r 2 + B m - 1 Pz = (5.15) 
-Bin - (  A2 + D21%r2) ql bz 

where b, = 2 f l  o al(r ) sin l~rr dr, 1 < 1 < ~ .  

Using the expression (5.13) for at ,  one sees t h a t  

t 0 if  1 is even 
b z = _ 8am 2 

L~( / f f~  ~ 2 ) l  if  I is odd 

where 

a =  ( - B ~ c l + 2 A c 2 )  cl. 

When / is odd, (5.15) has the  unique solution 

qz = ~ - ( 1  + Dll2rr2)] (5.16) 

where Ai = D1D214cr ~ + [(1 - Bm)D 2 + D1A2]12rr 2 + A 2. 

When 1 is even, one has 

p~ = q~ = 0. (5.17) 

These expressions can be subst i tu ted back in (5.14) to get the expressions for 

xl, Yl. 
When m ~ /~ and  Bm = Be, these expressions m a y  be simplified using (4.11) 

and (4.12). In  this ease one gets 

[ A_+ ] o~a 1 sin l~rr xl(r ) = -D1 va81~2c~ 2(Dl(/z~r ) 1) - B c x  l a ~ff - 4/~2 x (12 _ /x2) 2 (5.18) 

together  wi th  a similar expression for y~(r). 
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Using these expressions for (xl, Yl), one may now find V2 from (5.12) with 
k = 2. This can be wr i t ten  

? 72 Xo(r ) sin mrrr dr  = - 2A  (Xoy 1 + yoXl) sin mrrr dr  
0 

2Bin f ]  
A XoX~ sin m~rr dr 

f 2 x~)y o sin mrrr dr. 

Subst i tu t ing (5.11), (5.14) and (5.16) into this equat ion  one sees tha t  

~]2Cl 3 2 2 [ Bmcl ~ lpl lq l 
2 = -- ~clc2 - \ A 2 + Ac~.] Z~oad 7r( 12 -- 4me) 2Ac l  z ~oad 7r( le --  4m2)" 

The infinite series appearing here m a y  be summed  using the calculus of  
residues. The calculations are shown in Appendix  1 and one gets 

72 3 ( B  m - 1 - Dlm%r 2) 2(Dlm2vr 2 + 1) - B m 
c~ = + ~ A ~ + A 

{ 3  i0 [ D i m % r 2 +  1 -  B e ] }  
x 2-A 9D~(m2~r2) A 1 + ~D~m%r 2 + A 

= ~(m, A, B,n, D1). 

When  m = m c = /z, B m = Bc, and one has (4.11) and (4.12), one finds 

c~=  ~ \-~U I + A \ D u  J + - 2  5 1 ~ ] 

x 5-A + l o .  \DI!  \D2! + D 2 A 5 -~2 = f A'-~2 " 

The expression (D1/D2)II2f (A,  D1/D2)  is a cubic in 1/A and is quadrat ic  in 
(D1/D2) 112 and m a y  be either positive, negat ive or zero. 

Return ing  to (5.7) one sees tha t  

B - B e _ ~272 + . . .  

near  B = B c, so one sees tha t  when 72 > 0 one has 

( B  - Bc~ 1/2 
-~ -+ ~2 s f o r B > B c  

while if 72 < 0 one has 

e - - - +  ( Bc-72 B )  1/2 and B <  B c. 
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The bifurcating s teady state  solutions near B = Bc are approximated  by 

1 ( B -  Be) 8m~ 
x(r) = ++_ ( B  - B~) 112 x f l / 2 ( A  ' D1/D2)  sin m~rrr + f ( A ,  D~/D2)  x D1ATr------ 5 

1 sin lrrr 
x [B~ - 2(1 + Dlm~r2)]  x z ~oaa ( 12 - m~) 2 x 12 - 4m~ (5.19) 

when 72 > 0, B > B c, together with a similar expression for y. 
I f ?~  < 0 one has t h a t  (5.18) holds for B < Be, where one replaces the factors 

f B -  B~ ~1/2 - B ~1/2. 
1/~.(A ' D1/D2)  ] by ( _ f ( ~ ,  D1/D2)  ] 

When 72 > 0, the new bifurcating solutions are stable when B > Be. How- 
ever, when 72 < 0, t hey  are not  stable. The bifurcation diagrams for this 
system m a y  be depicted as below, Figure I illustrates the s i tuat ion when 72 > 0, 
Figure 2 when 72 < 0. 

B c B > B c 
F i g u r e  1 F i g u r e  2 

(a) (~_.. ........... 

a" 

When 72 = 0, one has to continue the calculations still further.  However i t  
is a singular case and small changes in either A or D1/D2 will bring one into one 
of the  regimes depicted in Figures 1 and  2. 

5b. m is odd. In  this case, the  compatibi l i ty condition (5.12) implies t ha t  

?~ = ~m-~ + 2A �9 

= g(mc, A ,  Be, D1) 

In  particular,  when m = mc is odd one gets 

~_A = - 8  [2(Dlm~r 2 + 1) - Bc] 

c 1 3melt A 

8 (D1D2)l/4 ( D1 ) 
3 A 3/2 A2 ~ - 1 �9 

(xl, Yl) can now be determined from (5.9) using 

al(r  ) = 71cl sin m ~ r  + a sin 2 mlrr 

where 71 as above and  a = [(Bm/A)c  1 + 2Ac2]c 1 as before. 

