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We describe a three-species  mechanism for spatial pa t tern  format ion in which only one 
species spatially moves. We show that a bifurcation to traveling or s tanding waves occurs. 
We contrast  this mechanism for pa t tern  format ion with the be t te r  known cases where  more  
than one  species moves. �9 1997 Society for Mathemat ical  Biology 

1. Introduction. Pattern formation via the Turing instability has been the 
subject of numerous papers, and is particularly well characterized in two- 
species systems (see, e.g. Edelstein-Keshet, 1988 or Murray, 1989). In 
two-species models, the mechanism for the destabilization of the spatially 
uniform state requires spatial interactions between both species. In a 
typical scenario, there is an "activator" and an "inhibitor," and the in- 
hibitor has longer range interactions than the activator. This results in 
so-called "lateral inhibition," and has been proposed as the mechanism for 
spatial patterning in dozens of systems. In two-species models, with lateral 
inhibition, the patterns that arise from the loss of stability are generally 
stationary, that is, they are time independent. It is well known (see, e.g. 
Ermentrout, 1981) that at least three species are required in order to get 
the appearance of spatio-temporal oscillations from a homogeneous rest 
state in systems of reaction-diffusion equations. In other systems, such as 
neural nets, bifurcation to traveling-wave trains or standing waves is possi- 
ble for two-component systems, but only under rather unrealistic conditions 
(see Ermentrout, 1979). 
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Many biological systems involve situations in which only one of the 
species or components migrates. For example, in models of nerve conduc- 
tion, only the membrane potential spatially interacts; the recovery and 
other variables interact only through the membrane potential. Models of a 
piece of cortex where there are local interneuronal interactions coupled 
with long-distance pyramidal cell models also involve "migration" of one 
species. Many plant-herbivore systems satisfy a similar constraint when 
there is only a single grazing species. Several reaction-diffusion systems 
obey this rule; for example, the model for cAMP excitability has only the 
extracellular cAMP moving and the cells and intracellular cAMP remaining 
bound (Tyson, 1989). Epidemiological models where only the uninfected 
are mobile provide another example. 

We wish to explore the potential for bifurcating patterns arising from 
systems of this type. In particular, we will explore bifurcation to spatial and 
temporal waves that are driven by movement of a single species. The notion 
that systems where only one species migrates can lead to spontaneous 
symmetry breaking is counter to one's usual intuition about pattern forma- 
tion. Thus, one of our goals is to show that once more than two components 
are involved, the "general principles" of pattern formation are not very 
useful. Since only one species is spatially distributed, it alone determines 
the scale of the pattern. In an infinite domain, changes in the space 
constant or diffusion coefficient cannot influence stability, only the scale of 
the pattern. This contrasts to pattem formation due to different spatial 
scales for the different species where stability depends crucially on the ratio 
of these scales. 

In Section 2 of this paper, we show that in two-species systems, where 
only one species migrates, there can be no finite band of unstable 
wavenumbers. We then turn to three-species systems, and show that insta- 
bilities are possible and that they always result in bifurcation to spatially 
and temporally periodic patterns. That is, the loss of stability is through a 
Turing-Hopf bifurcation. Section 3 contains several examples involving 
both reaction-diffusion models and integro-differential equation models 
that arise from neural nets. We explore these numerically, and in the case 
of a spatially discrete model, give a complete bifurcation diagram. 

2. Analysis of the Linearized System. Our strategy is to start with the 
linearized system, and then to analyze the spectrum as the wavenumber 
varies. We treat this rather abstr~actly in order to apply the results to any 
type of homogeneous "diffusion-like" spatial interaction. We assume that 
only one species can migrate, and that the spatial interaction is homoge- 
neous and symmetric. 
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Let L denote  the linearized spatial interaction. For  example, in reac- 
t ion-d i f fus ion  models,  

L u  = ~ 2 u / O x 2  (2.1) 

while for neural  ne twork  models,  

L u  = f a w ( x ,  x ' ) u ( x ' )  dx ' .  (2.2) 

Let  v k denote  the eigenvalues of L,  i.e. 

L~b~ = vk~b ~. (2.3) 

In order  that  the pa t te rn  format ion  is not  "buil t  in" to the models,  we 
assume that  4, 0 = 1 and that  v 0 > v k for all k. That  is, the fastest growing 
m o d e  of the spatial interact ion funct ion is the spatially h o m o g e n e o o u s  
mode.  Thus,  we are not  incorporat ing intrinsic pa t te rn  format ion  capability 
into the spatial interactions.  We also assume boundary  condit ions on a 
finite domain  of length l that  permi t  us to order  the discrete eigenvalues, 
v 0 > v 1 > . . . .  For  example, if L is the diffusion opera tor  with N e u m a n n  
boundary  conditions,  the eigenvalues are v k =-O'rrZk2/l 2, where  k =  
0,1,2,  . . . .  For  a Gaussian convolut ion kernel  on a periodic domain,  the 

-~r2qrZk2 / l  2 
eigenvalues are e , where  tr is the space constant  of the interac- 
tion. We do not  allow "Mexican hat"  interactions where  the maximal 
eigenvalue occurs at a nonzero  wavenumber  k. 

