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We propose a mathematical approach to the modelling of self-organizing hierarchies in 
animal societies. This approach relies on a basic positive feedback mechanism that rein- 
forces the ability of a given individual to win or to lose in a hierarchical interaction, 
depending on how many times it won or lost in previous interactions. Motivated by 
experiments carried out on primitively eusocial wasps Polistes, the model, is based on 
coupled differential equations supplemented with a small stochastic term. Numerical inte- 
grations allow many different hierarchical profiles to be obtained depending on the model 
parameters: (1) the particular form of the probability for an individual to win or lose a fight 
given its history, (2) the probability of interaction between two individuals, (3) the forgetting 
strength, which determines the rate at which events in the past are forgotten and no longer 
influence the force of an individual and (4) two individual recognition parameters, which set 
the contribution of individual recognition in the process of hierarchical genesis. We compare 
the results, expressed in terms of a hierarchical index or of the Landau number that 
describes the degree of linearity of the hierarchy, with various experimental results. 

1. I n t r o d u c t i o n .  T h e  e m e r g e n c e  o f  h i e ra rch ie s  in a n i m a l  g roups ,  co lonies  
and  socie t ies  is a p h e n o m e n o n  tha t  has  a t t r a c t e d  a lot  o f  a t t en t i on  fo r  
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a long time. Hierarchical behaviour has been described, for example, 
in chickens (Shjelderup-Ebbe, 1913, 1922; Allee, 1942, 1952; Guhl, 1968), 
cows (Schein and Fohrman, 1955), ponies (Tyler, 1972), fish (Lowe, 1956; 
Bovbjerg, 1956; Bovbjerg and Stephen, 1971; Wilson, 1971) or frogs when 
crowded together (Haubrich, 1961; Boice and Witter, 1969), in primates 
(see e.g. Baldwin, 1971) or social insects, especially in wasps (Gervet, 1962, 
1964; Pardi, 1946, 1948; Evans and Eberhard, 1970; Wilson, 1971; Ther- 
aulaz et al., 1992) and ants (Cole, 1981; Franks and Scovell, 1983; Heinze, 
1990; Heinze et al., 1992; Bourke, 1988; Oliveira and H611dobler, 1990; 
Medeiros et al., 1992). This list is far from complete: the literature on 
dominance orders--a  widespread alternative name for hierarchies--con- 
tains hundreds of references dating back to the systematic investigations of 
Shjelderup-Ebbe (1913, 1922) on the domestic fowl Gallus domesticus. The 
present paper was originally stimulated by studies on primitively eusocial 
wasps Polistes, hence a natural emphasis on social insects. However, the 
mathematical model of self-organizing hierarchies we shall introduce and 
develop is not intrinsically restricted to these animal societies: we believe in 
its wider applicability if sufficient care is taken to include all the relevant 
factors. 

The hierarchical level of an individual and its function within the society 
are often tightly coupled: in some primitive insect colonies, for instance, 
such as bumblebees Bombus  and paper wasps Polistes, the queen, by 
physically dominating her daughters and the other females in the nest, 
regulates most of the  colony's activities (e.g. forcing other females into 
nonreproductive activities (Eberhard, 1969)) and, more generally, hierarchi- 
cal interactions organize to a large extent the division of labor (Eberhard, 
1969; Theraulaz et al., 1991a). In many species of social insects, such 
interactions lead to reproductive hierarchies, where rank and reproductive 
success are strongly correlated (the egg-laying rate is often not sufficient to 
characterize reproductive success because eggs can be eaten by other 
nestmates, fed to the larvae or develop into nonreproductive workers 
(Heinze et al., 1994)). 

It is worth mentioning here the definition of a social hierarchy given by 
Allee (1952). According to him, the term hierarchy refers to "any social 
rank order established through direct combat, threat, passive submission, or 
some combination of these behaviour patterns." One then knows that an 
individual A is at a higher level in the hierarchy than another individual B 
if A dominates (or is most likely to dominate) B when A and B encounter. 
Such a dominance behaviour can be seen clearly in the attitudes of both 
individuals during and after the fight or can be limited to a threatening 
attitude on the part of the dominant. In fact, in social insects, well-defined 
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hierarchies that follow this definition exist mostly in somewhat primitive 
species: in more evolved species, social control and organization tend to be 
performed (by the queen and other individuals) through an ensemble of 
pheromonal substances and not through direct aggressive interactions (Wil- 
son, 1971). Even in primitive species, the expression of the hierarchical 
structure of the colony in terms of such interactions is limited to a certain 
amount of time following the formation of the group: there is a decrease of 
observable hierarchical activity with time, which may correspond to some 
habituation (or social inertia (Guhl, 1968)) or to the fact that individuals fit 
into their respective roles. This feature also is observed in many other 
examples of hierarchies outside the realm of social insects. Aggressive 
interactions usually exhibit a burst after the death or the artificial removal 
of the dominant individual as individuals of nearly equal ranks compete for 
the dominant position: then a new stable hierarchy is formed again. 

Despite the large amount of experimental and theoretical work on this 
topic in a variety of ethological examples, only a few authors have dealt 
with the genesis of the hierarchical structure. The first clear and systematic 
study of plausible mechanisms underlying the formation of hierarchy was 
proposed by Chase (1974, 1980, 1982a, b) and was built upon the seminal 
work of Landau (1951). Chase (1974) introduced two types of models whose 
distinction (although somewhat artificial because reality can be a mixture of 
both) is insightful: The tournament model (hereafter TM) and the correla- 
tional model (hereafter CM). 

�9 In the TM, each individual compares itself with all other animals and 
the probabilistic outcome of an initial interaction between A and B 
(say A dominates B) is "quenched" so that any subsequent encounter 
of A and B results in the same pattern of dominance (that is, in A 
dominating B). Obviously, the TM requires or is based on individual 
recognition: any member of the group must be able to recognize and to 
remember any other member on an individual basis. As emphasized by 
Gervet et al. (1993), this model can explain the existence of stable pair 
relationships, but does not account satisfactorily for the strong linearity 
of most hierarchical structures across the animal kingdom, owing to the 
"quenching" hypothesis. 

�9 In contrast, the CM does not require individual recognition (but does 
not exclude it); rather it assumes the existence of a high degree of 
statistical correlation between an individual's rank in the hierarchy and 
a trait or a set of characteristic features (plausible candidates are, for 
example, size, strength, mobility, endocrine levels, ovarian develop- 
ment , . . . )  that can be assigned a value. By definition, if the correlation 
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is high enough, this value plays the role of a dominance index, because 
it is expected to predict the dominance rank accurately. After a careful 
analysis of available experimental data, Chase (1974) concluded that 
the CM is not a good explanation because strong linearity requires that 
correlations reach a high level not compatible with experimental data. 
For example, in observations on hens reported by Guhl (1968), there 
seemed to be only small correlations between individual positions in 
hierarchies formed in the same group in two successive experiments 
separated by a period of isolation. 

In the original CM, the set of characteristics was assumed to be pinned at 
fixed values. According to Wilson (1975), Chase found a solution to this 
problem by assuming a CM with variable dominance index: in effect, the set 
of characteristics defining the index can be subject to a positive (respec- 
tively, negative) feedback in case of victory (respectively, of defeat). The 
probability of wining a contest therefore increases (respectively, decreases) 
with the number of victories (respectively, defeats). Such "loser and winner 
effects" (Chase 1982a, b, 1985; Chase and Rohwer, 1987) seem to be 
confirmed experimentally (Chase, 1986) in chickens (McBride, 1958; Chase, 
1980, 1982a, b, 1985), crickets (Alexander, 1961; Burk, 1979), fish (Francis, 
1983; Beaugrand and Zayan, 1984), mice (Ginsburg and Allee, 1975), rats 
(Van de Poll et al., 1982), rhesus monkeys (Mendoza and Barchas, 1983; 
Barchas and Mendoza, 1984), bumblebees (Van Honk and Hogeweg, 1981) 
and wasps (Theraulaz et al., 1989, 1992). 

In this "magnification" mechanism, randomness--luck or lack of 
luck--combined with the intrinsic abilities of individuals to win fights are 
the underlying mechanisms of a dynamical process whereby some individu- 
als tend to be shifted upward and others downward through amplifications 
of individual differences. This reinforcement process leads to the develop- 
ment of a stable close-to-linear hierarchy. This model emphasizes the 
importance of initial encounters, whose fluctuations may be amplified. The 
appropriate theoretical framework for understanding Chase's model orig- 
inates from non-linear thermodynamics where it is known as "dissipa- 
tive structures" (Nicolis and Prigogine, 1977, 1989; Deneubourg, 1977; 
Deneubourg et al., 1987; Pasteels et al., 1987): an initially undifferentiated 
state, that is, without any hierarchical structure, may evolve into a differen- 
tiated state through the amplification of fluctuations. In a related work, 
Hogeweg and Hesper (1983) proposed a model based on experimental 
observations of bumblebees Bombus  terrestris (Van Honk and Hogeweg, 
1981), assuming that a simple positive feedback mechanism applied to a 
single variable could explain the formation of a hierarchy: the more an 
individual wins, the more likely it is to win in future fights. They showed 
with a "socioinformatic" model (that is, a model in which colony-level 
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properties are not explicitly coded but emerge from individual behaviors 
interacting with one another and with their environment (Hogeweg and 
Hesper, 1985)) that this type of simple rule, based on the reinforcement of 
a single variable according to the victories and defeats of each individual, 
can generate a differentiation among initially identical individuals. For this 
differentiation to take place, however, they found that additional factors 
arising from the structuring of the environment might be necessary. How- 
ever, as we shall discuss at the end of this paper, this is due to the highly 
probabilistic nature of their dominance process: even an individual with a 
top rank can be defeated with some finite probability. The win-loss 
function we shall resort to here will be more like "dominance almost always 
wins" (J~iger and Segel, 1992), which allows us to get differentiation without 
further assuming a particular structuring of the environment. 

Because individuals are rated in terms of a variable representing the 
dominance index which is allowed to vary according to the "feedback rules" 
just mentioned, this modified CM can account for the linearity of hierar- 
chies as well as for the problematic experimental results of Guhl (1968), as 
we shall discuss later on. Finally, and importantly, mixtures of CM (with 
variable index) and TM (individual recognition) are most likely to occur in 
nature, because stable intransitive loops may or may  not be observed in 
simple animals such as wasps Polistes (Gervet et al., 1993, versus Theraulaz 
et al., 1992), depending on the number of animals that comprise the group. 
The exact nature of individual recognition processes is still unclear in many 
animal species (Zayan, 1994). We shall explore a simple model of individual 
recognition, which seems to apply well to simple animals, but with more 
difficulty to higher animals, where many additional factors, such as by- 
stander effect, come into play. Indeed, results on chickens and wasps seem 
to be exactly opposite: loops (of a rather stable kind) may be observed only 
in small groups of Polistes (Theraulaz et al., 1989, 1992; Gervet et al., 1993) 
whereas they can be observed, under an unstable form, only in large groups 
of hens (Shjelderup-Ebbe, 1913, 1922). 

The mathematical model presented in this paper is based on a very 
similar feedback or reinforcement hypothesis. The rest of the paper is 
organized around this hypothesis, which we extend in several directions. 
The first approach one might think of to model the formation of a 
hierarchy in simple social animals is a master equation describing the 
evolution of the population density in each hierarchical class, a class being 
defined by the range of "forces" of its individuals. This approach, which we 
describe in more detail in section 5 together with results we obtained from 
numerical simulations, would be very similar in spirit to the one studied in 
J~iger and Segel (1992). However, this modelling tool is not accurate enough 
because it gives no detail about the fluxes between classes: in particular, it 
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is impossible with this description to know which individuals have increas- 
ing or decreasing hierarchical ranks, because the studied quanti ty--the 
density of individuals per class--is an average. Moreover, forgetting and 
individual recognition, which we study in this paper, cannot be dealt with 
satisfactorily within such a description. 

The alternative choice that we made consists of recording the evolution 
of each individual's dominance index, modelled by coupled differential 
equations with a small random component. This approach allows us to get 
more refined results about the composition of the population and com- 
pletes Monte Carlo simulations reported in Theraulaz et al. (1995). In the 
next section, we give some results of ethological studies performed on 
primitively eusocial wasps Polistes dominulus so as to illustrate with a 
simple example the biological grounding of our approach. In section 3, we 
introduce the basic ingredients of our model. In section 4, we introduce the 
coupled equations and study their behaviours in various conditions, includ- 
ing forgetting and individual recognition. In section 5, we review some 
existing work on this topic and extend the model of J~iger and Segel (1992). 
Finally, in section 6, we clearly define our contribution to the domain. 
Following the vocabulary of Chase (1986) and Chase and Rohwer (1987), 
our aim is to describe the consequences on the hierarchical structure of 
particular hypotheses about the behavioural dynamics of dominance hierar- 
chy formation. Such hypotheses then serve both as descriptions and as 
explanations, at the level of proximate causes, of hierarchical genesis. We 
use a single variable to rank individuals in a well-defined hierarchy. This is 
the simplest situation: obviously, many more variables would be required to 
reflect the full complexity of the social functioning of animal groups and 
colonies. Dominance is not a simple concept: for example, several kinds of 
orders can coexist within a colony besides agonistic encounters, such as 
orders related to the access to females (in baboons, Kummer, 1968; in 
cattle, Barton et al., 1974) or leadership in group movements. However, 
there exist correlations between the various rank orders in many species. 
Our model can then be seen either as (1) a model of simple societies such 
as those encountered in some primitive insect species or (2) as being 
embedded within a larger model whose additional variables are integrated 
into working hypotheses, under the form, for example, of a particular 
probability of interaction between individuals. In this latter case, our model 
describes just a part of the social relationships between members of the 
society, and its relevance certainly decreases as this part becomes small. 