(5.20) 
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Assume a Four ier  series expansion (5.14) for x 1 and  Yl, t hen  one gets the  
sys tem of equat ions  (5.15). This t ime 

I 
0 i f  1 is even 

al 
~r(1 ~ -4m2)  i f l i s o d d ,  l r  bl 

/ ~  l_.C 1 (~ w h e n  ~ : m .  
( 2  37rm 

The solutions (Pz, qz) are given b y  (5.16) and  (5.17) except  when 1 = m. I n  
t h a t  case 

c 3 m ~  c~ 

= A2(cl  + c2) + Dlm2~2cl  • _ c l  �9 

Consequent ly  one gets a solution for xl,  y~ which is almost  identical  to  t h a t  
ob ta ined  when m is even. 

:Now one finds y~ in a manne r  similar to t h a t  used when m is even. However ,  
since ~1 ~ 0, there  are 2 ex t ra  te rms and  one finds af ter  a calculation t h a t  

V2 3 B,n - 1 - Dlm2~r 2 2(Dlm2rr 2 + 1) - B c 
c~ = -~ A ~ + A 

3 ( B  c - 1 128 

128 } 4 Vl _ h(m, A ,  Be, D1) 
D1Arr 3 [Sl(m) + Dlrt2S2(m)] 3mTrA c 1 

where $1 and  S 2 are the  series defined in Appendix  1. 
Subsi tut ing this and (5.20) into (5.7) one gets 

B - Bm = Eclg + ~2c~h. (5.21) 

When  m = m e "~ iz and B m = Be, one sees t h a t  the  least value of  B for which 
(5.21) is well defined is 

g2 
J~ = Be 4h when h > 0. (5.22) 

In  this case, one also gets f rom (5.21) t ha t  near  the  bi furcat ion point  

B - B c 2(B - Bc)2h 
Eel - g f + 0[(B - Be) 3] 

Subst i tu t ing this back  in (5.1) for  x(r) one has 
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x(r) = .B g g2 ( B -  B~) 2 sinm~rr 

8(m~r~')D1Arr5 x -(B -g c)2 loaa ~ '  ( 19" - m~) 2 x 12 - 4m~ sin Irr r. (5.23) 
l C m c  

Again there is a similar expression for y(r). 
In  this case one sees that  the bifurcating solution is defined for B on both 

sides of Bo. The new bifurcating solution is stable on the supereritieal branch 
where B > B c and unstable on the suberitieal branch where B < Bc.  From 
Theorem 3.4, one knows that  there is a minimum value of 13 for which there are 
2 distinct solutions and consequently the new branch can only be defined for 
B ___ Bmi n > 0. I t  appears t ha t /~  given by  (5.20) is a good approximation to 

B m i n  �9 

The bifurcation diagram for this system can be depicted as in Figure 3. 

~" l'-.(c) 
< Ca) t " -  . . . . . . .  (_e)__._ 

, 
i 
| 
I 

Bmin B c S 

Figure 3 

The branches (a), (b) and (d) are stable, while (c) and (e) are unstable. 
When B > B~ and there are 2 stable steady-state solutions, the system tends 
asymptotically as t--> oo to one or other of these solutions depending on the 
initial conditions. This is a phenomenon which is very similar to hysteresis. 

The computer simulation, reported in the paper of Hersehkowitz-Kaufman 
(1975), also obtained these two branches of solution and the hysteresis effect. 

One can formally approximate the solutions on the branch (d), by  taking the 
other solution to (5.21) rather than the one used previously. That is, 

= - g- - ( B  - + 0 [ ( B  - B e ) 2 ] .  
h 

Substituting this in (5.6) one gets 

x ( r ) = -  ( ~ +  B -  B~) g sin m~rrr - 

1 
x - x 

l r  c 

Be)] D1A~r3 

12 -- 4m~ - - . s i n  lrrr + 0[(B - Be)2]. 
( 5 . 2 4 )  
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6. Qualitative Properties of Dissipative Structures. The new bifurcating solu- 
tions obtained in the last section have many interesting qualitative features, 
some of which will be discussed below. 

6a. m e is even. (1) The new solutions given by (5.19) have a critical exponent 
of �89 and are degenerate. This is a striking example of a symmetry breaking 
transition at  the bifurcation point. 

(2) The infinite series in (5.19) introduces subharmonic terms which only 
vanish under very special conditions. These terms are a nonlinear effect and 
they introduce spatial asymmetry into the solutions. A typical comparison of 
exo(r ) and x(r) is given in Figure 4. 

X~ 

E 

.Dx(r) 

-E 

. . . .  sin Trr 

"'- ~..I"E sin 2~rr 

Figure 4 

(3) The expression (5.17) indicates that  the new solutions may be considered 
as a superposition of the critical mode (proportional to sin mdrr ) and a dis- 
tortion. The dominant contributions to the distortion are given by terms 
proportional to sin l~rr, where 1 is an odd integer near/~ or 2/~. 

(4) The total amount of the constituent X in the system is not conserved in 
the transition to the dissipative structure. To see this one evaluates 

f :  B -- B c 16me 2 
= x(r) dr = f ( A ,  D1/D:) • DIA~r - - - ~  • [Be - 2(Dlm~r2 + 1)] 

1 1 
• - • 

z odd ( 12 -- 4m2) 

This infinite series may be summed using the method in Appendix 1 and one 
has that  

1 1 - -  7 r  2 

/-, (12 /~2)2 • 12 - 12/z4" I o d d  -- -- 4/z2 

Using (4.11) and (4.12) this can be simplified to 

(B - Be) 
f ( A ,  hi~De) • ~ \D1/  1 

A2Dr 
D2 / 
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(5) The contribution to �9 comes from the terms proportional to (B - B~). 
Thus ~ is an approximate invariant, as it doesn't depend on terms proportional 
to (B - Be) 1/2. 

