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The comparison of  several sequences is central to many problems of  molecular biology. 
Finding consensus patterns that define genetic control  regions or that determine structu- 
ral or functional themes are examples of these problems. Previously proposed methods,  
such as dynamic programming, are not  adequate for solving problems of  realistic size. 
This paper gives a new and practical solution for finding unknown patterns that  occur 
imperfectly above a preset frequency. Algorithms for finding the patterns are given as 
well as estimates of statistical significance. 

1. In troduct ion.  In the mathematical analysis of macromolecular sequences 
one of the most developed areas is the comparison of sequences. Varied and 
powerful dynamic programming methods have been developed for the 
optimal alignment of two sequences, for the best fit of one sequence 'into' 
another and for determining the best matching segments of two sequences. 
Various methods for more rapid comparison of sequences have also been 
developed that are particularly useful for screening data bases. The subject 
of sequence comparison is reviewed elsewhere in this issue (Waterman, 1984). 

The methods currently available for comparison of two sequences are not 
as useful when applied to several sequences. Dynamic programming methods, 
for example, take time and storage O[(2n) r] to compare r sequences of 
length n. No previously known methods are adequate for these problems. 
In this paper we address the problem of comparison of several sequences, 
which is of considerable biological interest, and explicitly approximate the 
probability that a pattern is held in common by at least a preset percentage 
of the sequences. We introduce practical techniques that solve the problem 
of finding these 'consensus' patterns for a set of sequences. 
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The problem considered here is, in general terms, that o f  finding unknown 
patterns (words over the alphabet) that occur imperfectly at or above a 
preset frequency. The specific problems addressed are those of  finding: 

(i) unknown patterns that occur in r sequences, Xl, x2, x3 . .  �9 xr, 
(ii) known patterns that occur in xa, x2, x3 . . . .  xr, 

and 

(iii) alignments o f x l ,  x2 . . . .  x~. 

Algorithms and estimates of  statistical significance of  the patterns found by 
these algorithms are presented in the next sections. 

The problem of  determining common patterns among sequences has been 
considered an important one since the first sequence data for proteins and 
nucleic acids became available. Among the patterns that have clear biologi- 
cal significance are those defining genetic control regions in DNA and those 
determining structural or functional themes in protein sequences and their 
respective DNA coding regions. Previous at tempts to devise algorithms for 
the detection of  such patterns in several sequences were beset by various 
difficulties. 

In Sadler et  al. (1983) regulatory pattern analysis is considered, using the 
tools of  dynamic programming. Since the presumptive regulatory patterns 
are small and occur inexactly, algorithms to find long common matches 
between two sequences are not of  much use. The paper concludes " . . .  these 
tools are of  limited value". 

Several at tempts have been made to study these problems using the 
concepts of  finite automata and regular expressions. See Aho, Hopcroft  and 
Ullman (1974). For example, Abarbanel et  al. (1984) implement regular 
expression searches in a form convenient for use in molecular biology. 
However, in all such programs it is necessary to know the approximate 
identity of the pattern being sought, In the present paper, we consider the 
problem of  finding patterns of  which there is no prior knowledge. 

Stormo et  al. (1982) use a concept from artificial intelligence, the percep- 
tron, to find translation initiation sites in E. coli in mRNA sequences. 
Minsky and Papert (1969) provide a detailed review of  these concepts. These 
methods are closely related to one developed by R. A. Fisher, called linear 
discriminate analysis. See Gnanadesikan (1977) for a discussion of  this 
statistical technique. These techniques may prove useful for several biologi- 
cal problems and should be more fully explored for nucleic acid and protein 
sequence data. 

The techniques we develop here are related to work of  Parzen (1962), who 
proposes a method of  estimating probabili ty density functions. See Waterman 
and Whiteman (1978) for a discussion of  the technique and its application to 
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exper imen ta l  data.  Queen  et al. (1982)  p ropose  a m e t h o d  closely related to  
ours  a l though thei r  da ta  analysis differs in critical ways which limit the 
u t i l i ty  o f  their  p rocedure .  In addi t ion ,  Dumas  and Ninio ( 1 9 8 2 ) t r e a t  a 
sequence  as a string o f  overlapping n-mers and Marliere (1982)  analyzes  
t R N A  sequences  by  comput ing  a score for  each overlapping n-mer.  Our 
algori thms make  use o f  similar ideas�9 

2. Basic Algori thm.  In this sect ion,  an a lgor i thm is p resen ted  which applies 
to  the th ree  problems  descr ibed in the In t roduc t ion .  