Because this paper is long enough without further considerations, we 
made the choice to discuss neither the functional consequences of particu- 
lar hierarchical (or, more generally, social) structures (that is, what is the 
exact function of a given organization?) nor the related question of the 
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emergence of hierarchical organizations on evolutionary scales (that is, how 
did such and such organization appear and persist?). Let us simple mention 
one important fact that is certainly connected with evolutionary considera- 
tions: hierarchical aggressive interactions generally correspond to a very 
small fraction of the time spent by individuals in social activities; fights take 
place under specific conditions, for example when individuals are put 
together for the first time or when they compete for a resource or possibly 
for mating. Aside from these specific conditions, threat displays replace 
fights most of the time: from the evolutionary viewpoint, this may result 
from the fact that fights can be energetically expensive, damaging or even 
lethal. Ritualized fights, in which individuals assess their opponents' abili- 
ties in order to decide whether to escalate the fight or retreat, rather than 
real fights, belong to the class of evolutionary stable strategies (Maynard- 
Smith and Price, 1973; Maynard-Smith, 1974). 

2. Biological Data: The Example of the Primitively Eusocial Wasp Polistes 
dominu lus .  Polis tes  d o m i n u l u s  colonies contain a small number of individ- 
uals (max = 20). In this species wc observe little individual differentiation, 
no morphological differences between castes and no predetermined control 
of individuals' activities depending on age or on any other known physiolog- 
ical predetermination (Pardi, 1942, 1946, 1948; Theraulaz et al., 1990, 
1991a, 1992). Among the interactions that control individual behaviour, 
hierarchical interactions are of particular importance. Hierarchical be- 
haviour leads to more or less ritualizcd fights between pairs of individuals, 
during which an individual physically dominates another individual. The 
frequency and the intensity of these fights vary with hierarchical rank. In 
particular, as was established by Pardi (1946, 1948) and confirmed in 
experiments reported in Theraulaz et  al. (1989, 1992), the stronger individu- 
als of a hierarchy tend to interact more frequently than others. To take into 
account the observation that strong individuals interact more often, we 
shall use various forms for the probability of interaction between individu- 
als and study how these forms influence the final hierarchical profiles. In 
the experiments described in Theraulaz et al. (1989, 1992), the behaviour of 
a set of newly emerged individuals put togethcr was recorded. Figure 1 
shows the dominance index X i = D i / ( D  i + S i) for each individual i (X  i is 
the proportion of successful interactions Di with respect to the total 
number of interactions D i + Si, wherc Si is the number of subordinations) 
found in these experiments (averaged over 10 colonies). X i defines the  
hierarchical rank, which means that the probability integrated over history 
that an individual has dominated during a hierarchical interaction de- 
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Figure 1. Variation of the dominance index as a function of rank in Polistes 
dominulus  (after Theraulaz et al., 1991a). Error bars correspond to the standard 
deviation over 10 experimental colonies of 13 individuals. 

creases with rank. We shall use the dominance index X i to interpret the 
results of our model. 

We postulate, in the spirit of Van Honk and Hogeweg (1981) and 
Hogeweg and Hesper (1983), that one possible mechanism that could be 
involved in the hierarchical differentiation process is a kind of positive 
feedback. As wasps move around the nest, encounters between pairs of 
individuals occur more or less randomly, and each animal reinforces its 
probability of dominating (respectively, of being dominated) every time it 
dominates (respectively, is dominated). We have reported in previous 
papers (Theraulaz et al., 1989, 1992) that the tendency of an individual to 
dominate (respectively, be dominated) in fights increases with the propor- 
tion of all previous fights in which it was dominant (respectively, domi- 
nated). This means that the dominance index X i not only describes the 
past history of interactions of individual i, but also its probability to win in 
an arbitrary fight to come. One then understands the interest of studying 
X i, an experimentally measurable quantity with a powerful meaning. The 
other noticeable result of these experiments (Theraulaz et al., 1989, 1992) 
concerns the response of the colony to removal of the resident a individ- 
ual: it induced a considerable increase in the mean number of dominance 
scenes per unit time in the experimental colonies and differed significantly 
from the control colonies. The new a individual accounted for 45% of all 
the dominance scenes recorded in these bursts of hierarchical activity, 
whereas the immediate subordinate individuals newly promoted to ranks 
2-4 accounted for approximately 35% of these scenes. These last results on 
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the removal of the o~ individual will not be studied with the model we shall 
introduce, which cannot account completely for temporal variations in the 
number of acts: the vanishing observable hierarchical activity accompanying 
the stabilization of the hierarchy and the bursts of activity following some 
particular perturbations may certainly be the result of a complex interplay 
between various factors, such as pheromonal regulation (e.g. the presence 
of the queen inhibits the development of ovaries of nestmates), that are not 
taken into account in the model. 

3. Parameters of the Model. In this section, we describe how the proba- 
bilistic outcome of a hierarchical fight is computed and introduce the 
probability of interaction between two individuals, of which we give some 
candidate functional forms. 

3.1. Probabilistic outcome o f  a fight. If two individuals i and j start a 
hierarchical interaction, the outcome of the fight is assumed to be proba- 
bilistic: individual i wins with a probability given by Q~=  1/(1 + 
exp( -  ~?Aij)) , with Aij---Fi-  Fj, where F i is a quantity that we call force, 
increased by a constant value (6 +) in case of victory and decreased by a 
constant value (6 - )  in case of defeat. One can interpret this force, within 
the framework of a modified correlational model (CM) (Chase, 1974; 
Gervet et al., 1993), as an indicator of the physiological state of the animal. 
This state includes e.g. in wasps, the activity of the corpora allata (CA) or 
the level of juvenile hormone (JH) in the hemolymph: CA activity and JH 
level have been found to increase with rank (RSseler et al., 1984; Rbseler, 
1991). Of course, the observation of correlations between some hormones 
in wasps or in other animals (e.g., adrenal hormones in squirrel monkeys 
(Candland and Leshner, 1971)) is no proof of a causal relationship from 
hormone level to rank or the other way round. It is therefore part of our 
assumptions to start from the existence of an aggregate quantity, denoted 
by F, which directly determines the ability of an individual to dominate in a 
hierarchical interaction and which is subject to a feedback mechanism 
whose sign depends on how well an individual with force F is performing 
given the current hierarchical state of the colony. When 6 += 6% Fi is 
simply proportional to the number of times the individual has been success- 
ful minus the number of times it has been dominated. The probability for i 
to lose is equal to the probability for j to win: Q/~ = Q i  + = 1 / ( 1 +  
exp( - ~Thji)) = 1 - Qi~. Although from a biological point of view the choice 
of the sigmoid function was relatively arbitrary, we chose to resort to it 
because it is a classic example of a function that combines easy modulation 
of the deterministic/stochastic aspect thanks to r/ together with a satura- 
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tion at large values. Once again, dominance is a complicated notion that 
can involve several interdependent "forces," but to make the study tractable, 
we make the simplifying assumption that all these forces can be described 
by one single variable, which is certainly relevant at least in primitive 
animals. 

We have to justify the fact that we assume the outcome of a fight to be 
probabilistic and not deterministic. If it is rare to see a less dominant 
individual win a fight in a well-established hierarchy, reversals of "instanta- 
neous" ranks are not at all rare in the initial stage of hierarchy formation, 
that is, when unacquainted individuals are placed together for the first time 
to form a group. Because the respective hierarchical positions of individuals 
are not clearly defined, the results of successive encounters between A and 
B appear to be stochastic. After the stabilization of the hierarchy, it is quite 
unusual to see a less dominant individual win, except in very specific 
conditions (for example within the less dominant's territory). However, the 
convergence of F toward a stationary value cannot ensure asymptotic 
determinism, especially in large colonies, where many individuals may have 
very similar F: occasional loops should be expected, most probably in the 
middle of the hierarchy, but are rarely observed. We can infer from this 
that outcomes are close to deterministic (large r/ or "dominance always 
wins" (J~iger and Segel, 1992)) or that the dynamics undergoes a progressive 
"quenching" whereby ~7(t) diverges as time t increases. We shall assume 
for simplicity throughout this paper that r / is  constant in time. In addition, 
there are cases, such as large groups of hens (Shjelderup-Ebbe, 1913, 1922), 
where unstable loops are observed: this might be caused by the probabilis- 
tic nature of fights' outcomes, with potentially small values of r/. In doves 
and pigeons (Allee, 1951), hierarchies exist only on a statistical basis, that 
is, the a individual delivers more pecks to others than he receives, down to 
the bottom of the hierarchy. 

3.2. Probability of  interaction. Let us now turn to the probability Pij of 
interaction between two individuals i and j when they meet. The probabil- 
ity Pij is of utmost importance because, as we shall see, it determines a lot 
of the properties of the society's hierarchical profile. We shall study 
different functional forms for Pij" L e t  us first introduce the variable 
Y/= 1/(1 + exp( - rtzFi)), which will simplify formulas. Here  r12 is an addi- 
tional parameter proper to the probability of interaction. Unless otherwise 
stated, we set ~72 = 1. 

Let us briefly discuss the fact that F plays a role in the probability of 
interaction. As we have introduced it, F is a quantity that describes the 
aggregate effect of an ensemble of intrinsic or internal characteristic fea- 
tures, such as hormonal levels, associated with each individual's "power." 
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As a consequence of its force F, an individual with, say, a larger value of F, 
may be intrinsically more aggressive and seek fights or simply move more 
quickly on the nest and thus naturally interact with more individuals than a 
slower animal. However, F may be more than just an internal variable: it 
can also serve as a "label" signaling in various ways the individual's 
"confidence" or ability to dominate (Gervet et al., 1993); this is an addi- 
tional way for F to exert an influence on the probability of interaction. In 
effect, the dominant  may e.g. enforce its superiority by inhibiting other 
individuals' hierarchical "ambitions" through the emission of special sub- 
stances. The dominant  may also have a distinctive behaviour that makes its 
subordinates "aware" of its status; the subordinates then try to avoid 
contacts with the dominant.  In the words of Etkin (1965), " the way [the 
dominant] carries itself betrays its status." Etkin (1965) gives the example 
of the "posturing advertisement" of the Indian antelope and other large 
mammals: stiff, strutting walk, with head high on stiffly bent neck, folded 
ears, etc. Many other examples of cues that show the confidence of an 
individual are known. In summary, F can play a role in the probability of 
interaction in two (not unrelated) ways: (1) by influencing the intrinsic 
willingness of an individual i to interact with other individuals (speed, 
aggressiveness, etc.) and (2) by influencing the willingness of other individu- 
als to interact with i. In role (1), F is an internal variable; in (2), F is an 
external label or mechanism. Note that the definition of Qi ~) alone also can 
include attitudes that impress (or fail to impress) other individuals and 
prevent them from winning or even attacking (or on the contrary enhance 
their winning abilities or their tendencies to attack). 

Pij = P  < 1 (called hereafter case C = 1) is the simplest possible choice. 
Setting P~j to a constant p implies that two individuals that encounter  each 
other interact with probability p. If there is no other factor in the model, 
the actual value of p influences only the speed of the process: thus, one can 
as well set p to be equal to 1. Yet, if one includes forgetting, the ratio 
between forgetting and p can be very important, because if p is too small, 
an individual will forget its last fight before the next one, so that one should 
expect a uniform population with no hierarchical differentiation. The 
choice C = 1 does not take into account the experimental fact that stronger 
individuals are more willing to fight than weaker ones (Theraulaz et al., 
1989, 1992). One way to include this observation is to use the following 
form for Pij (case C = 2): 

Pij -- r Yj. (1) 

Pij is a symmetric function of i and j, with a value that is maximum when 
both individuals in the pair are strong and minimum when both individuals 
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are weak. The middle value taken when a strong individual meets a much 
weaker one reflects the fact that the stronger individual will try to start a 
fight whereas the weaker one will be more willing to escape. Note that case 
C = 2 need not involve any kind of individual recognition, because the 
probability Pij = Y~Yj is simply the product of individual tendencies to 
engage an interaction, independently of any information about the hierar- 
chical rank of other individuals in the colony. Another possibility, which 
includes, as we shall discuss, some kind of class recognition, is to choose the 
following form for Pij (case C = 3): 

P/j = e x p ( - I ~  - Yjl/Pc), (2) 

where Pc is a characteristic distance in the space of forces over which there 
may be interactions taking place. This form implies that the probability of 
interaction between i and j decreases exponentially with the difference 
between the respective forces of i and j. This implicitly means that middle 
rank individuals will have fewer interactions than others because they have 
a force that is far from both extremes of the hierarchy and they will thus 
interact most probably among themselves, making the middle part of the 
hierarchy relatively stable after a short period of time, as if it had been 
withdrawn from the game. As we shall see, the result we obtained when 
simulating such a probability of interaction matches this expectation. Ex- 
pression (2) also involves a particular type of recognition: class recognition, 
in which an individual is able to evaluate the approximate hierarchical rank 
or ability to dominate of another individual. The mechanisms that allow 
such a recognition can be of various types, relying, for instance, on 
chemical or visual information: a particular individual, given the informa- 
tion available, can then assess its willingness to engage a fight by comparing 
its "force" with the apparent force of the other individual. The biological 
relevance of expression (2) stems from the observation that in wasps (but 
also in other animals), individuals of nearly equal ranks interact much more 
often and usually with more violence (Eberhard, 1969; Theraulaz et al., 
1989, 1992). A related observation also has been reported, for example, in 
cattle (Schein and Fohrman, 1955) and in pigs (see Broom, 1981). One 
additional refinement that could be included to describe the violence of 
fights would be to make the net gain 6 + or loss 6- in force depend on 
mij = F i - - F j .  To keep things simple, we shall ignore this possibility, which 
has been studied by Hogeweg and Hesper (1983) in a related context. 