The distortion is a function with mean ~ and when �9 > 0 one sees it tends 
to raise the value of x ( r )  above tha t  given by the dominant term. When 

< 0 it tends to lower the values of x(r ) .  Figure 4 depicts a case where 
~ > 0 .  

6b. m c i s  odd. (1) This time the solutions (5.23) or (5.24) only exhibit 
symmetry-breaking for B > B~ as there is only one branch crossing the critical 
point. Instead one has an effect similar to hysteresis near the bifurcation point. 
When B < B c, there are also two dissipative structures, one of which (that on 
branch (d) of Figure 3) requires an abrupt transition from the uniform solution. 
The other suberitical dissipative structure is unstable for B close to B c. 

(2) The expression (5.23) shows that,  in this case, the new solution may be 
considered as a superposition of the critical mode (proportional to sin mcrrr ) and 
a distortion. This distortion is proportional to (B - Be) 2 and introduces 
spatial asymmetry to the solutions. 

In  (5.24), this spatial asymmetry occurs in the leading terms, and does not 
disappear when B = B e. 

(3) Again, in this case, the total amount of the constituent X is not conserved 
in the transition to the dissipative structure. From (5.23) one sees that  

f2  (B - Be) + 0[(B - Be)2]. 
2 

= x ( r )  dr  = g(mfrr----~) 

Or, using (4.11), (4.12) 

= - ~ A ( B -  Be)  z (1 

Similarly, 

A2DI~ -I 
D2 ] (6.1) 

~ ~ ( B -  BC) kD2]  1 + A 2 \ - ~ j  j 1 - A 2 -~2  (6.2) 

Thus �9 is not conserved even in the dominant order, contrary to the case 
where m e is even. 

I f  one uses (5.24) one gets 

= hmcrr D1A~r4z  (12 - m~) x 12 _ 4m~ + 0[(B - Be) ]. 
l ~ rn c 

6e. m # me. When m is not equal to the critical wave number me,  there will 
be bifurcation of a new branch from the uniform solution at B = Bin, at least 
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when 0 is a simple eigenvalue of LBm. These new solutions will be similar to 
those bifurcating from B = Be, which have been described above. When m is 
even, the new branches will be degenerate and have a critical exponent of �89 
while if m is odd, the new branch will be similar to those described in 6b. 

Unfortunately we do not know in what regions, if any, these new branches are 
stable. 

When B is much greater than Be, there will be many possible dissipative 
structures, some of which will be stable to small perturbations and others which 
won't be. In her computer simulation Herschkowitz-Kaufman found values 
of B for which there were a number of different stable solutions arising from 
different branches. The situation may be depicted by Figure 5. 

i i 
Bc Bd B~ 

Figure 5 

In this figure branch (1) bifurcates when B = B c, but branches (2) and (3) 
bifurcate when B > B c. One sees that  when B > B d, there are seven possible 
solutions of the equations. 

6d. Entropy  production. The entropy production of the system is also 
affected by the transition to dissipative structures. To study this we introduce 
small inverse reaction rates, k in the scheme (1.1). 

The total entropy production is 

P = (A - ICX) in ~ + ( B X  - ICYD) In ~ + ( X 2 Y  - Icya) In Y 
kX 

+ (X - IcE) In ~-~ + -~- \ ~r ] + --Y dr. 

We are interested in this for Ic small, so upon keeping the terms of 0(1) and 
0(In k) but not of 0(Ic), one gets, using (1.2), 

f [  . ] ( P =  A l n A  - B X l n ~ - X l n E  dr + D1 l n x O X ~ I  
0r]o + 

( x/ x]l" (6.4) 
D e in Y 8 r i o -  2(B + 1)lnIc(A + ~) + D l l n  \ ~ r ] o  
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As an  example, we shall calculate this expression to 0(B - Be) in the case 
where m is odd. F rom (5.23) one obtains after  subtract ing the  ent ropy 
product ion at  the uniform s teady state 

A P  = P -  Po = B l n ~ - l n E  - 2(B + 1) l n k  ~ 

(6.5) 
- A \ D z ]  ~ In A k  - A \ 9 1 ]  zj In ~-  

When ~ ~ 0 and  ff ~ O, the dominan t  terms in this expression are 

[ (Vq 1'21 
AP ~ - 2(B + 1) + A \ D 2 ]  j ~ l n k .  (6.6) 

For  k < 1, this te rm has the same sign as 5. When  (A2D1) /D9  > 1, A P  will 
be enhanced on the  supercritical dissipative structure,  and  diminished on the  
(unstable) subcritical branch. F rom (5.23) and (6.1) one sees t ha t  the enhance- 
ment  of A P  will be larger for larger B and critical wave number  m c. 

I t  is also interesting to compare the differences in the  en t ropy  product ion per 
uni t  mass between the  uniform s teady state and  the  dissipative structure.  
The dominan t  te rm in (6.3) m a y  be wri t ten as 

P _~ - l n  k[A  + X 2 y  + ( B  + 1)X]. (6.7) 

Le t  Mo, M be the to ta l  mass at  the uniform state and  at  the dissipative 
structure.  We want  to compute:  

A = M o + AM M o _  Mo A P -  Po for s m a l l A P ,  AM, 

We have just  calculated A P  in (6.7). F rom (6.1), (6.2) one gets 

A M = ~ , + ~ = ~ ( B - B o )  ~ D ~ /  x A 

However from (6.7) 

Po ~ - 2 1 n k ( A  + A B ) .  