The data  are a set o f  r sequences 

x l J  

x21 
X ~ 

X l l X I 2  �9 . �9 X l n l  

X 2 1 X 2 2  �9 . . X2n  2 

�9 . . 

X r l X r 2  . . . Xrnr 

where xii are member s  o f  a f ini te a lphabet ,  such as {A, C, G, T}. 
The  analysis is based on the occur rence  o f  k le t te r  words,  which m ay  be 

o rdered  lexicographical ly  ( A A . . .  AA, A A . . .  AT, �9 . . ,  T T . . .  TT)  and p u t  
in to  co r re spondence  with the integers 0, 1, . . . , 4 k - -  1. Since we are 
conce rned  with the occur rence  o f  similar pat terns ,  we must  define sets o f  
similar words which we will call ne ighborhoods .  Ne ighborhoods  o f  words  are 
def ined  by  funct ions ,  f ,  mapping a k- le t ter  word into a set o f  k- le t ter  words.  
For  example ,  if w = AT and f ( w )  = {w' : w'  is one  mismatch  f rom w} then  
f ( w )  = f ( A T )  = {CT, GT,  TT,  AA, AC, AG}. A ne ighborhood  is de t e rmined  
f rom a list o f  such funct ions .  

Basic to  our  analysis is an enumera t ion  o f  the words and thei r  neighbors.  
Fo r  a string y = YlY2 �9 . �9 YL, of  length L, def ine 

q w d  = I { m : w  E f d ( y m Y m + l . . . Y m + k - - 1 ) ,  1 ~ m  ~<L + 1 - -k} [  

where [B[ is the n u m b e r  o f  e lements  in the set B. In o the r  words,  qwa is the  
n u m b e r  o f  t imes word w is an fa  ne ighbour  o f  some k- le t ter  words in 

Yl �9 �9 �9 YL. 
F o r  example ,  let k = 2 and y = ACTAAA.  Consider  two ne ighborhood  

func t ions  )Co('), the  exac t  ma tch  func t ion ,  and f l ( ' ) ,  the  s ingle-mismatch 
func t ion .  Then  the matr ix ,  Q, o f  ne ighbor  occur rences  [Q = (qwa)] is 
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AA 
AC 
AG 
AT 
CA 
CC 
CG 

Q = CT 
GA 
GC 
GG 
GT 
TA 
TC 
TG 
TT 

CA, for example, does not occur exactly 
that are one mismatch from CA. 

Next we compute  (~ = (C]wd) where Clwd 
is 0 otherwise. For  the above example, 

fo 
2 
1 
0 
0 
0 
0 
0 

fl 

2 
2 
3 
4 
4 
2 
1 

1 0 
0 3 
0 1 
0 0 
0 1 
1 2 
0 2 
0 1 
0 2 

in y ,  but  y does have four words 

is 1 if d = min{l : qwl 4= 0}, and q~a 

1 0 
1 0 
0 1 
0 1 
0 1 
0 1 
0 1 
1 0 
0 1 
0 1 
0 0 
0 1 
1 0 
0 1 
0 1 
0 1 

The idea is to count only the best occurrence of  a wor~ w in the string y .  
The search of  the sequence set, X, will proceed by performing a search 

for the most frequently occurring word in the block from column ] to 
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column ] + W -- 1. The window width, W, is a parameter set by the user. 
Too broad a search will give insignificant results, too narrow a search will 
usually not find a desired pattern. In Section 5 the statistical significance is 
assessed in detail. The sequences searched are 

X I , j X I , ] + I .  �9 . X l , j + W - - 1  

X 2 , j  X 2 , j + I .  . . X 2 , j + W - - 1  

Xr, j Xr, j + l �9 . . Xr, j + W--1 . 

For each line i, 1 ~< i ~< r, the Q = Q(i) matrix above is calculated and a 
summation matrix 

V = ~ Q(i) 
i=1  

is found. V = (Vwd) has the interpretation that Vwd is the number of lines 
for which the best occurrence of  word w is as a d t h  neighbor�9 

Different occurrence scores can be calculated from V. First, 

Yw : ~ "  J;wd 
d>~l 

is the number of  lines in which any neighbor of  word w occurs. A score 
weighted for the distance between the word and its neighbor is more appro- 
priate. The general form is 

S w ~- ~ ~kdl;wd.  
d>~l 

A winning word w, the 'most common'  pattern, satisfies 

maxw,(Sw,) = sw - s .  