In order to incorporate the field observation that middle-ranked individu- 
als show a tendency to withdraw from the "fighting game" because they 
leave the nest to forage, we may finally choose a probability of interaction 



SELF-ORGANIZING HIERARCHIES 673 

that explicitly includes this observation (case C = 4): 

Pij = [y/s _ Y//2 + 1/21 [Yj 5 - ~ / 2  + 1/2].  (3) 

The term Y~ more or less represents the mean-field probability for an 
individual i to win in a random fight (it is an increasing function of force). 
Hence it represents a biologically meaningful variable ranged between 0 
and 1 that can be used to describe the ranks in the hierarchy. The function 
f (x)  =x 5 -  0.5x + 0.5 was chosen so that strong individuals interact with a 
high probability and very weak individuals interact more than middle-ranked 
individuals, which have very few interactions. The fact that f is a fifth-order 
polynomial should not be taken literally. Only the global shape of f on the 
interval [0,1] is important: f integrates all the spatiotemporal effects not 
explicitly taken into account in the model (as opposed e.g. to the model of 
Hogeweg and Hesper (1983), where space is an explicit component of the 
model--which turns out to be crucial). Once again, one expects that this 
type of probability of interaction should lead to a profile where there is a 
plateau in the middle of the hierarchy. Because (3)--like (1)--is the 
product of individual tendencies, we need not invoke any process of class or 
individual recognition. 

Finally, let us discuss briefly the evolution with time of the interaction 
process. We have already mentioned the notion of social inertia (Guhl, 
1968), which manifests itself in the drastic decrease in the number of 
aggressive interactions with time, unless the system is perturbed. A quick 
quench of the hierarchy, combined with the use of threat attitudes, result- 
ing in only very few real fights, can be argued to be an evolutionary stable 
strategy (Maynard-Smith, 1974). It is clear that the present model can 
neither fully account for the decrease of visible hierarchical activity with 
time nor for the burst of activity following a perturbation. Such observa- 
tions could, in principle, be included in the model by supplementing Pij by 
a time-dependent term, that is, by replacing Po by g(t)Pij, where g(t) is a 
function that converges toward a small positive value in the absence of 
perturbation, as t tends to infinity. If the system is perturbed, g(t) can be 
suddenly "reset" to a value close to 1 and decrease again. This resetting 
mechanism might correspond to a sudden release of (hormonal) constraints 
or inhibitions previously exerted by the removed a individual on the rest of 
the population. Because, according to all our simulations (without forget- 
ting), all stationary hierarchical profiles are reached quite rapidly, we shall 
ignore the time dependence of g and assume g = 1: in effect, g no longer 
influences the particular shape of the profile after its establishment. More- 
over, we have shown in Monte Carlo simulations (Theraulaz et al., 1995) 
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that the profile is reestablished after the removal of the a individual (a 
strong perturbation) with a constant g: this is consistent with experimental 
results (Theraulaz et al., 1989, 1992), despite the fact that the relative 
number of interactions in simulations and experiments were different. 

4. Mathematical Model and Results. 

4.1. Basic model. 

4.1.1. Equations. In order to study the establishment of hierarchical 
profiles, we model the temporal evolution of quantities of interest with a set 
of (weakly stochastic) differential equations that describe the behaviours of 
D (dominances), S (subordinations) and F(abstract force) = D -  S: 

P/j 
dOi = L E e x p ( r l ( F i - F j )  ) 
dt N j=otoN 1 +  -- 

j4,i 

dS i 1 Pij 

= - -  E exp( + r/(Fi Fj)) dt  Nj=OtoN 1 +  -- ' 
j~i  

dFi = 6 + dDi  d S  i 
d---t- d---T - 6- - - ~  + st(i, t), (4) 

where the noise term added is taken to be gaussian. Its first two moments 
suffice to characterize it: we choose it centered of variance 0 2 and 
uncorrelated in space and time: 

V i , j , t , t '  ( s t ( i , t ) )=O and ( s t ( i , t ) s t ( j , t ' ) ) = o Z 6 ( i - j ) 6 ( t - t ' ) ,  (5) 

where 6 is a Dirac function. The preceding equations express the fact that 
each individual, labeled by i, evolves in the mean field of the other 
individuals. In the numerical integration of (4), unless otherwise stated, we 
used uniform initial conditions: Vi, Di = Si = 1 and F /=  0. This state being 
a (sometimes unstable) fixed point of the dynamics, we have supplemented 
the last equation with a small noise term, which integrates the effects of 
random encounters and imperfect assimilation of subordinations and domi- 
nances. Any finite amount of noise then allows us to destabilize (accidental) 
unstable equilibria. We kept noise to a low enough level in order not to 
destroy stable asymptotic profiles by too large fluctuations. This addition of 
noise is simply a convenient alternative to starting from random initial 
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conditions, and it does not change the averaged numerical results signifi- 
cantly. The theoretical discussions of Appendixes A and B are made on the 
deterministic system. In conclusion, our (mean-field) approach is essentially 
deterministic. 

It is important to remark that the force is allowed here to take arbitrarily 
large values. Given the forms used for the probabilities of winning and 
losing, these large values allow for a stabilization of the hierarchical profile. 
As we mentioned in section 2, X i = O i / ( D  i + S i) will be used here as a 
characterization of the hierarchical profile. 

We have integrated the Langevin equations numerically for 13 individu- 
als, because it is a typical number for experimental colonies of Polistes. 
Other animal societies that are comprised of a larger number of individuals 
exhibit non-trivial hierarchical structures: this is the case, for instance, of 
bumblebees, whose colonies may contain about 75 individuals or more 
(Hogeweg and Hesper, 1983; Van Honk and Hogeweg, 1981). Numerical 
tests carried out on such larger populations show that the same hierarchical 
profiles are obtained, yet on a larger scale. We choose, unless otherwise 
specified, 8 += 8 - =  1. Finally, although the present study was motivated by 
our experiments on Polistes, we believe that the applicability of our results 
can be extended beyond Polistes, and even beyond social wasps to include 
potentially most social insects and possibly higher-level social animals, 
although certainly with restrictions. 

4.1.2. Results. Figure 2 represents the results for the Langevin-like 
equations in the absence of forgetting or individual recognition, with 
different probabilities of interaction. We obtain some profiles similar to 
those found in Monte Carlo simulations (Theraulaz et al., 1995), such as a 
linear profile or two profiles with a middle plateau whose exact shapes can 
be modulated by varying the parameters. We find, however, another more 
specific exponentially decreasing profile saturated at about D / D +  S = 0.4, 
whereas the saturation value observed in Monte Carlo simulations is about 
0.05: the mean-field description embodied in equations (4) and (5) should in 
this particular case be supplemented by a more careful treatment of 
fluctuations. The value of 772 is of great importance in the determination of 
the profile obtained for C = 2. For high values of 772, one observes a wide 
plateau at middle and lower ranks, and a small plateau in higher classes, 
whose width is amplified as r/2 decreases. As */2 is further decreased, this 
plateau shrinks and eventually disappears. In all cases, a saturation at 
about 0.35-0.4 is observed (see Fig. 3). The parameter Pc does not have an 
influence on the general shape of the profile in the case C = 3, but 
different values for Pc yield different widths for the observed plateaus in 
the middle of the hierarchy (see Fig. 4). 
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Figure 2. Hierarchical profiles obtained for various choices of Pi~; 772 = 1 in 

�9 , J 

cases C = 2,3,4�9 (a) C = 1: The profile is linearly varying with rank, as can be 
shown analytically (see Appendix A). (b) C = 2: The profile exhibits an exponen- 
tial decay with decreasing ranks, and is saturated at about 0�9 (c) and (d) C = 3 
and C = 4: The profiles exhibit a plateau in the middle classes, as expected due 
to the particular forms of Pd" The width of the plateau depends on the 
parameter Pc (see Fig. 4). 

Figure 5 shows the effects of asymmetric rewards 8+:~ 8- when C = 1. 
We can assume that 8++ 8 - =  2 without loss of generality. When the 
difference between 8 § and 8- is small, there is a small distortion of the 
linear profile, but as this difference increases, the profile progressively 
shifts toward a low level of differentiation: for instance, the hierarchical 
structure becomes despotic when 6 § 0.25 and 8 - =  1.75, with one individ- 
ual having a dominance index of 1 and all others a dominance index of 0. 
The (somewhat counterintuitive) reverse situation is observed when the 
values of 8 + and 6- are reversed. Mathematical details about the asymp- 
totic profiles in various cases are given in Appendix A. 

4.2. Forgetting. 

4.2.1. Introduction. The role of memory and hence of forgetting is 
certainly a highly relevant biological factor in hierarchy formation and 
maintenance. Individuals may have not only to establish but also to main- 
tain their ranks among the society by repeated aggressive encounters 
(Wilson, 1971): the need to maintain the rank can be understood as a clue 
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F i g u r e  3. H i e r a r c h i c a l  p r o f i l e s  o b t a i n e d  in  t h e  c a s e  C = 2, f o r  v a r i o u s  v a l u e s  o f  

~72 (1,  3, 5, 8, 1 2 , 1 4 )  a n d  ~7 = 1. 

in favor of forgetting. An interesting experimental setup to determine the 
contribution of forgetting is to withdraw an individual from the fighting 
game during variable amounts of time and to see whether or not it keeps its 
rank in the colony once put in the game again (RiSseler et al., 1984). 
Another setup is to measure how replicable a hierarchy is when, after a 
stable hierarchy among a group of individuals has been disbanded, the 
same individuals are put together again some time after (Dugatkin et al., 
1994). R~Sseler et al. (1984) showed that in P. dominu lus  wasp colonies, 
when the a foundresses were removed for up to 24 hours, these individuals 
invariably became dominant again upon their return (R6seler et al., 1984). 
The a foundress of one colony even regained the top rank after she had 
been absent for up to seven days. One important fact was that the longer 
the foundress was absent, the more severe and the more frequent were her 
interactions with subordinates when she returned. Finally, early experi- 
ments carried out on chickens (Shjelderup-Ebbe, 1913, 1922) showed that 
they can maintain their precise hierarchical structure for a limited amount 
of time, up to three weeks: shorter periods of separation do not influence 
the hierarchy, but longer periods lead to the emergence of new hierarchies. 
It is nevertheless difficult to clearly establish the respective roles of individ- 
ual memory and the capacity for individual recognition in the whole process 
because both factors are closely intertwined. This latter factor and its 
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influence in the hierarchical formation process will be examined in the next 
section. 

4.2.2. Equations. Forgetting can be included easily by supplementing 
the evolution equation of F in equations (4) by a term that accounts for the 
relaxation of the force F toward the neutral value 0. Only the case where 
all individuals interact with equal probability (C = 1) is studied; all other 
choices yield qualitatively similar results. We also slightly modify the basic 
equations so as to introduce the density p of individuals: 

p 1 
dDi = "-N j=o~to N 

d t  1 -k- e x p (  - 1q(Fi  - E l ) )  ' 
j4:i 

dS i  -- P E 1 

d t  N j = 0 t o  N 1 - k e x p ( . - k ' r l ( F i - F j )  ) ' 
j~=i 

dF i d D  i d S  i 
d--t- = dt dt lxg(Fi) + ~ ( i , t ) .  (6) 
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Figure 5. Simulations of the case C = 1, with different values of 8+ and 8 -  
after 20,000 time units. The close-to-linear profiles are obtained when 8+ and 
8 -  are close. The other profiles correspond to more or less pronounced biases 
in favour of upper  or lower forces, leading to a poor differentiation in terms of 
the dominance index X. The value indicated on the figure is 8+ (in all cases, 
8++  B - =  2). r /=  1. 