Thus 

A ~ ~ - l n  k 2 ( B  c + 1)~ + A \D2] ~ - A 2 - 

{ ivq 1,2 
= - ~ ' l n k  2 ( B ~  + 1) + A  \ D J  

D1 

i ' / )q ~/~" - A} .  + ~ G /  

+ B 4 (~ + ~)\ 
+ Bc J 
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l~emembering that  Bc varies as A ~', one sees that  A ( P / M )  is positive for A 
large and negative for A small. When A is large, one sees from (1.1) that  the 
production mechanism for X is very fast and occurs on a different time scale to 
the other chemical transformation. This agrees with Prigogine et al., (1972) 
and Prigogine and Lefever (1974) who pointed out that  the occurrence of fast 
pathways always tends to enhance the rate of dissipation per unit mass. The 
entropy production itself [see (6.6)] will also increase sharply as A --> oo. 

Similar conclusions apply for m c even. The difference is that  in this case 
both A P  and A ( P / M )  will vanish in the dominant degree [0(B - Be) 1/2] and 
one has to continue the calculation to 0(B - Be). 

6e. Dependence  on length. Hitherto we have normalized the length of the 
interval to be 1. When (1.2) are solved on the interval 0 _ r _< L, the length 
L may be treated as another parameter in the system. 

The analysis of the case of arbitrary length can be deduced from the preceding 
analysis by  making the change of variables 

s = r / L .  

I f  the boundary conditions were 

x ( o ,  t) = X ( L ,  t) = Ao 

Y(O, t) = Y ( L ,  t) = B o / A  o 

then under this change of variables one gets the boundary conditions (1.4), 
while (1.2) becomes 

~ X  D 1 ~2X 
~t L 2 ~s 2 (B + 1)X + X 2 Y  + A 

~ Y D 2 ~2X 
+ B X  - X 2 Y .  

~t L 2 ~s 2 

Thus changing L may be viewed as changing the diffusion coefficients in our 
problem. All the preceding results hold provided one substitutes D 1 / L  2 and 
D : / L  2 for D 1 and D2. One sees that/~ [from (4.11)] goes up as L is increased 
but  that  Bc is approximately constant. Similarly, the expressions obtained in 
Section 5 for the bifurcating steady state solutions can be transformed to give 
the corresponding solutions on 0 <_ r < L. The qualitative nature of these 
analyses do not change as one varies L but  the specific values at which certain 
transitions occur often (but not always) involve the length (Hanson, 1974; 
Babloyantz and Hiernaux, 1975). 
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7. Localized Spat ia l  Structures.  The dissipative structures described in the last  
two sections arose under  the  assumption tha t  A was uniformly dis tr ibuted 
th roughout  the system. In  this section we shall ex tend some of the previous 
calculations to the  case where A has an  inhomogeneous distribution, given by  
(3.3) for a > 0. As will be seen, this "spat ial  dispersion" of A will result  in the  
localization of the dissipative structures within natura l  boundaries. 

We shall assume t h a t  A(r )  is defined by  

A ( r )  = A o cosh [2a(r - 1)] 
eosh a a > 0. (3.3) 

Then one can find approximations to the solutions on the the rmodynamic  
branch as described a t  the end of Section 3. Le t  (Xo, Y0) be such a solution 
pair. We are interested in s tudying  the form of the solutions bifurcating from 
(Xo, Y0) when A = 0 is an eigenvalue of the linear s tabi l i ty  equations. To do 
this, one considers (4.1)-(4.2) wi th  A = 0. 

Adding the two equations in (4.1) one gets 

D l u "  + D2v" - u = O. 

Let  

z = D l u  + D2v, 

then  (4.1) m a y  be wri t ten as the  single four th  order equat ion 

D1D2z"'  + [(2XoY o - B - 1)D 2 - DIX~]z"  + X~z  = O. (7.1) 

Assume this equat ion has a solution of the  form 

z(r) = e ~ )  (7.2) 

where ~(r) is a rapidly varying funct ion of r. 
Neglecting all derivatives of ~ except the first (in a manner  similar to the  

W K B  approximation) one obtains 

D1D2(qJ) 4 + [(2XoY o - B - 1)D 2 - D1X~]~ '2 + X~  = O. (7.3) 

The solution of this equat ion is 

1 [ D I _  2 F(r)]  
~'(r) 2 = + ~ 1 + D-~ ~ o  - (7.4) 

1 
+ ~ %/{[F(r) - B+(r)][F(r)  - B_(r)]} 

where 

F ( r )  = 2Xo(r )Yo( r  ) B B~(r)  = [Xo(r ) [DI~ 1'2 \~1 + 1] 2. 
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From (7.3) and (7.4), one observes tha t  one can never have 

~o'(r) 2 = 0 

as if this were the case then [X~(r)]/(D1D2) = 0 which is impossible. However 
~'(r) can change from real to complex values when the right-hand side of (7.4) 
changes from real to complex values. In fact one sees from (7.4) that  ~'(r) is 
real only when 

D1 Xo:(r) (7 .5)  F ( r )  _< 1 + 

and 

F(r) > B+(r) or $'(r) < B_(r) .  (7.6) 

For this problem, we shall see tha t  these conditions hold in certain regions of 
space and are violated elsewhere. The boundaries between the two types of 
behavior will be called the turning points of the equation. At a turning 
point 

F(r) = B+(r) or F(r) = B_(r) .  (7.7) 

On one side of a turning point the solutions z(r) will be monotonic [and ~0'(r) will 
be real] while on the other side z(r) will be oscillatory [and ~0'(r) will be com- 
plex]. 