The scoring used in the programs discussed here is 

Number of letters in common between w and members of fd(W) .  
h a =  k 

In particular, with this weighting 

and 

~kexac t : 1 

d 
~ d  mi sma tches  - -  1 

k 
The algorithm begins with a set fo, fl . . . .  of  neighborhood functions and a 
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window width W. The winning word score is computed for ] = 1, 2, . . .. 
Estimates of  statistical significance can be obtained (see Section 5 below) 
from the sequence probability distributions and the neighbors f0, f~, �9 �9 �9 and 
used to set W. For the problems of  finding unknown and known patterns, 
specific algorithms are presented in Sections 3 and 4. 

3. Search for Unknown Patterns. The assumption here is that the 'consensus' 
pattern among the set of  sequences is unknown. This is the problem of  most 
interest and the one which has attracted much attention from biologists 
because of  the need to find significant sequence patterns that define specific 
functions among the rapidly expanding sequence data. The 'Pribnow box'  
from bacterial promoters or the ribosome binding site in bacteria, the 
'Shine-Dalgarno sequence', are examples of  such patterns that define part 
of  the function of  transcription initiation (Hawley and McClure, 1983)and 
translation initiation (Steitz and Jakes, 1975) respectively. In the first 
example, the pattern of  this 'box' only becomes well-defined for a relatively 
large set of  promoter sequences. That is to say, the 'shadow' of  the con- 
sensus pattern is not very precise among the sequences. The approach to 
finding the pattern that casts this shadow that  prescribes exhaustively 
comparing all subsequences of  the set, requires an enormous number of  
operations even for short sequences and points to the need for efficient 
algorithms for pattern recognition of  this kind. If there were 100 sequences 
and only two positions for each sequence, there would be 21~176 ~ 1.26 • 1030 
possible overall configurations of  the 100 sequences. Using this method 
to find patterns thus presents a hopeless task. The algorithm we present, on 
the other hand, here takes time approximately proportional to 

( W - - k +  i) ifa[ 4 k. 

The search begins, as in Section 2, with a set of  neighbors fo, fl . . . .  and a 
window width W. The scores of all words are calculated at each window 
position and the best one determined. If desired, the sequences can be 
'aligned' on a statistically significant word or pattern: a 'column' can be 
formed. Forming a column in this manner, on a word such as TATAAT in 
the bacterial promoters, may allow a second pattern, such as the TTGACA 
for the upstream, '--35', box, to be located much more easily. 

In a test of  these concepts on 59 sequences of  bacterial promoter regions 
approximately 60 bases long, k = 6 was used. With neighborhood functions: 
fo = exact, fl = 1 mismatch, f2 = 2 mismatches, window width W = 12 was 
used. For neighborhood functions: fo = exact, fl = 1 mismatch, f2 = 2 mis- 
matches, f3 = 3 mismatches, W = 9 was used. We are also able to include 
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insertions and deletions, either separately or along with mismatches. For 
instance, we may use 1 mismatch and 1 insertion, or 1 mismatch and 
l deletion. With the above parameters the programmed algorithm easily 
found both the --10 consensus and the --35 consensus. 

4. Search f o r  K n o w n  Patterns.  In this section a pattern of  interest 
Y = YxY2 �9 �9 �9 Ym is assumed to be known. The Pribnow b o x , y  = TATAAT, 
for example, is such a pattern in the example of  bacterial promoters (Hawley 
and McClure, 1983). Similarly, a particular complete promoter sequence 
o f  length 60 might be chosen as a known pattern. In any case the algorithm 
outlined below would find the best 'shadow' of  the pattern y in the set X of  
sequences. This problem is clearly a special case of  the pattern recognition 
problem described in the previous section. 

First choose a word w of  length k from y = Yl - �9 �9 Ym. In the Pribnow 
box case this might be TATAAT with k = 6 but it also might be a k letter 
subword of  a full (longer) sequence. Within a window of  width If, the 
calculations of  Section 2 are performed where 

qwl = number of  exact occurrences of  w in row i 

qw2 = number of  one mismatch occurrences of  w in row i 

~ ~ ~ ~ 

Only one line of  Q, the wth row, is used in these calculations since we 
assume prior knowledge of  the desired patterns. 

5. Es t imates  o f  Stat ist ical  Significance. For ease of analysis, we analyze 
the score equal to the number of lines in which any neighbor occurs. (That 
is, Xa = 1.0.) 