Wi thout  loss in generality, we assume that  the first componen t  is the only 
one that  spatially interacts. The  general  equat ions  are then  

du 1 
dt = FI(L[ua  ] (x) ,  u l , . . . ,  u , )  (2.4) 

duj 
dt - F j ( u l , . . . ,  u , ) ,  j # 1 (2.5) 

where  F 1 is a m o n o t o n e  increasing funct ion of  the opera tor  L. Since L is a 
homogeneous  spatial operator ,  that  is, it takes constant  functions to con- 
stant functions, the fixed points  of the spatially homogeneous  system are 
also fixed points  for the spatially varying system (2.4), (2.5.) The  lineariza- 
t ion about  a fixed point  has the simple form 

du  1 n 

dt = cL[Ul](X) + ~ ailvi, c > 0 (2.6) 
i=1 

dvj n 
dt = ~" aijui' j 4:1.  (2.7) 

j = l  
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The  general  solutions to this are of the form uj(x, t) = ~jCk(X)e "~t where  h 
are eigenvalues and ~j are componen t s  of the corresponding eigenvectors 
of the matrix 

M ( k )  = 

a l l  q- Cl2k a21 "'" anl 1 
a12 a22 " "  an2 J " 

aln a2n "" ann 

(2.8) 

Before continuing,  we can make  some simplifying assumptions.  We can 
absorb c > 0 into v k. We also replace ~,~ by v ~ -  v 0 + v 0 and absorb v 0 
into aaa. We let q~ = - ( v  k - ~'0) so that  q0 = 0 and qk > 0 for k > 0. For  
example, in the case of the Gaussian convolut ion prob lem above, qk = 1 - 
e -~2~2~2/t2, and for the diffusion operator ,  qk =DzrZk2/12. Thus,  we can 
rewrite M(k)  as 

all -- qk a21 "'" anl ) 
M ( k )  = [ a12 a22 " ' "  an2 . (2.9) 

/ 
al n a2n "" ann 

The  necessary condit ions for pa t te rn  format ion  are that: (1) the eigenvalue 
with maximal real part  for the matrix M(k)  must  be negative for k = 0 and 
for k large, and (2) there  must  be an interval of values of k not  containing 
0 for which there are eigenvalues with positive real parts. This is the 
mechanism for the Tur ing instability. We make  this more  precise below. 

The  following l emma is a consequence  of the propert ies  of the determi-  
nant  function. 

LEMMA 1. The characteristic polynomial of  M(k), E j= oCj h j, has coefficients of  
the form 

cj = aj + fljqk (2.10) 

where aj, fij are constants. 

To precisely define spatially driven instabilities, we must  assume that  our  
system (2.9) depends  on some parameter ,  say y. We make  the following 
definition�9 

Definition 1. The  system (2.4) (2.5) undergoes  a spatially driven instability 
if there  is a unique  eigenvalue (or conjugate  pair) satisfying the characteris- 
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tic polynomial of M(k) (2.9) with maximal real part h(qk, 3 ')= r(qk, Y)+ 
iw(qk, 3') such that 

(a) r(qko, 3'0) = 0, 
(b) r(qk, 3'0) < 0, 
(c) Or(qko, y)/03"[ 

for some qk0 4= 0; 
for all [qkl =~ Iqkol; 

4=0. 
T = TO 

Remark. An illustration of spatially driven instabilities for the diffusion 
operator is shown in Fig. 1. If oJ(qko, TO)= O, then we call the spatial 
instability a Turing instability. This may lead to spatially inhomogeneous 
time-independent steady states, and is the mechanism for a large number of 
pattern-forming systems. If o~ v~ 0, then traveling or standing waves arise 
through a spatial Hopf (Turing-Hopf) bifurcation and lead to spatially and 
temporally periodic behavior. 

Lemma 1 has two important consequences. 

PROPOSITION 1. The Turing instability cannot occur in systems of the form 
(2.4), (2.5). 

Proof. In order for the Turing instability to occur, there must be a zero 
eigenvalue so that the constant coefficient of the characteristic equation 
must vanish for some value k 0 > 0 and must be of the same sign for all 
other values of k. Since the coefficients are linear functions of q~, this is 
impossible unless k = 0, which corresponds to homogeneous patterns. 