This condition for a turning point in this problem is somewhat different to the 
definition for the second order equation 

z" + , f (r)z  = o. (7.8) 

For (7.8) a turning point must obey 

~0'(r) = 0 (7.9) 

which, as we have seen, is not the case for our problem. 
When F(r) > B+ (r), one observes that  (7.5) is contradicted, so that  one can- 

not get a turning point in this manner, and one only finds deloealized structures. 
I f  F(r) <_ B _  (r) then (7.5) automatically holds. The turning points are thus 

given by the equation 

2Xo(r)Yo(r ) - B = [Xo(r ) [DI~ 2 ]2. \~22] -- 1 (7.10) 

Using our approximations (3.6) and (3.7) for Xo, Yo, this becomes 

r2 - r + fl = O 

where 

1 B 
/3 = ~2;~ ~2(;~ _ i )2~  a n d  ;~ = Ao(DI/D2) 112. 
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The roots  of  this are given by  

r~  = I + I V ( 1  - 4~).  

W he n  0 < fl < �88 one sees t ha t  0 < r_ < r+ < 1, and r_ ,  r+ are symmetr i -  
cally s i tua ted  abou t  r = 1. When  0_< r < r_ or r+ < r <  1, z(r) will be 
monotonic ,  bu t  in the  middle r_  < r < r+ i t  will be oscillatory. 

As fi tends  to  0, one sees t h a t  these turn ing  points  are pushed to  the  boun-  
daries r = 0 and r = 1. In  t e rms  of  B, this requires 

< B 0 - -  \ D J  - 1] 2. B 

The size of  the  dissipative s t ruc ture  is approx imate ly  

1 (a 1)2 (7.11) 

and  this is a decreasing funct ion of  ~ for large ~. 
To find the  approx imate  form of  z(r) near  the turn ing  points,  one has to  

approx imate  cp'(r) near  those points.  Using only  the  first te rms in the  Tay lor  
series expansions abou t  r_ ,  one finds 

2Dl~0'(r) 2 ~ - {F(r_) + F'(r_)(r - r_) - 1 

D~. D1 [X~(r_) + 2Xo(r_)Xo(r_' )(r - r_)]} 

+ i V { [ E ( r _ )  - B + ( r _ ) ] l r +  - r _ [ }  . (r  - r - ) ~ 2  (~ - 1)~ x'2. 
(z 

Keeping  only the  highest order  terms,  one gets 

{ [  D~ 2 7~12 

+ i21/2(2 - 1)(r - r_) 112 
2 d ( r _ ) ~  V ( [ F ( r _ )  - B + ( r _ ) ] I r +  - r_ l )}  

= + [ d ( r _  ) +_ i~(r_ )(r - r_)112] 

where d ( r )  2 = - F ( r )  + 1 + (D1/D2)X~(r). 
Thus 

[ 2i(2D1)-l12~(r-)(r--r-)312] z(r)oc exp +_ (2D1)-l/2d(r_)r + 

and this is non-sinusoidal.  
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However, near r = �89 one gets a very different form for the solution. 
(3.6) as an approximation to X0(r), one gets 

{z 2 
B~(�89 ~ B~(O) - y A. 

Thus 
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Using 

sin 0/2' 

When B+ (r) and B_ (r) vary considerably on [0, 1] and ~'(r) is complex then 
the complex part  of ~'(r)  also varies considerably. As a result, the correspond- 
ing oscillatory solution does not have a uniform wavelength. The successive 
maxima and minima are at differing distances from one another. Near the 
turning points given by (7.10) the oscillatory solution has a long wavelength. 
This is often sufficiently large that  the oscillations appear negligible and so the 
exact boundaries of the dissipative structure are hard to identify. This we 
believe is the explanation of why the computer simulation reported in the 
paper by Herschkowitz-Kaufman obtains solutions with highly oscillatory 
regions which are always smaller than those predicted by (7.11). 

Finally it is worth noting that  when 

B > B~ = A \ D 2 ]  - 1 

the solution (7.2) becomes oscillatory near the boundary and the dissipative 
structure is no longer localized to the interior of the interval. This is obtained 
directly from (7.4) by noting that  at the boundary 

Xo = A, Yo = B / A ,  F = B and B+ = A \ D 2 ]  + 1 

Again in this ease the distances between successive maxima and minima vary 
considerably and sometimes the solution does not appear to be oscillatory near 
the boundary. 

2DIT'(r) 2 = d ( � 8 9  2 _+ i lB- B+(�89 - B_(�89 1~2 + 0 [ ( r -  �89 

= p e ~ e  + 0 [ ( r  - �89 

near r = �89 
The corresponding expression for z(r) is 

p ~1,2 ( p ~12 

and this is approximately sinusoidal. The approximate wavelength near 
r = � 8 9  
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These equations have a wealth of detailed structure and these calculations 
provide only a rough indication of the nature of some of the phenomena 
encountered. 