Assume that, independently in every position on every line, each of  the 
four letters, A, C, G, T appears with probability 1/4. For any word z of  
length k, the probability that the letters in k given positions spell z exactly 
is 4 -k. Let F = Za Ifa[ be the total number of  k-letter neighbors o f  a given 

word w. The probability that k random letters form a neighbor of  w is 4-kF. 
In Section 5.1 we present the essentials of  our analysis and give some 

numerical examples. Then, in Section 5.2, more details are presented. 
5.1 Survey  o f  the analysis. Assume that w is a given pattern of  length k, 

having F neighbors of  length k. We use 

o~ = (W -- k + 1)(F)4 -k 

to approximate the probability that  some neighbor of  w occurs, on a 
given line, with a given position of the window of  width W. Thus, if the 
data were random, for each word and window position j, one would expect 
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a p p r o x i m a t e  m a t c h e s  to w on  a b o u t  oLr o f  r lines. A fraction/3 > ~ is e x t r e m e l y  
unl ikely .  

Suppose  we are looking  for  a pa t t e rn  c o m m o n  to  some  prese t  f rac t ion  
/3 > o~ o f  the  r sequences.  F o r  word  w and w i n d o w  p o s i t i o n / ,  the  p robab i l i t y  

t ha t  at least /3r lines yield a p p r o x i m a t e  m a t c h e s  to w can be  e s t ima ted  as 

exp[--rH([3, o0] ,  where  H([3, o0 = / 3 1 o g ( ~ )  + ( 1 -  f l ) lOg(l l --~fl)  > 0 

is the  e n t r o p y  o f  13 relat ive to  a.  N o w  the re  are n choices  for  the  loca t ion  ] o f  
the  window,  and,  if  the  p a t t e r n  w is u n k n o w n ,  there  are 4 k choices  for  the  

word  w. Then  ou r  es t imates  o f  s ignif icance level p are 

k n o w n  pa t t e rn :  p = n exp[ - - rH( /3 ,  o01 

u n k n o w n  pa t t e rn :  p = n4kexp[--rH(/3, o01. 

Thus  p is an u p p e r  b o u n d ,  for  r a n d o m  data,  on the  p robab i l i t y  tha t  in some  
w i n d o w  pos i t ion ,  an a p p r o x i m a t e  m a t c h  occurs  on a f rac t ion  g rea te r  than  or 
equal  to/3 o f  the  r lines. I f  these es t imates  exceed  1, we use 1 ins tead.  

Two examples  are p resen ted  in Table  1 for  pa t t e rns  o f  length  k = 6, 
wi th  r = 59 sequences  o f  length  n = 60. Fo r  the  first  example ,  the  ne ighbor -  
h o o d  is 0, 1 or  2 mismatches ,  a n d F =  1 + 18 + 135 = 154. The  second 

e x a m p l e  has a n e i g h b o r h o o d  o f  0, 1, 2 or  3 mi sma tches ,  and F = 1 + 18 + 
135 + 540 = 694. 

T A B L E  I 

Es t imates  o f  Stat is t ical  Significance for  Pa t te rns  o f  Leng th  k = 6 in 

r = 59 Sequences  wi th  60 Bases 

K n o w n  U n k n o w n  
p a t t e r n  p a t t e r n  

F W o~ [3 H([3, a) e - rH p p 

154 12 0.263 0.75 0.515 6.3 X 10 -1'; 3.8 X 10 -12 1.5 X 10 -s 
154 14 0.338 0.75 0.354 8.7 X 10 -1~ 5.2 X 10 -s 2.1 X 10 -4 
154 16 0.414 0.75 0.233 1.1 X 10 .6 6.3 X 10 -s 2.6 X 10 -1 

694 7 0.339 0.75 0.353 9.2 • 10 -1~ 5.5 X 10 -8 2.3 • 10 -4 
694 8 0.508 0.75 0.123 7.2 X 10 -4 4.3 X 10 -2 1.0 

5.2 Details o f  the analysis. Within a w indow o f  length W, there  are 
l = W - -  k + 1 places fo r  a b lock  o f  k consecut ive  let ters.  F o r  each  o f  these  
l choices,  cons ider  the event ,  o f  p robab i l i t y  a = 4-kF, tha t  some  ne ighbor  

o f  word  w occurs  at tha t  pos i t ion.  Regardless  o f  the  d e p e n d e n c e  o f  these  
l events ,  al is an u p p e r  b o u n d  on the p robab i l i t y  o f  the i r  union.  We will use 
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al = 4 - ~ F ( W  - -  k + 1) as ou r  es t imate  o f  the probabi l i ty  a tha t  some ne ighbor  

o f  w occurs  elsewhere in the window.  
If  the  l events were independen t ,  the  p robab i l i ty  o f  the i r  un ion  is 