In (6), /x is the (constant) decay rate (set to 0.1 in the subsequent 
numerical integrations) and g is a function that describes the effect of 
forgetting. We took g(F i) = tanh(F~), g seemed to us to represent a 
plausible candidate for a decay function, because it is bounded for large 
values of F and linearly decreasing as F approaches 0. However, this 
choice is certainly arbitrary to a large extent: the aim of this section is to 
explore "formally" the consequences of the inclusion of a forgetting term 
without paying too much attention to the detailed implementation of the 
forgetting mechanisms. We expect forgetting to be a crucial parameter: a 
small value of p/Ix certainly prevents the hierarchy from appearing be- 
cause dominance and subordination events are forgotten between two 
successive interactions. As we already mentioned, it is the ratio between the 
probability of interaction and the forgetting coefficient that is the relevant 
parameter. For instance, a densely populated region should correspond to a 
higher probability of interaction than sparsely distributed individuals: 
therefore, there is a connection between the formation of hierarchies and 
the density of populat ion--or  the number of individuals. 

4.2.3. Results. The inclusion of forgetting leads to important new phe- 
nomena that are qualitatively different depending on the value of 77. To 
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summarize, a bifurcation is always observed as the population density p is 
increased from 0 to 1. The bifurcation takes place at p = 2/z/(r/(1 + l / N ) ) ,  
where the number of individuals in the population is N + 1. As easily can 
be shown (see Appendix B1), 2/z/(r/(1 + I / N ) )  is in fact the value at which 
the flat profile becomes linearly unstable. For p < 2tz/(rl(1 + l / N ) ) ,  there 
is no hierarchical differentiation, that is, the profile is flat, whereas for 
p > 2tz/(r/(1 + l / N ) )  the asymptotic profile corresponds to a developed 
hierarchy. 

To understand the meaning of that bifurcation, see Figs. 6, 7 and 8, 
which present results from Monte Carlo simulations of (N  + 1) = 50,000 
individuals performing random walks on a 2D lattice, with r /=  2. When 
two individuals encounter, they have a hierarchical interaction, but when an 
individual is alone, its force is relaxed toward 0. Equations (6) are precisely 
the mean-field equations associated with these Monte Carlo simulations. 
We have run Monte Carlo simulations of N individuals performing a 
random walk on a 2D square lattice: at each discrete time step, all 
individuals arrive at a site where there may be another individual (there are 
0, 1 or 2 individuals at any particular site). Then a fight takes place and the 
probabilistic outcome is given by the function Qi)- and the forces of both 
individuals are incremented (the winner) or decremented (the loser) by 1. 
The forces of all individuals relax toward 0 at each time step as follows: 
F~F-/ztanh(F), where /z is a small parameter that determines the 
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Figure 6. Time evolution of (Pi) for 15 individuals randomly extracted from 
50,000 individuals simulated on a 2D lattice whose size is 400 • 400 ( P = NIL  
• L), for rl = 5 and tx = 0.1. The x axis corresponds to the individuals (num- 
bered from 0 to 14); the y axis corresponds to time (1 unit = 103 time 
steps: (Pi) is recorded every 103 time steps, so that time ranges here from 0 to 
30 • 103 steps; the first 106 steps of the simulation have been discarded); the z 
axis represents (Pi) (ranges from 0 to 1). Here, P >> Pc -- 0.1; individuals rapidly 
reach their asymptotic (Pi); fluctuations are rare. 
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Figure 7. Same as previous figure for a lattice of size 55 • 55. The (Pi) 's begin 
to undergo important temporal fluctuations, precursor of the supercritical 
bifurcation. 

forgetting rate. Both the winner and the loser continue their random walks 
after the fight. The instantaneous dynamics of the hierarchical profile can 
be characterized by the set { (P  i)}, where 

( P i )  = - -  
1 N 

N -  l j~I 1 
j~=i 

+ e x p (  - ~7(F~ - F~.)) 

denotes the instantaneous probability that individual i wins in a random 
fight. The "statics" is well described by X i = D i / ( D  i + Si) , where D i (resp. 
S i) is the number of fights won (resp. lost) by individual i: X gives a good 

t (xl0OO) 20 

Figure 8. Same as Figs. 1, 2 and 3, for a lattice size 100 • 100. Here,  p is less 
than Pc. The evolution of the (Pi ) ' s  is erratic. 



682 E. BONABEAU et  al. 

image of the overall probability integrated over time of an individual to win 
against another randomly selected individual, but X does not vary if no 
interaction takes place. Therefore, when an individual moves for a long 
time without interacting, its force relaxes to 0, but its dominance index X 
remains at the value set after the last encounter: (P/) then gives a better 
dynamic picture of the real instantaneous dominance index, but both are 
asymptotically equivalent. Moreover, it is, as we shall see, more convenient 
to use X in the mean-field approach presented next, and X then gives the 
same information as (Pi) because in the mean-field theory interactions 
take place at every time step. Another advantage of X i is that it is 
experimentally accessible, contrary to (Pi),  and thus our results in terms of 
X can be confronted with biological data. 

We observe that no non-uniform hierarchical profile gets established if 
the population density p is too low: Vi, X i = 1 ~-, even after a long time. This 
result simply stems from the fact that the force of every individual has time 
to relax to 0 between two successive encounters. See Figs. 6-8, where the 
time evolutions of 15 randomly chosen (Pi) 's  are represented for different 
values of p (the number N of individuals is 50,000 in all cases; the linear 
size L of the lattice is varied from 300 to 1000: p = N / L  • L) .  The values 
used in these figures are r /=  5 and /z = 0.1. When p lies below a value Pc 
( = 0.1 in the present case), no stable asymptotic profile can be reached: the 
evolution of ( P i )  (see Fig. 6) is erratic and the temporal average of X i is 
equal to 0.5, i.e. a flat profile. Above Pc, a non-uniform asymptotic profile 
( 3 i  ((Pi)) =~ 0.5) emerges and all (Pi)'s become stable after a very short 
time and rapidly reach their asymptotic values, which are all different: this 
corresponds to the "ordered" or "laminar" phase (see Fig. 1). Figure 7 
represents an intermediate situation, where p is close to but above Pc: as p 
approaches Pc, fluctuations of the (P~)'s increase, but all (Pi)'s reach a 
stable state after a variable amount of time. 

The case represented in Figs. 6-8 corresponds to a situation in which the 
"turbulent" phase in entered smoothly: the system exhibits "critical fluctu- 
ations" as p gets closer to Pc. By contrast, for other values of r/, fluctua- 
tions remain small and the transition from the laminar to the turbulent 
phase takes place abruptly. One other interesting observation is that the 
amount of time taken to reach the asymptotic state may  or may  not  diuerge 
as Pc is approached, depending on the value of ~7. This strongly suggests 
that there is a crossover from a critical (or super-critical) bifurcation 
exhibiting critical slowing down to a sub-critical bifurcation characterized 
by a discontinuous jump from a flat to a differentiated hierarchical profile. 
These observations can be clarified with the mean-field equations, which 
yield similar properties (see for example Fig. 9, which represents X i as a 
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function of rank for -I/= 2 and different values of p around 2/z/(~(1 + 
l /N))) .  

Let us return to the analytically tractable mean-field model embodied in 
the set of equations (6). Some mathematical details are given in Appendix 
B and deeper physical implications of this forgetting model are studied in 
Bonabeau et al. (1995). When ~? < 2/((1 + l /N) ) ,  the bifurcation is sub- 
critical (or discontinuous; see Figs. 10 and 11, where the "order parameter" 
is simply the variance of the profile o .2= ENi= 0 (Xi -  0.5) 2) provided initial 
conditions are not too disordered, and when 77 >_ 2/((1 + l /N) ) ,  the bifur- 
cation is critical (or continuous; see Fig. 11), exhibits critical slowing down 
and can be characterized by critical exponents. In fact, in the case -q < 
2/((1 + l /N) ) ,  it is easy to show that there are many coexisting stable 
states, but the undifferentiated state (flat profile) is linearly stable and has 
a wide basin of attraction. Linear stability does not imply stability under 
macroscopic perturbations, so that strong enough fluctuations or perturba- 
tions can make the hierarchy appear, even for p < 2pJ(~?(1 + l /N) ) .  Yet, 
simulations show that such perturbations must indeed be very strong to 
destabilize the non-hierarchical behaviour (Fig. 12). If the system starts 
with initial conditions close enough to the flat profile, the bifurcation 
therefore gives the impression of being sub-critical: at the bifurcation point, 
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Figure  10. O r d e r  p a r a m e t e r  as a func t ion  of p for  ~7 = 1.5. 

there is an abrupt change in the profile due to the coexistence of other 
stable states. In contrast, when r/> 2/((1 + l / N ) ) ,  the transition is smooth 
because there is only one single stable state in the low density region: this 
stable state becomes unstable at the transition point that also corresponds 
to the appearance of new stable states (which did not exist below the 
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Figure 12. Effects of the strength of perturbations on the bifurcation and the 
stable states for ~7 = 0.5, /z= 0.1, N= 10. Strong noise means that initial 
conditions for F were chosen to be uniformly distributed in [-500, + 500], in 
[-50, +50] for medium noise and in [-5, +5] for weak noise. The effects 
would be similar with different levels of noise in the dynamics itself (instead of 
initial conditions). 

critical density). Such a destabilizing process is typical of  critical phase 
transitions in physics. 

Although the critical bifurcation indicates a continuous transition from 
non-hierarchical to hierarchical behaviour, the sub-critical case is more 
interesting for biologists, owing to its subtle consequences. In effect, it can 
be interpreted in two d i f f e ren t - -bu t  re la ted--ways:  

(1) Two populations of the same species, but with different individuals, 
can lead to a hierarchical society as well as to a non-hierarchical one. 
In particular, it seems that, in the appropriate range of parameters,  a 
population comprised of individuals that emerged together  (close-to- 
uniform initial conditions) is more  likely to be undifferentiated. On 
the other  hand, if individuals with different histories are put together, 
they may in some cases, in the same range of  parameters  as before, 
form a hierarchy (this situation corresponds to strongly disordered or 
non-uniform initial conditions). A related phenomenon  has been 
observed in groups of cockroaches. In fact, one of the simplest 
predictions that can be made  by our model  is that when a group has a 
stable hierarchy, there is a high probability that if the group is taken 
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(2) 

apart and then re-formed, a different hierarchical order will emerge 
among the same individuals. Indeed, experiments reported in 
Dugatkin et al. (1994) for the cockroach Nauphoeta cinerea showed 
that only about half of the hierarchies examined were replicable. 
Such a variability emphasizes the important role of stochastic factors 
in hierarchy formation and maintenance. In particular, the foregoing 
experiments point out the fact that ranks were more clear-cut in 
groups in which the previous hierarchy was replicable than in the 
groups in which the previous hierarchy was not replicable. 
A stable non-differentiated population can suddenly become hierar- 
chically organized in response to a sufficiently strong perturbation. 
Consider, for instance, the case where a single individual dominates a 
population of hierarchically identical individuals: the population as a 
whole possesses a hierarchical organization, but the remaining sub- 
population as the dominant individual is removed has no such hierar- 
chical structure. The removal of the dominant individual can then be 
considered as strong perturbation, triggering the emergence of a 
hierarchical structure within this previously structureless sub-popula- 
tion. Forgetting could as well be invoked in experiments where a 
wasp in the /3 position does not reach the a rank when the a 
individual is removed. We have reported such examples of reversals 
of dominance ranks between a wasp and the one ranking immediately 
below it in a previous study (Theraulaz et al., 1989). Another well- 
known phenomenon that is observed in vertebrates could be inter- 
preted in the framework of our model: this is the transition from 
territorial to hierarchical behaviour that is observed when territorial 
animals are forced into close proximity in laboratory conditions or 
when unusual environmental conditions arise. In fact, certain crayfish 
(Cambarellus, Procambarus) and anurans such as the frogs Rana 
pipiens and Xenopus laevis that are ordinarily territorial, form stable 
linear dominance hierarchies when they are forced together (Lowe, 
1956; Bovbjerg, 1956; Bovbjerg and Stephen, 1971; Haubrich, 1961; 
Boice and Witter, 1969). Many kinds of fish show a similarly easy 
transition between territorial defense and dominance orders (Wilson, 
1975). Two other known examples cited by Wilson (1975) are iguanid 
lizards (Evans, 1951, 1953) and some rodents, who normally live as 
solitary or territorial individuals, but become involved in dominance 
orders when forced together. However, there are puzzling exceptions 
to this "general" rule: for instance, Black-Cleworth (1970) reports 
that the banded knife fish is territorial at high density and exhibits 
dominance order at low density. 
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4.3. Individual recognition. 