8. Concluding Remarks. This paper has been devoted to the analysis of the 
steady state solutions of a system of nonlinear parabolic equations which 
describe a chemical system undergoing reactions and diffusion. Although the 
analysis has been performed for a very particular system, one would expect 
similar results for other reaction schemes. 

The main results include the proof of the existence of non-negative solutions 
of these equations for all positive time and the construction of new steady state 
solutions of these equations using bifurcation theory. These new steady states 
have many interesting properties. They show the possibility of symmetry 
breaking transitions, of bistable behavior and of hysteresis effects, while the 
type of solution depends on the symmetry of the critical mode. Also the 
transition to the new steady states may be accompanied by an enhancement of 
the dissipation per unit mass in the system. 

These results provide a first answer to the question of the role of diffusion in 
nonlinear chemical systems. One sees that  one can obtain a great variety of 
spatial organization and pattern formation when one is away from thermody- 
namic equilibrium. Most importantly, the introduction of diffusion provides a 
mechanism for obtaining spontaneously a self-organizing process in a previously 
homogeneous medium. 

For certain values of the parameters, one may also obtain wave-like solutions 
of these equations. These waves may be either standing waves or propagating 
waves and some results about them will be described in a forthcoming paper. 

Finally there are many interesting questions about these systems tha t  still 
are unanswered, especially those concerning the behavior of this system when 
one is far from the first bifurcation point of this system. 

We have greatly benefited from discussions with Professor I. Prigogine and 
Drs. M. Herschkowitz-Kaufman, B. Laloux, J. K. Platten, Th. Erneux and 
u  Schiffman and we would like to thank the Battelle Foundation for catalyzing 
this work. 

APPENDIX I 

SUMMATION OF THE SERIES IN SECTION 5 

We would like to evaluate the expressions 
1 1 

$1 /- (l 2 - m2)2 (l 2 - 4m2)2 
Z o d d  

(A1) 
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and 

12 1 
$2 = ~ (12 _ m2)2( i  2 _  4m2) 2 (A2) 

I o d d  

w h e r e  m is e v e n .  
C o n s i d e r  t h e  m e r o m o r p h i c  f u n c t i o n  

1 1 
f ( z )  = x [(2z + 1) 2 -- m2] 2 [(2z + 1) 2 --  4m2] 2 

T h e  f u n c t i o n  h a s  d o u b l e  po les  a t  z = �89 - 1 • m) a n d  a t  z = �89 - 1 • 2m).  Also ,  

l i m  z f (z )  = O. 

F r o m  t h e  ca lcu lus  o f  r e s idues ,  o n e  h a s  t h e  w e l l - k n o w n  f o r m u l a ,  fo r  ~ > 0 

0 = fo~+~ z r f l z ~ c o t ~ z d z  
J - - o 0 + 1 5  d ~  / 

{z t = 2 ~  l = - |  f(1) + Ir x [ res idues  o f f ( z )  c o t  ~z a t  po l e s  o f f ( z ) ] .  (A3) 

T h e  r e s i d u e s  as a t  t h e  d o u b l e  p o l e s  z~, i = 1, 2, 3, 4, a r e  

- - T r  - - ~ "  

a l  = a2 = 144m 6, a3 = a4 = 576m 6 

S u b s t i t u t i n g  t h i s  in  (A3) a n d  u s i n g  t h e  s y m m e t r y  in  1 one  f inds  t h a t  for  m e v e n  

57r 2 

$1 = 576m 6 
S imi l a r l y  i f  one  u s e s  

(2z + 1) 2 
g ( z )  = 

[(2z + 1) 2 --  m2]2[(2z + 1) 2 -- 4m2] 2 

o n e  h a s  t h a t  w h e n  m is e v e n ,  

~r 2 

$2 = 72m4 

APPENDIX II 

THE MAXIMUM PRINCIPLE 

T h r o u g h o u t  t h i s  p a p e r ,  we  h a v e  u s e d  v a r i o u s  f o r m s  o f  t h e  m a x i m u m  p r i n c i p l e  t o  o b t a i n  
i n f o r m a t i o n  a b o u t  t h e  s o l u t i o n s  o f  ou r  e q u a t i o n s .  I n  t h i s  a p p e n d i x ,  w e  shal l  g ive  exp l i c i t  
s t a t e m e n t s  o f  t h e  t h e o r e m s  w e  h a v e  u s e d  a n d  c o m p l e t e  t h e  de t a i l s  o f  t h e  p r o o f s  d e p e n d i n g  
o n  t h e  m a x i m u m  pr inc ip l e .  

T h e  s i m p l e s t  f o r m  o f  t h e  m a x i m u m  p r i n c i p l e  is a s t a t e m e n t  a b o u t  c o n v e x i t y .  I f  u is a 
C 2 - f u n c t i o n  on  a n  i n t e r v a l  [a, b] o b e y i n g  

d2u 
dr-- ~ ~ 0 

t h e n  

u(r)  <~ m a x  [u(a),  u(b)]. 

T h i s  is al l  t h a t  w a s  r e q u i r e d  to  g e t  t h e  u p p e r  b o u n d s  in  T h e o r e m  3.1. 
A m o r e  g e n e r a l  f o r m  o f  t h e  m a x i m u m  p r i n c i p l e  is t h e  fo l lowing  

THEOREM B1.  S u p p o s e  u is  cont inuous  on [a, b] and  o f  class C 2 on (a, b) and  that g and  h 
are cont inuous  on [a, bJ, w i th  h(r) <_ O, f o r  a <_ r <__ b. I f  
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I f  

t h e n  
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u"(r)  + g(r)u'(r)  + h(r)u(r)  > 0 f o r a  < r < b 

u(r)  <_ m a x  [0, u(a) ,  u(b)]. 

u*(r) + g(r)u'(r)  + h(r)u(r)  <_ 0 f o r a  < r < b 

u(r)  > ra in  [0, u(a) ,  u(b)]. 