1 - -  (1 --  a) t, which is closely app rox ima ted  by  al whenever  al < 1. An 
exact  b o u n d  is (1 --  1 / e ) m i n ( a l ,  1) ~< 1 --  (1 --  a) I ~< min(al ,  1), for  
l = 1, 2 . . . .  and any 0 ~< a ~< 1. The  l events here  are dependen t ,  in a 
com p le x  way tha t  we canno t  analyze,  and fu r the rmore ,  the d ep en d en ce  
varies wi th  the  word w. F o r  example ,  the events  for  two adjacent  posi t ions,  
( x l x 2  . �9 . x k  is a ne ighbor  o f  w} and {x2xa �9 . . X k + l  is a ne ighbour  o f  w}, 
are posi t ively corre la ted  if  w -- AAAAAA,  and negat ively cor re la ted  i f  
w = ACGTAC,  using the ne ighborhoods  o f  one or  two mismatches.  F o r  
fu r the r  discussion o f  this dependence  see Waterman (1983)  and Breen e t  al .  

(1985) .  
Consider  a f ixed window posi t ion j. I ndependen t ly ,  on  each o f  r lines, 

there  is the event  o f  probabi l i ty  a tha t  some ne ighbor  o f  w occurs.  The  
probabi l i ty  tha t  exac t ly  m o f  these events  takes  place is 

For  a prescr ibed threshold  /3 be tween  0 and 1, the  p robab i l i ty  tha t  
some ne ighbor  o f  w occurs,  within the  window,  on at least /3r o f  the r 
lines, is 

-<~-< (Vrll OLm(1-Ol)r-m" 

As long as 13 > a and r is large, a good app ro x im a t io n  for  this sum is the large 
deviat ion est imate ,  P (at leas t /3r  successes in r i ndependen t  trials wi th  indi- 
vidual success probabi l i ty  o~ < / 3 )  ~ e -ru(r Here //(t3, o0 is the relative 

e n t ropy ,  H(/3, a ) =  /31og(~---)+ (1 - /3 ) lOg( l l - - -~a) .  Note  tha t  when/3  = 1, 

/ x  

the  probabi l i ty  o f  finding a ne ighbor  o f  w on all r lines is c~ r, and H(/3, o0 
reduces  to  - - log a, so t h a t  the app rox ima t ion  is exact :  for  t3 = 1, e -~/(e'~) = 
e r log~ ~_ oLr 

Finally,  consider  the shifting window posi t ion.  At each n --  W + 1 ~- n 
possible w indow posi t ions,  the event  tha t  some ne ighbor  o f  w occurs  within 
tha t  window on at least /3r o f  the r lines is app rox ima te ly  e -~H(~'a). The  
est imate  o f  significance ne -~/-/(~'~) is an uppe r  b o u n d  on the probabi l i ty  that ,  
for  a given word w, some window posi t ion  reveals an app rox ima te  m a t ch  
to  w on at least f ract ion/3 o f  the lines. 

The bound  above can be used to  choose  a window size W. Pick a signifi- 
cance level p,  e.g. 0.01 or 0.001.  To get ne -~/-/(e'~) ~<p we need 
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H(/3, a) >t--log ; 
/, 

so we let 

For /3 = 1, this says --logo~ />E =-r-log , i.e. a ~< e - ~ =  Now 

~< 4-kF(W -- k + 1) so we solve for W: 

W = (4k/F)  + (k -- 1). 

For/3 < 1, we need approximations to solve H(/3, ~) = ~. Here e is small, 
so a will be slightly less than /3; we let a =/3(1 -- 6). Using log(l + x) = 

X 2 x 3 
X - - - - - t - - - . . .  

2 3 ' 

H(/3, a) = H(/3,/3 --/36) = / 3 1 o g ( f l - - ~ )  
-/3 + (1 -fl)log (1 L fl-~/36 ) 

= f l l o g ( ~ - ~ )  + (1 --/3)log 1 + 6 

~/3 + + (1 --/3) -- + \1 - - /3] /  J 2(1--/3)" 

Thus to solve H(/3, o0 = E, we take o~ = (1 -- 6)/3 with 

6 =(.2(1/3--/3) )a/2. 