4.3.1. Introduction. Individual recognition is known to play an important 
role in social animals, especially in higher-level animals, where it shapes 
much of the social structure (for a recent review on individual recognition, 
see Zayan (1994)). Some recent experiments (Gervet et al., 1993) have 
shown that individual recognition may take place in social wasps, at least in 
very small groups consisting of three individuals, and that this process 
might play a role in the genesis of circular hierarchies. Circular hierarchies 
rarely occur in natural colonies of wasps whose number of individuals is 
large (n >> 3) (Theraulaz et al., 1989, 1991a, b, 1992). These observations 
must be contrasted with most experiments performed on higher-level 
animals (summaries can be found in Wilson, 1975, and Chase, 1986), where 
loops are almost never observed in small groups, but sometimes in large 
groups. Our model, owing to its simplicity, is more likely to be applicable to 
wasps than to, say, hens or monkeys. The definitions of the probabilities for 
an individual to win and for two individuals to interact already contained 
some kind of "individual" recognition. As argued by Barnard and Burk 
(1979), there is a continuum between the recognition of cues that either 
indicate the confidence or the status of an individual and the recognition of 
the individual itself. Now, cue recognition can be deceived: the possibility of 
cheating, which we did not consider at all--this would require, for instance, 
the addition of another "hidden" force together with the "official" 
force--has evolutionary consequences, because a strategy that consists of 
systematically avoiding fights against individuals bearing "dominant" cues 
can be replaced with high benefit in the presence of cheating by a strategy 
that consists of probing the reality of the cues. Our aim here is now to 
study individual recognition explicitly. 

Individual recognition can be dealt with through the introduction of two 
parameters e 1 and 002, where 8 1 is the portion of the whole population 
that one particular member of the colony can recognize on an individual 
basis (this proportion is expected to decrease when the size of the colony 
increases, that is, the individual recognition capacity is limited to a maxi- 
mum number) and oo 2 quantifies the effect of individual recognition on the 
force of an individual with respect to any other individual. 

4.3.2. Equations. Because a model based on anonymous encounters and 
reinforcement processes will face difficulties to explain the presence of 
circular triads, it is interesting to examine to what extent the effects of 
individual recognition may alter the profile of the resulting hierarchical 
structure. To do so, we introduce pair forces Fij, which describe the force 
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of i when facing j. The corresponding effective force Fi~ ff used in to 
compute the probability of individual i to win when interacting with 
individual j will have the form 

1 - e 2 N 
Fi~ re= e2Fij + ~ E Fik, (7) 

k=l  k~i 

where F~j is the relative force of individual i with respect to individual j 
and e 2 is the parameter that characterizes the weight of individual recogni- 
tion in the force of individual i with respect to individual j. The most 
natural form for Fig is to take F i g - - D o m i j -  Sub/j, where Domij (respec- 
tively, Subij)  is the number of interactions in which i has defeated j 
(respectively, has been defeated by j). The proportion of individual recogni- 
tion involved in the determination of the probabilistic outcome of the fight 
is precisely given by el: 

dDij 
d t  = e i j  

e I (1 - e 1) 

1 + exp( -- 7/(F/~ff - Fjeff)) 
+ 

1 + exp( - ~/(Fi~ t - Fjiint)) 

e 1 (1 -- e 1) 
dSij=Pij exp( + .q (F/~ff-  Fjef,) ) + dt 1 + 1 -F e x p ( +  "0(Fight - Fjlnt)) 

dt =e2  dt -dt ] + -- -~-~=.o i at dt + ~ ( i , j , t )  

dFij  dE/int 
= e 2 - -  ~ - + ( 1 - e  2) -~ + r  

d int l (dO  
dt = N at  dt ' (8) k=O k ~i 

where Dij is the number of victories of i in fights against j, Sij is the 
number of defeats of i in fights against j, Fi int is the "intrinsic force" of i 
(that is, the aggregate result of all the interactions of i with all other 
individuals), Fij is the (i, j) force resulting from the historical record of 
interactions between i and j (that is, Fq = Dij- Sij), f/j  ff is the effective 
force used to compute the probability of victory or defeat of i and j in a 
(i, j)  encounter with a weight e 1 (Fi~ ef is a mixture of Fi int and F/j with 
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V i , j , k , l , t , t '  ( ~ ( i , j , t ) ) = O  and 

( ~ ( i , j ,  t ) ~ ( k ,  l, t ' ))  = 026(i  - k ) 8 ( j  - l ) 6 ( t  - t ' ) .  (9) 

Let us summarize the respective roles of o01 and o02: 

�9 The meaning of s I is quite clear: it is the average percentage of the 
whole population that a given animal can recognize on an individual 
basis. Individual recognition must be distinguished from kin recognition 
or social recognition (Zayan, 1994). o01 is related to a particular set of 
intrinsic cognitive capabilities of the animal: the nature of the cognitive 
processes involved in individual recognition is to a large extent an 
unresolved matter. In principle, an animal may be able to know 
individually a limited number  of other animals, and perhaps only the 
last few encountered. We deal with this question with the simplifying 
assumption that a given animal can recognize a fraction o01 of each of 
all other individuals or, equivalently, can recognize any other individual 
with a probability o01. We understand that this choice is not perfect, but 
it has the merit of being simple. 

�9 o02 is somewhat more complicated to understand. To see how o02 works, 
let us consider two tennis players--A and B. We can assume with 
confidence that o01 = 1 in this case. A and B both have a (global) rank 
in the world hierarchy, which is the aggregate result of all the matches 
they have played within a year (there is also a forgetting mechanism in 
the rating of tennis players, that we omit here for simplicity). In the 
present model, this global rank corresponds to the rank given by F~ nt 
or F~ nt. However, the pair (A, B) also has a more personalized histori- 
cal record: for instance, A may be rated no. 1 and B no. 200, but A 
may have been defeated five times out of seven times by B, because B 
plays in a way that A has difficulty coping with. If one wants to bet 
about the outcome of a match between A and B, one has to evaluate 
the respective chances of A and B. To do so, one resorts to a mixture 
of the intrinsic forces of A and B (their rank) and of the historical 
record of the pair (A,  B). The respective weights given to these two 
factors are precisely ( 1 -  o02 ) and o02- o02 may as well reflect the 
psychological state of A in front of B due to their common history. In 
any case, o02 quantifies the influence (or the expected influence) of the 
history of the pair (A, B) on the outcome of a fight or match between 
them. 
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As in the previous section, only the case where all individuals interact 
with equal probability (C --- 1) is studied; all other choices yield qualitatively 
similar results. In the rest of this section, we therefore assume that 
Pij = 1 / N .  

4.3.3. Resu l t s .  As we have just mentioned, 

N 

Fi  int = ( l / N )  ~ (Dik --  S i k  ) 
k=O,kq: i  

can be considered as the "intrinsic force" of individual i: this intrinsic force 
determines its rank. In particular, in the case C = 1 that we have studied, 
F i / t  = 2 X  i - 1 (Appendix A), where F i is defined in the set of equations (4). 
This relation can be generalized to F i n t / t  =- 2Xi int - 1, so that is is possible 
to evaluate the effects of individual recognition on the hierarchical profile, 
characterized by X/int . 

One of the most important results of this section is that when e 1 v~ 1 or 
when e 1 is not relatively close to 1 (e  1 = 1 means that the whole popula- 
tion can be recognized on an individual basis by any member  of the colony), 
no modification in the hierarchical profile is observed. Moreover, when 
e 1 = 1, 82 must be large enough for modifications to be observable. 

When 81 = 1, the results are as follows: when 82 = 0, we recover the 
model with no individual recognition; when e 2 = 1, individual recognition is 
the only process involved in the formation of the hierarchy, so that the 
hierarchical graph of dominance is basically random. For values of 82 
between 0 and 0.40, we obtain the linear profile already discussed. For 82 
greater than 0.40, new profiles appear, characterized by one or several 
plateaus located throughout the profile; for low values of 82, these plateaus 
occur in the lower ranks (Fig. 13). For higher values of e 2 (where the 
contribution of individual recognition is stronger), the plateaus occur at all 
levels in the hierarchy. Moreover, the highest ranking individual has a value 
of X that decreases with increasing 8z (Fig. 14). For an intermediate value 
of 82 ( 0 . 6 6 ) ,  w e  obtain a fully developed profile (extending from X =  0.04 
to X = 0.96) with three plateaus in the middle and lower ranks, whereas the 
two top ranking individuals clearly dominate the others (Fig. 15). This last 
figure is reminiscent of profiles that one would obtain in bumblebees, yet 
with larger populations. Similar profiles are obtained for values of 81 close 
to 1. 

An important quantity is the Landau number,  which is aimed at charac- 
terizing the degree of linearity of the hierarchy or conversely the number  of 
intransitive loops. It is possible within the present framework to calculate a 
Landau number  (Landau, 1951; Chase, 1974) if it is considered that an 
individual dominates another individual on the basis of the force F~j: if 
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Figure 13. Profiles obtained for 61 = 1 and various (low) values of 62 
(0.40,0.46,0.52), C = 1, 6 += 6- and rl = 1. For 62 < 0.40, we obtain the usual 
profile where X is a linear function of rank, but as individual recognition is 
increased, plateaus start to appear, especially in lower classes. 

F/j > Eft, this means that i dominates j and if Fq < Eft, j dominates i. Let us 
denote  by n~ + the number  of individuals dominated by individual i accord- 
ing to this criterion. The Landau number  of the hierarchy is defined by 

12 N ( ~ N - 1 )  2 ' 

h -  N 3 _ N  i ~  n + (10) 

where  h ranges from 0, for a colony where  all individuals dominate  the 
same number  of other  individuals, to 1, for a perfectly linear hierarchy, that 
is, containing no loop. Now, this constitutes a crude approximation, because 
the outcome of a fight is not  deterministic but probabilistic: i dominates j 
with a probability Q~ = 1/(1  + exp(-rl(Fi~ff-Fj~ef))).  Landau has ex- 
tended his index (Landau, 1951; Chase, 1974) to probabilistic cases to 
calculate the expectation of h, 

<h) N 3 - N n+ 2 i=1 

12 N N N 
e i j e i k  N 3 _ N  ~"~, ~ ~ + + 

i = l  j = t  k = l  
j o i  k4:i 

kq~j 

3 ( N -  3) 

N + I  
(11) 
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Figure 14. Profiles obtained for 61 = 1 and various (high) values of 62 
(0.78,0.82,0.86,0.90), C =  1, 6 += 6-  and a~= 1. We see that these profiles 
exhibit plateaus at all levels and that the top ranking individual has lower and 
lower values of X as 62 is increased. 

X 

1 

0.75 ~ . . . .  

\ 
0.5- ~ x  v • v 

0.25 

I I I I 

3 5 7 9 

intrinsic rank 

i 
11 13 

Figure 15. Profile comprising three plateaus obtained for 6 a = 1 and 82 = 0.66, 
C = 1 , 6 + = 6  - and ~ =  1. 
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so that ( h ) - - 3 / ( N +  1) if all individuals have a probability 0.5 to win 
irrespective of the other fighting individual and ( h )  = 1, once again, in a 
perfectly linear hierarchy. We shall use (h )  as an indicator of the linearity 
of the hierarchy. Figure 16 shows the variations of ( h )  as a function of the 
individual recognition parameters 61 and ee. For a fixed value of 61 
sufficiently close to 1, there appears to be a crossover in the behaviour of 
( h )  as a function of 62. For instance, for 81 = 1, we observe a departure 
from pure linearity at 62 = 0.4, a value already encountered in the interpre- 
tation of the profiles. We also observe a saturation at ( h )  = 0.21 on Fig. 16 
(which represents both h and (h ) )  as 62 becomes close to 1: this corre- 
sponds exactly to ( h )  = 3 / (N  + 1), with N = 13, the number  we used in the 
simulations, so that for 62 close to 1, all individuals have a probability 0.5 
to win or lose an arbitrary fight; the hierarchy is then maximally random. 
Note also that the departure of the hierarchical profile from pure linearity 
corresponds to the appearance of plateaus, and therefore associated local 
loops, in Figs. 13, 14 and 15. 