Th i s  t h e o r e m  is a d i rec t  consequence  of  T h e o r e m  3, C h a p t e r  1 of  P r o t t c r  a n d  W c i n b e r g e r  
(1967). 

To p rove  L e m m a  1 in Sect ion  3, we first  use  b o t h  p a r t s  of  th i s  t h e o r e m  to  ge t  Y ( r )  ~ 0 
a n d  Y ( r )  >_ 0 a n d  t h u s  

Y ( r )  =-- 0 o n [ 0 , 1 ] .  

F r o m  t h e  e q u a t i o n  for  X ,  one  sees t h a t  

X ( r )  > m i n  (0, Ao) = O. 

I f  X(~) = 0 for  some 0 < ~ < 1, t h e n  X"(~) >_ 0 (as i t  m u s t  be  a local m i n i m u m )  a n d  so, 
f r om t h e  e q u a t i o n  

D1X"(~)  = - A ( ~ ) .  

B u t  th i s  is imposs ib le  as t h e  l e f t - h a n d  side is n o n - n e g a t i v e  a n d  - A ( r )  < 0 for 0 < r < 1, 
so X(~) # 0. T h u s  one  h a s  t h e  s t r i c t  i n e q u a l i t y  X ( r )  > O. 

To ge t  t h e  u p p e r  b o u n d ,  le t  u(r)  = X ( r )  -- Ao.  T h e n  

D l u "  -- u = Ao  - A ( r )  >_ 0 
u(O)  = u O )  = o.  

F r o m  t h e  f irst  p a r t  of  t h e  m a x i m u m  principle ,  one gets  

u(r)  <_ 0 or X ( r )  <_ Ao .  

Simi la r ly  L e m m a  2 in Sect ion  3 depends  on  a d i rec t  app l i ca t i on  of  t h e  second  p a r t  of  t h e  
m a x i m u m  pr inciple .  

Our  o t h e r  app l i ca t ions  of  t h e  m a x i m u m  pr inc ip le  were to ell iptic a n d  parabo l ic  sys tems .  
F i r s t l y  we shal l  give a n  a p p r o p r i a t e  fo rm for  semi l inear  pa rabo l i c  sys tems .  W e  shal l  on ly  
t r e a t  t h e  case of  one  space  va r i ab l e  b u t  i t  is easy  to  general ize  t h e  resu l t s  to  a n  a r b i t r a r y  
n u m b e r  of  space  var iab les .  

W e  shal l  be  i n t e r e s t e d  in  fo rms  of  t h e  m a x i m u m  pr inc ip le  wh ich  a p p l y  to  semi l inear  
pa rabo l i c  sy s t ems  of  t h e  fo rm 

~ut ~2ut ~ut 
O--d" = a t ( r , t ) ~  + b t ( r , t ) ~  + ct (r , t ,  u l  . . . . .  u~) 1 < i <  Ic. (B1) 

He re  we a s sume  0 < r < 1, 0 < t < T,  t h a t  at, bt a n d  c t are  c o n t i n u o u s  func t ions  of  t h e i r  
var iab les ,  a n d  t h a t  

at ( r , t )  > ~ > 0 for  a l l l _ < i <  /c, 0 < r < 1 , 0  < t < T. 

W e  are  n o t  us ing  a s u l n m a t i o n  c o n v e n t i o n  here ;  such  sys t ems  are  cal led weak ly  coup led  
as  in  t h e  i th equa t ion ,  t h e  func t ions  u~, f o r j  # i, en t e r  on ly  t h r o u g h  t he  lowest  order  t e rms .  

A s s u m e  t h a t  

ut(r, O) = Uot(r) 

is g iven  a n d  t h a t  

are  also prescr ibed .  

ct(r , t, u l ,  �9 � 9  uk) = 

uf(O,t)  = at(t) a n d  ui(1, t) = fit(t) 

A s s u m e  also t h a t  
k 

~ etj(r, t, u l  . . . . .  ue)uj + et(r, t, O, O, . . . .  0). 
1 = 1  

(B2) 

(B3) 

(B4)  
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THEOREM B2.  Suppose  u: [0, 1] x [0, T)- -+ ~ is  a classical solution of  (B1)- (B4) .  I f  

(i) Uot(r) > O f o r  1 _ i<_ k a n d 0 <  r_< 1, 
(ii) at(t) > 0, f{~(t) > 0 f o r  1 < i <  k a n d 0 <  t < T,  

(iii) ct~(r, t, u l , .  � 9  u~) < 0 for  1 < i < k a n d  al l  r, t, u,  
(iv) ctl(r, t, u x , . . . ,  u~) > 0 w h e n e v e r  i r j a n d  all  r ,  t, u a n d  
(v) ci(r, t, 0 . . . . .  0) > O for  all i , r ,  t 

t h e n  u,(r, t) >_ O f o r  1 < i <  k, 0 <  r<_  l a n d 0 <  t < T.  