6. Aligning Sequences. Obviously most  of  the sequences must  already be 
approximately aligned. This may be done by finding long matches in all 
sequences, or by using prior knowledge of  biological funct ions such as the 
beginning of  coding regions. 
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The algorithm and statistical significance estimates have already been 
described. The approximate alignments can be improved, although not 
drastically altered. The algorithm begins at some aligned positions and 
searches until statistically significant matches are found. 

Alignments on features other than matches are possible. For example, 
the Noller-Woese (1981) method utilizes both matches and helical regions to 
perform their phylogenetic analysis of ribosomal RNA secondary structure. 
In Noller, Waterman and Woese (in preparation) these methods are given a 
rigorous basis. The double-stranded regions are found by positioning a window 
and then searching by moving another window across the approximately 
aligned sequences until a region with significant base pairing is located. 

7. Application to Biological Problems. Since DNA and protein sequence 
information has been available, various short patterns have been identified 
as having particular functional significance. In several presumptive regulatory 
DNA sequences, for example, a candidate 'consensus' sequence, specifying 
a particular biological function, has been identified by simple inspection of 
several examples of DNA sequences known to determine such a function. 
The 'Pribnow box' of bacterial promoter sequences (Pribnow, 1975) and the 
'Goldberg-Hogness' box of eukaryotic polymerase II promoter sequences 
are examples of such feature extraction by inspection (Schaller et al., 
1975; Goldberg, 1979; Breathnoch and Chambon, 1981). The difficulties 
with this process are evident: there is no unambiguous definition of a 'con- 
sensus' sequence; the subjective nature of the process introduces arbitrary, 
unstated choices (such as alignment of the "boxes"); the features that are 
evident from the comparison of single letters may not be the most impor- 
tant features of the functional pattern and it is not clear to what extent 
the observed features are statistically significant. There are other potential 
problems, some of which have been addressed by previous attempts at 
pattern recognition, as briefly discussed in the introduction. The general 
nature of these problems has been discussed previously (Sadler etal., 1983; 
Smith et al., 1981). 

The method presented here overcomes many of the difficulties referred 
to above by providing: a clear and explicit definition of a 'consensus' 
pattern; an algorithm for finding such patterns among many sequences and 
an analysis of the statistical significance of these patterns. Furthermore, the 
present method provides a general tool that can be used to detect more 
subtle patterns. We need not confine our attention to the standard alphabet 
{A, C, G, T) and single positions in the sequence. Since the method is equally 
applicable to any set of strings of symbols, we may map sequences in the 
standard alphabet into sequences in a sub-alphabet, or into an alphabet (or 
sub-alphabet) of dinucleotides, trinucleotides, etc. and search for patterns 
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in these non-standard alphabets. It has been suggested, for example, that 
important features of  the DNA-protein recognition are in the array of  func- 
tional groups in the grooves of  B-form DNA (see Matthews et  al., 1982, for 
example) or in the set of  sequence-specific 'twist' and 'roll' angles, etc. 
that modify the relatively uniform structure of  the DNA molecule (Dickerson, 
1983, Dickerson et  al., 1982; Anderson et  al., 1982)o These features would 
be manifest in patterns in one of the sub-alphabet sequences mentioned 
above. 

Regulatory signals in DNA sequences are particularly amenable to analysis 
by the proposed method.  Initially, we have given particular at tention to the 
bacterial promoter  sequences, since they represent an extensive and well- 
studied set o f  sequences with known function (Hawley and McClure, 1983). 
The important patterns (in the standard alphabet) are reasonably well- 
determined, so this set is an ideal test case. The known patterns in the - -10 
and - -35 regions are easily found by our programs. The detailed results of  
this study will be reported elsewhere. Among the functional sequences of  
particular interest for further study are: the eukaryotic promoter  sequence 
for polymerases I, II and III, the mRNA capping site, the poly-A addition 
site, enhancer sequences, the splicing sites for po l l I  transcripts, r ibosome 
binding sites in prokaryotes and eukaryotes,  the binding sites for various 
proteins (CRP and various repressor proteins), hormone receptor  sites, 
common features in sequences surrounding mutational 'hotspots '  and several 
others. To be useful the present method only requires that we have several 
examples of  sequences with closely similar functions. It is worth noting here 
that many sets of  functional sequences exhibit a wide range of  functional 
activities among the members of  the set (promoters of  various strengths, 
for example), and that the present method is easily modifiable to take this 
into account. It is simply a matter  of  using weights, indicating the activi- 
ties, in the algorithm to extract the patterns from various sequences. In this 
manner a weighted, 'consensus' promoter ,  for example, can be specified. 
In general, the more that is known about  the function of  a sequence the 
more information can be extracted. 
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