Let us now observe how the extended Landau number  (h )  varies as a 
function of both 61 and '~2. The same observations as for the hierarchical 
profiles hold, but ( h )  allows for a different viewpoint. We observe in 
particular that 61 must be in all cases close to 1 in order for loops to 
appear (for sufficiently large values of 6 2) (Fig. 17). ~7 has a small influence: 

0.75 

0 .5-  

0.25 - 

......... c, ........ <h> 

I I I 
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E2 

F igure  16. h and  ( h )  as a func t ion  of  62, wi th  E 1 = 1, C -- 1, 6 + =  6 -  and  ~7 = 1, 
N = 13, one  s imula t ion .  
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Figure 17. (h)  as a function of both E 1 and 82, for N = 20, ~7 = 0.1. The x axis 
represents 1 - e 1 and the y axis represents 1 - e2. 

the  m o r e  de te rmin is t i c  the  o u t c o m e  of  a fight, the  m o r e  loops  t h e r e  m ay  
be, bu t  this e f fec t  sa tura tes  as r/ increases  (no  m o r e  ef fec t  above  r / =  5) 
(see Figs. 17, 18 and  19). O n  Fig. 20, s t rongly d i so rde red  initial condi t ions  
have  b e e n  used,  with the  Fq ' s  at t = 0 be ing  r a n d o m  var iables  un i fo rmly  
d is t r ibuted  in the  in terval  [ - 1 0 0 ,  + 100] ins tead o f  be ing  set to  0: non-  
l ineari ty  in the  prof i le  persists  over  a la rger  p o r t i o n  of, bu t  is still l imi ted to  
a fixed z one  of, the  (el ,  •2 ) plane.  W e  have  s tudied  the  var ia t ions  o f  ( h )  
w h e n  the  n u m b e r  o f  individuals N is va r ied  and  e l  is t aken  to  be  a s imple 
"p l aus ib l e"  func t ion  o f  N:  assuming tha t  each  individual  has a fixed 
m e m o r y  capacity,  the  m a x i m u m  tha t  it can  recognize  o n  an  individual  basis 
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Figure 18. (h)  as a function of both •1 and e2, for N = 20, ~/= 1. The x axis 
represents 1 - e 1 and the y axis represents 1 - e 2. 
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i i 
Figure 19. (h) as a function of both 61 and 62, for N = 20, r/= 10. The x axis 
represents 1 - 61 and the y axis represents 1 - 62. 

is fixed and  equal  to some n u m b e r  k. 001 should  then  be equal  to k/N. We 
tes ted  k = 3 to k -- 10 and  ob ta ined  similar results in all cases: the proba-  
bility of  obta ining loops in the h ierarchy vanishes very rapidly upon  
increasing the popula t ion  size (see Fig. 21, k = 3 and  7/= 1; Fig. 22, k = 10 
and  -q = 1; or  Fig. 23, k = 10 and  r / =  10), which shows tha t  el  mus t  be 
equal  or  qui te  close to 1 for  loops to exist (provided our  basic re inforce-  
m e n t  mode l  is relevant).  Finally, Fig. 24 shows how the L a n d a u  n u m b e r  
reaches  its stable value in the  present  model .  All curves start  f rom a 
maximal ly  r a n d o m  state, where  the probabil i ty  of  each  individual  to domi- 

1 

Figure 20. (h) as a function of both 61 and 62, for N = 20, r/= 5, with strongly 
disordered initial conditions. The x axis represents 1 -  61 and the y axis 
represents 1 - 62. 
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0.1 

Figure 21. ( h )  (z  axis) as a function of 81 and N, e 2 = 3 / N ,  N = 5 to  30, ~7 = 1. 
The x axis r e p r e s e n t s  1 - e 1 and the y axis r e p r e s e n t s  N.  

nate another one is 0.5 and converge quite rapidly to a stable value of (h ) .  
Note that this stable value of ( h )  corresponds to stable loops. Although 
convergence is quick, a snapshot taken before stationarity may reveal the 
existence of loops, whereas the stationary profile may not contain any. 

This finding does not seem to be in agreement at all with some early 
experimental observations performed on hens (Shjelderup-Ebbe, 1913, 
1922), which showed that loops are more frequent in large populations: 
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Figure 22. ( h )  as a function of e I and N,  e 2 = 1 0 / N ,  N = 5 to 30, ~ /=  1. T h e  x 
axis r e p r e s e n t s  1 - e I and the y axis r e p r e s e n t s  N. 
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Figure  23. ( h )  as a func t ion  o f  e 1 and  N,  e 2 = 10/N, N = 5 to 30, "0 = 10. T h e  
x axis r e p r e s e n t s  1 - e I and  the  y axis r e p r e s e n t s  N.  
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81 = 1, ~ = 1. 
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when the population is below approximately 10, loops are unstable and 
rapidly disappear after the formation of the group, so that the hierarchical 
form the group converges to is a stable linear one; when the group's size 
exceeds this experimental threshold, loops still exist after a long time. This 
apparent contradiction between our model and these experimental observa- 
tions can be traced back to the stability of loops: in effect, in flocks of hens 
of sizes greater than 10, loops exist under an unstable form, that is, the 
hierarchy exhibits loops but changes over relatively small time scales, 
preventing a linear type from appearing. In conclusion, loops are never 
stable in these experiments: in the low population case, all loops simply 
disappear, whereas in the large population case, loops transform into other 
loops. Our results are then in some sense complementary: they show that 
loops can be stable if the degree of individual recognition is sufficiently high 
and strongly influences the result of a given flight. The experiments on hens 
are concerned with snapshots of the hierarchical structure; we deal with 
asymptotic profiles. Such asymptotic profiles are well defined, owing to their 
stability: in order to reconcile the experimental instability of loops and the 
numerical results that we reported, it may be necessary to include a 
forgetting term applied to every Fij, in the same way as it was applied in 
section 3 to F i. This would easily explain the presence of unstable loops 
transforming into one another when the population is large: in effect, the 
amount of time separating two successive encounters of individuals i and j 
increases with the number of individuals in the population if the average 
number of interactions per unit time is maintained constant, so that the 
force Fij can then have time to relax to 0 between two such interactions 
between i and j. Moreover, the experimental observation that loops quickly 
disappear in small populations shows that individual recognition may have 
only a rather small--but finite--influence on the process. Therefore, there 
is no profound contradiction between our model and those experiments. 

On the other hand, our result that loops may be stable under some 
particular conditions of individual recognition is entirely new and might 
turn out to apply to real cases, e.g. when loops are artificially induced 
(Gervet et al., 1993). Indeed, Gervet et al. (1993) have observed stable 
triads, but other experiments performed in the same laboratory on exactly 
the same species (Polistes) have never detected the existence of intransitive 
loops in (larger) colonies comprised of around 10-15 animals (Theraulaz et 
al., 1989, 1991a, b, 1992). Finally, the exciting paper of Gervet et al. (1993) 
also reports some difficulties in setting up the triads: one possible explana- 
tion would be that three individuals involved in a loop must have compara- 
ble forces; the difficulty of forming a loop would then reduce to that of 
finding three individuals with nearly equal forces. Such an explanation 
would imply a weak contribution o f  individual recognition (small e2), a 
contribution clearly seen only with animals of comparable forces; in all 
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other cases, the intrinsic force of an individual would be the essential 
component determining the result of a fight. Once again, the comparison 
with tennis players seems appropriate: for two players A and B of similar 
ranks, the record of the pair (A, B) may turn out to predict much of the 
result of the match. 

5. Related Work. 

5.1. The jigsaw puzzle approach (Chase, 1982a, b, 1985). It is worth 
mentioning Chase's "jigsaw puzzle" approach, because the present paper is 
in some sense a continuation of this work that attempts to understand the 
self-organized genesis of hierarchies. Chase introduced this notion because 
pairwise competitive ability models failed to explain linear hierarchical 
structures, which are by far the most widespread ones in nature. The jigsaw 
puzzle (JP) approach is based on a triadic representation of the hierarchy 
(triads are the pieces of the JP): (1) any complete hierarchy (that is, a 
hierarchy in which all individuals can be compared) can be defined by the 
patterns of interactions within all possible triads and (2) a complete 
hierarchy is linear if and only if all triads are transitive, hence linearity can 
be reduced to transitivity in triads. Because there are by definition three 
possible relationships in a triad [A, B, C], the knowledge of two should not 
suffice to infer anything about the linearity of the hierarchy. There are, 
however, two among the four possible configurations of double relation- 
ships among three individuals that always lead to a transitive triad, irrespec- 
tive of the third outcome (A beats B and A beats C, or A beats B, and C 
beats B); the other two configurations (A beats B and B beats C, or A 
beats B and C beats A) may either lead to a transitive or intransitive triad, 
depending on the third outcome. Chase observed that in chickens, who are 
known to form linear hierarchies, configurations that ensure linearity occur 
much more often than others. This result, although it indicates that finding 
why hierarchies are linear amounts to finding why the two favourable 
configurations are most often selected, does not explain in itself the 
mechanisms that lead to these two particular configurations. That was to 
some extent the aim of the present paper. Let us end with the JP approach 
by remarking that the most probable configuration is "double-dominance" 
(A beats B and A beats C: 60%) (Chase, 1982b), which suggests (1) that 
being dominant in the first fight helps in subsequent fights and also (2) that 
being dominant means being more aggressive, two facts that we have used 
extensively throughout this paper. 

5.2. Hierarchy and self-organization. We have already described in detail 
the contributions of Landau (1951), Chase (1973, 1974, 1980, 1982a, b, 1985, 
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1986) and Chase and Rohwer (1987) on the topic of hierarchy formation. 
These works constitute the basis upon which the model presented in this 
paper has been built. In addition, the simulations of hive behaviour by 
Hogeweg and Hesper (1983), based on previous ethological studies on 
bumblebees Bombus terrestris by Van Honk and Hogeweg (1981), have 
been crucial to the understanding that hierarchical structure may result 
from a self-organizing process in which interacting behaviours "specified" 
at the individual level give rise to a differentiation. There is today a clear 
recognition of self-organization as a widespread and powerful structuring 
mechanism in many important activities (foraging, division of labour or 
simply aggregation) of social insects, for example (Deneubourg, 1977; 
Deneubourg et al., 1987; Franks and Sendova-Franks, 1992; Pasteels, 1987; 
Sendova-Franks and Franks, 1992; Theraulaz et al., 1991a, b). 

5.3. Simulations of  hiue behauiour in bumblebees. The simulations of 
Hogeweg and Hesper (1983) are more complex than the model studied in 
this paper, because they include in particular a lot of features of a real hive 
of bumblebees Bombus terrestris: space (individuals interact with other 
members of the colony in the particular region where they are), various 
tasks (feeding, foraging, building cells, ovipositing), ontogeny (adults de- 
velop from eggs); all these features are part of a large interconnected 
network. Hogeweg and Hesper also introduced rewards, which depend on 
the difference of forces between two individuals interacting in a fight: the 
more surprising the result of the fight (that is, the less dominant individual 
wins despite the larger force of the other individual), the more rewarding. 
To justify this feature of their model, they invoke observations that those 
workers that were more frequently in contact with the queen showed an 
increased tendency to lay eggs in the late stages of the nest. They infer 
from these observations that frequent interactions with a more dominant, 
with a small chance to win, is the best way to be lifted upward in the 
hierarchy. However, many other explanations could be given to account for 
the aforementioned observations. Therefore, the variable reward hypothe- 
sis seems fragile (but cannot be ruled out), at least in the context of simple 
animals, and we did not keep it. It may be very relevant in higher level 
organisms, including human beings. 

Hogeweg and Hesper found that their model generates a stable elite, 
but the division of space into two separated regions turned out to be crucial 
in the differentiation of the colony: in the absence of spatial differentia- 
tion, no hierarchical differentiation occurs. This result can be understood 
with the mathematical approach of J/iger and Segel (1992), who found that 
given the win-loss function used by Hogeweg and Hesper (1983), no 
splitting of the population was to be expected in the absence of additional 
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factors such as the division of space. In a related work, Theraulaz et al. 
(1991b) studied a model, including a division of space (nest, periphery and 
rest of the world), in which dominance and task allocation were mutually 
defined. In this somewhat more complicated model, they showed that both 
division of labour and hierarchical differentiation could emerge with a 
"dominance almost wins" win-loss function. 

5.4. Boltzmann-Master equations. 

5.4.1. Jiiger and Segel's model. J~iger and Segel (1992) studied a Boltz- 
mann-like equation with an ensemble of classes characterized by the 
probabilities of their members winning and being defeated of to describe 
the evolution of dominance in a population of anonymous organisms. Their 
work was initially inspired by the observations of Van Honk and Hogeweg 
(1981), and the simulations of Hogeweg and Hesper (1983, 1985). They 
were interested in the question of whether the population would split into 
two groups: one characterized by a low dominance index, and the other by a 
high dominance index. They have studied the cases of a continuum of 
classes and of a discrete set of classes. They have tested several win-loss 
functions and found that the population splits in cases where "dominance 
always wins," whereas the splitting is not assured when a less dominant 
individual has a non-negligible probability to dominate a more dominant 
individual. The "dominance always wins" mechanism enables the popula- 
tion to be "convected" toward the two ends of the hierarchy. To make 
contact with our model, the choice of the Fermi function clearly corre- 
sponds to a case where dominance almost always wins, except when the 
parameter r /becomes close to 0 ("high temperature phase"). When ~q > 0, 
we have found a weak dependence of the qualitative results on the precise 
value of r/. A noticeable exception is forgetting, where "O determines the 
nature of the transition to hierarchical behaviour. In summary, the Fermi 
win-loss function falls within the "dominance almost always wins" regime. 
The model of Hogeweg and Hesper (1983, 1985) was based on a win-loss 
function that does not fall within this regime: this may explain why the 
appearance of a stable hierarchy was strongly dependent upon space 
differentiation. 

Although the Boltzmann equation idea is very "mean field" and does not 
provide any detail about many important features, two major aspects of the 
present paper- - the  probability of interaction between individuals and 
forgetting--can be cast more or less satisfactorily in terms of J~iger and 
Segel's model, with the Fermi function of section 2 as outcome probability 
(that is, with a model close to "dominance always wins," a sufficient 
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condition for differentiation to take place within the master equation 
framework (J~iger and Segel, 1992)). 