Proof :  L e t  L~ be  t h e  pa rabo l i c  o p e r a t o r  def ined b y  

82v av 8v 
L~v = ai(r, t) ~ + b~(r, t) 8r 8t 

F r o m  (B1) a n d  (v) one  sees t h a t  

Ltu~ + c,(r, t, u l  . . . .  , u~) -- c,(r, t, O , . . . ,  O) <_ 0 
o r  

k 

L~u~ + ~. c~j(r, t, u l  . . . . .  u~)u~ <_ O. 
: f = l  

A p p l y i n g  T h e o r e m  13, C h a p t e r  3 o f  P r o t t e r  a n d  W e i n b e r g e r  (1967) to  t h i s  express ion  one  
gets  t h a t  

-u~(r ,  t) < 0 for  a l l i ,  r , t .  

T h u s  one  ha s  t h e  t heo rem.  
I n  t h e  app l i ca t i on  of  th i s  resu l t  to  our  sys tem,  one  ha s  k = 2, b~(r, t) = 0 a n d  a~(r, t) = 

D~. Also 

cl(r, t , X ,  Y )  = A(r )  - [B(r)  + 1]X + X s Y  
c2(r, t, X ,  Y )  = B ( r ) X  - X 2 Y  

al(t) = i l l ( t )  = B o / A o  > 0 a n d  a2(t) = fi2(t) = A o  > O. 

This  s y s t e m  obeys  all  t h e  r e q u i r e m e n t s  of  t h e  a b o v e  t h e o r e m  a n d  so T h e o r e m  2.2 
holds .  

N e x t  one would  l ike to  h a v e  ana logous  m a x i m u m  pr inc ip les  for weak ly  coupled  semi-  
l inear  el l ipt ic  sys tems .  To ge t  such  resu l t s  one  shou ld  f irst  look a t  weak ly  coupled  
l inear  el l iptic sys tems .  W h e n  one h a s  on ly  one space  va r i ab l e  t he se  m a y  be  w r i t t e n  

�9 , d2ut dul  k 
adr ) ~  + b~(r)-~r + ~ c*t(r)ut --- d~(r) 0 < r < 1. (B6) 

t = 1  

H e r e  a,, b,, dt a n d  c,i are  a s s u m e d  to  b e  c o n t i n u o u s  on  [0, 1] a n d  a,(r) > 8 > 0 for  
0 _ < r < l .  

I f  one  mere ly  assumes ,  as in  t he  p rev ious  two  theo rems ,  t h a t  di(r) > 0 a n d  ct~(r) <_ 0 for  
1 _< i _< k a n d  %(r) >_ 0 for  i r j ,  one  need  n o t  a lways  get  a m a x i m u m  principle .  F o r  
example ,  cons ider  t h e  s y s t e m  

tp u 1 -  u~ + au2 = �89 f o r O  < r < 1 

U 2 =  1 

sub j ec t  to  t h e  b o u n d a r y  cond i t ions  

Ul(0) = u l (1)  = 0 a n d  uu(0) = �89 u2(1) = 1. 

T h e  so lu t ions  of  th i s  s y s t e m  are  g iven  b y  

( z r  2 

u2(r) = �89 + r 2) a n d  u ~ -  ux = �89 - a) 2 

W h e n  a = 0, a m a x i m u m  pr inc ip le  holds ,  b u t  w h e n  a > 1, one  ha s  t h a t  ul(r)  >_ 0 a n d  a 
m i n i m u m  pr inc ip le  ho lds  for  u l .  
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However ,  one does have  some results  when the  funct ions u~(r) are  constra ined to be  
nonposi t ive  on the  boundary ,  and cer ta in  spectral  propert ies  hold. Such results  a r ep roved  
using h o m o t o p y  methods  and here  we shall use similar  methods  to prove  Theorem 3.4. 

F i rs t  one should note  t h a t  i f  XB(r) >. 0 for O _< r _< 1 then  f rom Theorem B1 and f rom 
the  equa t ion  

D2Y" - X 2Y = - - B X  

and the  boundary  condit ions for Y, one gets YB(r) > O. 
Thus for Theorem 3 to hold, i t  suffices to p rove  the  following. 

TI~EOI~EM B3. I f  (X, Y,  B) is in 3-o, then X(r) >_ 0 for 0 <_ r <_ 1. 

Proof: I f  (X, Y, B) is in 3-o,  t hen  there  is a cont inuous mapp ing  X: [O, B]--> C2(O, 1) 
such t h a t  for each 0 < b < B, X(b) is the  X - c o m p o n e n t  of  a solut ion of  (3.1)-(3.4) and  
x ( 0 )  = X o ,  X ( B )  = X .  

Le t  
m(b) = inf  xb(r). 

O~r~l 

Then  from L e m m a  1, m(0) > 0, and since Xis  continuous,  mfb) is a cont inuous  funct ion of  
b. 

Le t  b0 = inf{b: m(b) < 0). Then  m(bo) = 0 and  when B = bo, there  is a solut ion 
X(bo) = _~2 of (3.1)-(3.4) and  a poin t  ~ in (0, 1) such t h a t  

2~(~) = 0 and J~(~)  _> 0 (as 2~ a t ta ins  its m i n i m u m  at  ~). 

B u t  f rom (3.1) 
D12g:"(~) = -- A(~). 

Since A(r) > 0 for all 0 _< r < 1, this  is impossible and so there  is no such b0. Thus the  
t heo rem is proven.  

I n  fact  this proof  shows tha t  i f  (X, Y, B) is in ~ 'o ,  then  X(r) > 0 for 0 _< r _< 1. 
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