5.4.2. Extensions of  Jiiger and Segel' s model. Consider a population of m 
individuals subdivided into N + 1 different hierarchical levels or classes. 
Each class is characterized by a force F,, that without loss of generality 
(because varying the parameter  ~7 allows us to modulate this choice), we set 
to F, = n - ( N / 2 )  (symmetric around 0). This choice means that hierarchi- 
cal rank decreases with increasing n. One can study the repartition of the 
population among the different classes through the density of individuals 
per class, Pn" The time evolution of Pn is given by the following master 
equation, in which one assumes that each class evolves in the mean-field 
force of the other classes (for 6 += 6-),  

dp,, 
dt - P n - l O  +n-1 +Pn+lan+l-Pn(O + +Q~) Vn,  O < n < N ,  (12) 

and the following boundary conditions: 

dPN 
dt = P N -  1 Q~- 1 - -  PNQN , 

dP0 
dt = pIQ? - poQ~. (13) 

Equations (13) express the fact that there are a maximum force and a 
minimum force (or equivalently minimum and maximum classes in our 
formulation, because each class is assigned a given force), and that a 
successful (respectively, unsuccessful) individual in class N (resp., 0) re- 
mains in class N (resp., 0). Here, Qn + (resp. Q~-) represents the mean-field 
probability that an individual chosen at random in class n at time t will be 
in class n + 1 (resp. n - 1) at t + dt: it includes both the probability for this 
individual t o  interact and the probability to win (respectively, to lose) the 

fight if it does interact: Q ~ ( - ) =  ~N=oPjPnjQn+j (-). It is possible to use 
whatever form presented in section 2 for Pnj" We assume that an individual 
in class n at time t will be in class n - 1 or in class n + 1 at time t + 1 if it 
did interact, but it can as well remain in class n if it did not interact. This is 
manifested in the fact that Qn + + Q~- ~ 1 in general. 

Numerical integration shows that whatever the initial distribution of the 
population, the asymptotic state is always the same, depending only on the 
choice of Pq. The final state is generally reached with a time scale which 
depends on the initial distribution (Fig. 25). We simulated only 15 classes 
because the computat ion of the transition probabilities is very time con- 
suming and must be performed at every integration time step. However, we 
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Figure 25. Stable asymptot ic  dis t r ibut ions  for d i f ferent  choices of  P~j, irrespec- 
tive of  the  init ial  state. (a) C = 1: T he  popu la t ion  converges  toward a b imodal ,  
symmetr ic  dis tr ibut ion,  with  two peaks  at the  ext remal  classes. (b) C = 2: The  
middle- lower  classes (3, 4, 5) are densely popula ted ,  the  h igher  classes do no t  
conta in  any individual  and  classes 1 and  2 have an  in te rmed ia te  density. This  
curve cor responds  to an  effective p la teau  in the  middle  classes, bu t  the  distribu- 
t ion is somewhat  shif ted to the  lower classes compared  to the  expected result.  
The  di f ferent ia t ion is no t  marked.  (c) and  (d) C = 3 and  C = 4 yield the  same 
asymptot ic  dis tr ibut ion,  with the  whole  popu la t ion  concen t ra t ed  in classes 1, 2 
and  3 for  C = 3 and  in class 1 for C = 4. In the  la t ter  case, t he re  is the re fore  
apparent ly  no  different iat ion.  

checked on a few examples that the same qualitative results do hold for a 
much larger number of classes (100). For C = 1, the asymptotic state is a 
"bimodal" state in which both the upper classes and the lower classes are 
very populated, whereas middle classes have a very low level of population 
(Fig. 25). Both extreme classes are absorbing states, as can be seen from 
equations (13). An individual lying in the middle of the hierarchy "diffuses" 
in the field it is subject to. See Appendix C for more mathematical details. 

For C = 2, the final distribution comprises a peak at class 4. Classes 1, 2, 
3 and 5 are also relatively populated, and classes 6-15 contain virtually no 
individual. This observation corresponds to the expected result that one 
should obtain a plateau in the middle classes, but this plateau is shifted to 
the lower classes compared to the expectations. In this case, hierarchical 
differentiation exists but is not marked. The existence of plateaus has been 
reported in bumblebees, but with several plateaus rather than with only one 
(Van Honk and Hogeweg, 1981). rt2 has a rather large influence on the 
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exact shape of the density profiles obtained (Fig. 26). For large values of r/2 
( > 2), a profile with a peak at class 1 appears, whereas for lower values of 
?72 (between 0 and 2), one obtains a profile that comprises a more and more 
pronounced peak in the center of the hierarchy as 712 approaches 0. This is 
in sharp contrast with the influence of r/, which is found to have almost no 
impact on the obtained profiles in all cases (C = 1 to 4), provided ?7 ~ 0. 

For C---3, and Pc = 1, class 1 is by far the most populated, with about 
80% of the population. Classes 2 and 3 may contain a small number of 
individuals, whereas classes 4-15 contain virtually no individual. In this 
case, hierarchical differentiation appears to be limited. However, when the 
value of Pc is varied from 0 to 2, one gets quite different results, shown in 
Fig. 27, with a smooth crossover between profiles obtained for low values of 
Pc and those obtained with higher values. 

Finally, for case C = 4, we observe only one highly populated class: class 
1 contains about 93% of the whole population, whereas the 14 other classes 
share the remaining 7%. There is therefore no hierarchical differentiation 
(Fig. 25), 

Forgetting can be included in the present model by imposing a bias in the 
transition probability toward, e.g. the lower part of the hierarchy. Let us 
introduce a forgetting parameter/x, which can take values between 0 and 1. 

.o 

!D,,, 
O ID,,, 

0.6 

0 . 4  " 

0 . 2  " 

0 -  

i i ~  o 2.5- 10 ......... <~ ........ I 

9, . . . .  -o . . . .  0.5 

. . . .  -~ . . . .  0.1 

9 / / /  
! / / , ~. 

I I I I I I 

3 5 7 9 ll 13 15 

class 
Figure 26. Density profiles obtained in the case C = 2 with various values of ?72, 
with ?7 = 1. 
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F i g u r e  27. S i m u l a t i o n s  o f  C = 3 wi th  d i f f e r e n t  v a l u e s  o f  Pc (0.1, 0.2, 0.3, 0.4, 0.5, 
0.7 a n d  1.0). L o w  v a l u e s  o f  Pc yie ld  d e n s i t y  p rof i l e s  w h e r e  i n t e r m e d i a t e  c l a s se s  
a r e  m o r e  p o p u l a t e d ,  w h e r e a s  p rof i l e s  o b t a i n e d  wi th  h i g h e r  v a l u e s  exh ib i t  a l m o s t  
n o  d i f f e r en t i a t i on .  

We then modify the transition probabilities in the following way: 

Q2 ~ Qn + IxQ+~ and Q+ -o (1 - / x ) Q  + (14) 

so as to ensure that all transition probabilities remain between 0 and 1. We 
see in equation (14) that the forgetting force is much like an elastic recall 
force that is greater for classes far away from the lower part. Equation (14) 
illustrates the intuitive fact that forgetting is generally a hierarchical 
disadvantage: an individual withdrawn from the game is more likely to have 
a lower rank than a higher rank when put back into the game. One 
observes a crossover from the asymptotic distribution reported in the 
absence of forgetting to a distribution that comprises a peak in the lower 
class, as the forgetting strength /z is varied. This point is illustrated in Fig. 
28 for C = 1, but this observation holds whatever the choice of P/i" 

In summary, the inclusion of the probability of interaction and forgetting 
in J~iger and Segel's model, in a case where "dominance almost always 
wins," drastically modifies the detailed composition of the population by 
imposing constraints on the various fluxes between classes. This observation 
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Figure  28, Asymptot ic  dis t r ibut ions for var ious values of  the  forget t ing pa rame-  
ter  p ,  with a bias toward lower level classes. The  s imulat ions  have b e e n  
pe r fo rmed  in the  case C - - 1  only. T h e r e  is a smooth  crossover f rom the  
dis t r ibut ion ob ta ined  in the  absence  of forget t ing ( /z  = 0) to the  one  r eached  
with max imum forget t ing s t rength  ( /z  = 1). 

is a confirmation of the importance of these factors from a different 
viewpoint. 

6. Conclusion and Future Directions. Although there are fundamental 
similarities between the two previous models and ours (both rely on the 
idea that the tendency to dominate or to be dominated is amplified by a 
positive feedback), there are also some important differences. We have 
explored a mathematical representation in which each individual's be- 
haviour is recorded and we have studied the evolution of the hierarchical 
profile of the colony in terms of the dominance index X. We used both the 
dominance index and a more abstract quantity F to study the profile of the 
population. More importantly, we introduced the probability of interaction 
between individuals, based on experimental observations (the introduction 
of this factor turned out to be crucial to the formation of particular 
hierarchical profiles). We included forgetting (which leads to a phase 
transition in the observed hierarchical profiles). Finally, we studied how 
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individual recognition could influence the whole process of hierarchy for- 
mation and lead to the presence of hierarchical loops. Note that this paper 
was aimed at exploring the consequences of the self-organization hypothe- 
sis (that is, the emergence of a hierarchical structure from local positive 
and negative feedbacks), but other mechanisms of hierarchy formation 
cannot and should not be ruled out (see, for example, Chase and Rohwer 
(1987)): this becomes even more true when it comes to higher level animals, 
where additional effects (such as the bystander effect) or completely 
different mechanisms may play an essential role. 

Our results are related to the three aspects studied in this paper: (1) the 
probability of interaction between two individuals, (2) the introduction of 
memory and forgetting, that is, a relaxation of individual forces to 0 and (3) 
individual recognition. 

(1) The probability of interaction between individuals appeared to be a 
crucial parameter. Various experimentally observed profiles have 
been reproduced. One interesting question, which can certainly be 
answered experimentally, is to know whether the pattern of interac- 
tions between individuals (embodied in Pi)  actually leads to the 
formation of the expected profile; that is, does the model predict the 
correct profile from the knowledge of the pattern of interactions? A 
positive answer would undoubtedly validate the model to a large 
extent. In the case of the wasps Polistes dominulus that we studied, 
the answer is positive. We urge new experiments to be carried out or 
existing data to be reprocessed and reinterpreted along these lines. 

(2) We have seen that the inclusion of forgetting led to new results. 
Forgetting is biologically relevant. As an additional indication of this 
relevance, let us mention the fact that our model (with or without 
individual recognition) always leads to a stable asymptotic profile in 
the absence of forgetting: successive snapshots of the precise hierar- 
chical structure are similar once the asymptotic profile has been 
reached. The experimental observation of unstable hierarchical forms 
over long time scales is a strong clue in favour of forgetting, which is 
the only case where we found unstable hierarchies (the chaotic state 
when the population density is low). Many more experiments are 
required to make the nature of forgetting clearer: not only the effects 
of forgetting should be observed, but also its possible physiological 
underlying "implementation." 

(3) Our model predicts the absence of loops in large populations, which 
seems to be in contradiction to experimental observations on hens. 
Our results, on the other hand, seem to be in agreement with the 
experiments on wasps reported by Gervet et al. (1993). We have 
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already discussed this point, but  it should also be  emphasized that 
none of  our results, and particularly those on individual recognition, 
can be easily extended to higher-level animals where processes other  
than simple reinforcement  may come into play. Therefore,  the artifi- 
cially induced loops of  Gervet  e t  a l .  (1993) remain the most  promis- 
ing starting point  for experimenting with the effects of  individual 
recognition: our  model  allows us to make clear predictions that can 
be compared  with experiments. One important  question is, of  course, 
how to measure  the parameters  s 1 and •2 that we introduced. 

In conclusion, in the following ways we have contr ibuted to the under- 
standing of  the self-organization of  hierarchical structures in animal soci- 
eties: 

�9 By extending the basic models  of Chase (1974), Hogeweg and Hespe r  
(1983, 1985), and J~iger and Segel (1992) to include several important  
aspects. W e  have shown the diversity of the possible hierarchies that 
can emerge when such aspects are taken into account. Owing to this 
diversity, the model  may appear  to be  general, whereas it is in fact built 
upon a very small set of  specific hypotheses and parameters:  this shows 
the richness of  the model  and highlights the creativity potential  of 
positive feedback mechanisms. 

�9 By introducing a clear mathematical  model  that can in certain cases be  
solved. 

�9 By suggesting new directions for experiments. 

APPENDIX A 

Asymptotic Profiles. It can be shown, in the case C = 1, when 6 += 6-(= 1 without loss of 
generality) that the linear dependence of X i with respect to the rank is an asymptotic 
stationary state (in X i ) .  In effect, when C = 1, X i and F i can be simply related by 
F i / t  = 2 X  i - 1, because F i = D i - S i (there is exactly one interaction per time step for every 
individual) and X/= Di//Oi q-S i, Therefore, a time-independent linear variation of X i as a 
function of rank should result in F i = t - ~  k i t ,  where k i is a time-independent quantity. 
Under very general conditions, assuming that individuals are numbered according to their 
ranks, the only asymptotically stationary profile is given by k 0 = - 1 , . . . , k  i = - 1  + 
2 i / N , . . . ,  k N = 1, that is, a profile linear in the rank i. To see this, let us assume that we 
have F~ %.~ = k i t  , and that the k i ' s  satisfy strict inequalities: k 0 < k 1 < " ' "  < k i < "'" < kN. 
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We can inject this form for F i in the equation giving the evolution of F i (in the absence of 
noise): 

l ( 
j ~ i  

1 + exp( - r l t ( k  i - k j ) )  

1 ) 
1 + exp(+  r l t (k  i -- ky)) " 

(A1) 

As t ~ 0% 1/(1  + exp( - rl t(k  i - k j ) )  --~t--, ~ 0 (resp., 1) and 1/(1 + exp( - rl t(k  i - kj))---~ t -, ~ 1 
(resp., 0) if j > i (resp. j < i). Consequently, there are i terms equal to 1 and N - i terms 
equal to - 1 in the sum, so that finally 

1 ( 1 1 ) 2 i - N  

oE, o = N l + e x p ( - r l t ( k  i - k j ) )  l + e x p ( + r l t ( k  i - k j ) )  t-+~ N ' 
j e i  

(A2) 

which corresponds to the linearly varying profile k i = - 1 + 2 i / N .  Moreover, this result is 
obviously consistent with the condition k 0 < k I < ... < k i < ... < k N. Simulations confirm 
that this state is an effective attractor of the hierarchy formation dynamics. We can also see 
that "O > 0 does not  have any influence on the final profile (only on the t ime required to 
reach this profile): expression (A2) remains true. However, for "0 = 0, equation (A2) for F i 
reduces to d E i / d t  = ~(i, t), so that the Fi's perform independent  random walks. 

The situation is more complicated when 6+~  - 6 -  (we assume that 6+>  0, 6 - >  0 and 
moreover, we can set 6++  6 - =  2 without loss of generality, because a simple rescaling of 
time is sufficient to include other cases). Following the same reasoning as before, (A2) must 
be changed into 

-N j=o~toN l + e x p ( - r l t ( k i - k j ) )  
jg:i 

_ 6-  1 2i - N 6  ~ 

1 + exp(  + r l t (k  i - k j ) )  ] t-, ~ N 
(A3) 

and F i - ~ 6 + D i - 6 - S i ,  X i = l / 2 ( 6 - + F i / t  ). The result should be the same as before 
X~ = i / N .  However, Fig. 5 shows the profiles obtained for different values of 6 + and 6 -  at 
t = 20,000. The close-to-linear profiles eventually (slowly) converge to the linear profile; the 
others remain unchanged. This means that when the bias 6 + -  6 -  is too high, we must give 
up the hypothesis that k 0 < k  1 < ... < k  i < ... < k N :  obviously, some of the ki's are equal. 
When r /=  0, the equation for F i reads d F i / d t  = (6 + -  6 - ) / 2  + f( i ,  t). This means that the 
Fi's perform independent  biased random walks in the direction of 6 + -  6-.  

Still following the same reasoning as before, it is possible to understand to some extent 
the saturation at 0.4 observed in the case C = 2. In effect, (A1) is then transformed into 

dF i 1 1 1 

E dt  N 1 + exp(  - ~2tki )  ]= N 1 + exp 
j §  ( - ~12tkj) 

( 1 1 ) 
X 1 + e x p ( -  r l t (k  i - k j ) )  - 1 + exp(+  r l t (k  i - k j ) )  " 

(A4) 
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Because 1 / (1  + exp(-"02tki  )) '>t- - ,~  O, 1 / 2  or 1 depending on whether  k i < 0, k i = 0 or 
k i > 0, and because the r ight-hand side of (A4) is obviously bounded,  k i cannot  be strictly 
negative: 

dFi 
- -  = k i ( < 0  ) 
dt  t~ =o 

1 

1 + exp( - rl2tki) 
~ 0  

t--* ~ 
1 1 [ 1 

"N j=0~to N 1 + exp(-~12tkj ) I 1 + e x p ( - T i t ( k  i - k y ) )  - 
j4=i 

1 ) = 0 ,  
1 + exp(+r t t (k  i - k j ) )  t - ~  

bounded (as)  

which is obviously impossible. It can be also shown that  k i = 0 is not  possible either, unless 
all ki's are equal to 0: in effect, 1 / (1  + e x p ( -  ~2tki)) ~ t ~ f l / 2 ,  so that  the sum should be 
equal to 0 for consistency, and this cannot be achieved unless all ki's are 0. The conclusion 
is therefore  Vi, k i > 0, so that  the corresponding values of X i should not  be less than 0.5 
(0.4 in the simulations). It must be noticed that  in the cases C = 1, 2, 3, the probabil i t ies of 
interaction between two individuals depend on the quantity Y/= 1 / (1  + e x p ( -  rl2tki)), which 
converges as t ~ ~. 

APPENDIX B 

B1. Linear  Stabil i ty Analysis.  Let  us study the last equation of (6): 

dF i 
d ~  = HI({Fi}) 

/ 
=__P/  1 _ 1 

N I J=jei N l + e x p ( - r l ( F i - F i ) )  ~176 1 + e x p ( +  r/(Fi - Fj))  
- izg(Fi). (B1.1) 

The associated Jacobian matrix [OHi/OFy] is defined by 

[ 
OHi P / , exp( - rt(F i - Fj)) 

= 0~to N (1 + exp( -- ~ / ( F / -  F j ) ) )  2 OF i N ( J j4=i 

\ 
, exp( - rt(F i - Fi)) I dg 

+ / - ~d-T(F~)' (1 + exp( + 7I(F i - Fi) ) )  2 

OHi = _ ~ [ , exp( - rt(F/-  Fj)) 

t~Fj. id:j k (1 + exp( - r / ( F / -  Fy))) 2 

+ "O exp( - ~q(F i - Fi)) ) 

(1 + exp( + rl(F i - Fi) ) )  2 
(B1.2) 
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The stability of a state such that F 0 = F 2 . . . . .  F N = F is determined by the eigevalues of 

[eH~ =eN=,~] 
F o  = F 2 = - 

a~ dg p ~  p~?  

P 2  - -  d F  N 2 . . . . . .  N 2 
p T /  p r /  

N 2  N 2  
p ' r /  p - q  

N 2  - N 2  
p T /  p ~ /  

N 2  N 2  
p ' q  p ~ /  ~/ dg 

N 2 . . . . . .  N 2 P2- d F  

(B1.3) 

which is a circulating matrix. The state F 0 = F 2 . . . . .  F N = F is therefore stable for 

dg 
2/., ~-~ 

p <  .q(1 + 1 ) . (B1.4) 

Since d g / d F  ~ 0 as F increases, the most stable state of this kind is when F = 0. The 
stability condition is then given by 

2/z 
< 1 (B1.5) P n(1 + ~) 

if dg/dFIF=O = 0, which is indeed satisfied in the studied case. To summarize, the flat 
profile is linearly stable for p < 2/z/(~/(1 + l / N ) )  and linearly unstable for p > 2/x/(7/(1 + 
l / N ) ) .  

B2. Allowed Profiles. The stability analysis is not  sufficient�9 In particular, there are 
constraints imposed on the profiles�9 If the constraints are not  satisfied ( p  < ~), slightly 
differentiated profiles may appear in the region where the fiat profile is linearly unstable, 
but these profiles are local attractors, and two runs of the process lead to two different 
profiles�9 On the contrary, if the constraints are satisfied ( p >/z) ,  one particular profile is a 
global attractor, and two runs converge to the same profile�9 Note that a profile is anony- 
mous: it is a function that associates a dominance index to a rank; therefore two equivalent 
profiles may correspond to situations where individuals are in different situations (the 
hierarchical symmetry between individuals is broken). One  then understands that the nature  
of the transition from a fiat to a differentiated situation depends on the relative locations of 
the linear unstability point and the point  where the constraints become satisfied, that is, 
2tz/(~7(1 + l / N ) )  and ~. We follow the same reasoning as in Appendix A, including the 
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forgetting term: the corresponding deterministic equations read 

dF~ d 
- ~  = p - ~ [ t ( 2 X ~  - 1)] - p.g(F/).  (B2.1) 

From the discussion of Appendix A, it is reasonable to start by assuming that d F J d t  =t- ,  
pk  i. Looking for a stationary solution for X~, we get the following equations: 

2i 
- 1 + -~  - i z g ( p k i t )  = p(2X~ - 1). (B2.2) 

If g ( F / ) =  tanh(Fi), (B2.2) can be approximated by - 1  + 2 i / N - / z  sign(k/)= p ( 2 X  i - 1 ) ,  
that is, 

i /z 
~ + ~ p ,  if ki < 0 ,  

X i  = i IX if k~ > 0. 
N 2 0 ' 

(B2.3) 

This set of equations (B2.3) has a solution, with some of the X~ ~ 0.5 (that is, a differenti- 
ated profile) if and only if the following set of consistency conditions are satisfied: 

1 1 i / N l i : o  + I x / 2 p  < ~ and i / N l i = u  - I z / 2 p  > 7, which both reduce to 

p > p.. (B2.4) 

Therefore the profile should, in principle, be completely flat below Pc =/x. To be more 
accurate, for p > Pc, the profile is expected to be fiat between two values of i, symmetric 
with respect to i = N / 2 ,  iinf(P) = N / 2  - N t z / 2 p  and /sup(P) = N / 2  + N t x / 2 p ,  and to vary 
linearly from i = 0 to iinf and from isu. to N. This is indeed observed for r /=  2/ (1  + 1 / N ) .  
For other values of "0, the situation is ~lifferent: 

(1) If p >/z,  but the flat profile is still linearly stable (this is the case when "0 < 2/(1  + 
l / N ) ) ,  small fluctuations will not suffice to make the hierarchy appear, but as soon 
as the flat profile is unstable, the hierarchy emerges abruptly, defined by the 
equations (B2.3). 

(2) If p < p~ and the flat profile is linearly unstable (this happens when r t > 2/ (1  + l / N ) ) ,  
the hierarchy appears (because the flat profile cannot persist), but not in a structured 
way: the profiles look more or less random. This is due to the fact that the profile is 
entirely the effect of fluctuations, because condition (B2.4) is not fulfilled. 

(3) When "O = 2 / (1  + 1 / N ) ,  condition (B2.4) becomes satisfied exactly at the time when 
the flat profile becomes linearly unstable (that is, at 2/x/r/).  

A P P E N D I X  C 

Stationary Profile of the Master Equation. Although it is hard to find analytically station- 
ary solutions to the master equation even in the simplest case (C = I without forgetting) due 
to the dependence of transition probabilities on the whole distribution of the population, it 
is nevertheless possible to check that a particular solution satisfies stationarity conditions. 
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How to find such a solution is yet another matter, but guided by simulations, one can test 
the following solution for C = 1: Po =P, PN = 1 --p and Vn :~ 0, N, p~ --- 0, if one assumes 
that only fights with members of other classes count, that is, a fight between two members of 
the same class has no consequence on either individual. The conditions for stationarity are 
given by (a) pn=Pn_lQ+l+Pn+lQn+l, Vn, 0 < n < N ,  (b) poQ~=plQl=O and (c) 
PNQN=PN_IQ~r =0.  The tentative solution is obviously consistent for all p,,  except 
Po, Pl, PN-1 and PN. (d) Let us for instance consider condition (b): (b) ~ Q~-= pu/(1 + e nu) 
= 0. This relation, though impossible to satisfy strictly, becomes true when the system gets 
frozen ( r / ~ )  or in the thermodynamic limit ( N ~ :  not to be confused with the 
continuum limit of the master equation, which would imply infinitesimal differences in the 
forces of neighboring classes and therefore prevent the consistency condition (d) from being 
satisfied). It is easy to check that the three other consistency conditions are then also 
satisfied. Any value of p would work. The final result clearly depends on the initial 
composition of the population. 

Taking into account intraclass fights, we can study the three-class case, which can be 
exactly solved in the low-temperature limit. In effect, the stationary equations read 

plQ{ = poQ~ p~ po p2 p~ + pl p 2  
poQ~+p2Q2=pl - 2 - +  1 - ~ e  2" 2 l + e  -~ 

plQ~-= p2Q2 ~ p2 po p2 p2 + po p ~  

p o + p l + p 2 = l  ' 2 - +  ~ 2 l + e  -n  
po + Pl + P2 = l 

(c1) 

In the limit where ~7 ~ ~ (that is, when the dominance-subordination process is determinis- 
tic, or equivalently, when "dominance always wins"), 

p? 
T = T + p ,  p2 

o12 
= ~ -I- PoP1 

PO W pl-I- p2 = 1 

( p 2 - - P o ) ( l ( p 2 + P o ) - - l ) = O  

P2 = P0 = v~ - 1 = 0.41 

Pl = 3 - 2V~ = 0.17, 
(c2) 

which is consistent with the findings that the two extreme classes are more populated than 
the middle class; however, the middle class is still populated, due to a current of individuals. 
We can reasonably expect this result to hold for more classes, which is indeed confirmed by 
simulations. 
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