/ 
r(q, ~') i q 0 

H(q,y) = e ' " ' ~ ' " ' " '  

Y<Y0 
Figure 1. Spatial instability for the diffusion operator. The behavior of the real 
part of the maximal eigenvalue is given as a function of the spatial eigenvalue q 
and the bifurcation parameter y. Although r is shown as a continuous function 
of q, for any given problem, the values of qg are discrete. For y <  3'0, all 
r(qk, 3') < 0; for y = 3'0, the real part vanishes at exactly one spatial eigenvalue 
qko; for 3' > 3'0, there is a band of q that yields instability (r(q, 3') > 0). Here, the 
domain length l was chosen so that qg = D1r2k2/l 2 corresponds to the critical 
point for r. In general, this is not the c~ as discussed below in the context of 
inducing pattern formation by changing the scale of spatial interactions on a 
finite domain. The dashed line shows the function H (2.11) derived from the 
Routh-Hurwitz conditions. 
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PROPOSITION 2. No spatially driven instability can occur in systems of  two or 
fewer species in which only one species spatially interacts. 

Proof. We have already established that loss of stability cannot occur at a 
zero eigenvalue. Thus, only Tur ing -Hopf  instabilities are allowed. These do 
not happen in one-variable systems, and thus we consider only two-variable 
models. The Tur ing -Hopf  bifurcation can only occur when the trace 
vanishes; our definition then requires that the trace have a local maximum 
at a non-zero value of k. The trace is 

ala + a22 + q k .  

If this vanishes at k = k 0 > 0, then it must be of opposite signs for k on 
either side of k 0' which means that there are other modes that have 
eigenvalues with positive real parts. 

The two propositions imply that the "simplest" spatial bifurcation that 
can occur when only one species is mobile is the three-species Turing-Hopf 
bifurcation. A necessary condition for this is easily obtained from the 
Routh-Hurwi tz  criterion (see Edelstein-Keshet, 1988, p. 234). An imagi- 
nary eigenvalue occurs if c2, Cl, c O are all positive and H =-ClC 2 - - C  O = O. 
This leads to the following proposition. 

PROPOSITION 3. The following are necessary conditions for spatial instability to 
occur in a three-species model where only one species spatially interacts: 

(a) Otj > 0 and a I a 2 --  O~ 0 ~" 0; 

(b) /3j > 0; 
(C) /310~2 -~- O~1 /32 --  /30 < 0.  

Condition (b) is actually a little stronger than necessary; we require that 
aj +/3jqk > 0 for all k. However, (a), (b) and q/, ~> 0 for all k ensure that 
this requirement is met. 

Proof. The first condition just says that when k = 0, the eigenvalues have 
negative real parts. Condition (b) is required so that large wavenumbers 
remain stable and eliminates the "infinite wave number  instability." To 
obtain condition (c), note that the Routh-Hurwi tz  criterion states that 
H > 0 for stability. We want this to vanish at a non-zero value of k and to 
be positive for all other values of k. Expanding H, we get 

H = fflO~2 - o~ 0 71- ( /31o/2  ---[- o/1/32 - / 3 o ) q k  +/31/32q 2" ( 2 . 1 1 )  

Since qk ~> 0, in order to get a local minimum, we must have the coefficient 
of qk negative. This is condition (c). 
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Thus, if there is spatial interaction with only one variable, pattern 
formation, if it occurs at all, will always arise at a Turing-Hopf bifurcation 
since zero eigenvalues have been eliminated. A simple calculation shows 
that the frequency at the bifurcation is 

0")0 = r  "1"- f l ' q k o  " (2.12) 

There are several interacting points about the spatial patterns. If we 
consider the case on the real line, then the spatial interaction length can be 
scaled out by redefining the spatial variable. This is because there is only 
one spatial scale in the problem. Although the now continuous spectrum 
for the spatial operator means that details of the bifurcation theory do not 
apply, changing the spatial scale should only affect the wavelength of the 
resulting pattern, not whether the pattern forms or t h e  frequency of the 
oscillations. The limit as the spatial interactions become more localized is 
interesting since patterns become increasingly f iner  grained as the 
wavenumber increases, but when there are no spatial interactions, there is 
no pattern formation at all. For example, the diffusion operator with fixed 
q so that r(q, 3')> 0 yields patterns with a wavelength 2~r D~/-D--~ --+ 0 as 
D ~ 0, but D = 0 ensures no spatial patterns. The limit of D = 0 is singular 
since there is no longer any spatial coupling. Since space can be scaled 
arbitrarily, the amplitude and other properties of the solutions are the same 
no matter what D is as long as it is positive. In the usual two-species Turing 
mechanism, scaling both diffusion coefficients will behave in the same 
manner as this. However, scaling only one species' diffusibility will have 
different effects depending on which species is scaled. Reducing the spatial 
extent of the "inhibitor" leads to no pattern formation. Reducing the 
extent of the "activator" results in finer grains, but the amplitudes of the 
solutions get large, and as the diffusion of the "activator" tends to zero, 
the solutions become discontinuous. 

On finite domains, with discrete values of k and corresponding discrete 
values of qk, it is possible to first fix 3' > Y0 so that r(q, y) > 0 for some 
open interval of q, and to then induce pattern formation by changing the 
scale of the spatial interactions relative to the domain length. For example, 
when O/ l  2 is large, then possibly each of ql, = orrzk2/12 for k = 0, 1, 2, . . .  
yields r(q, 3') < 0. This would simply mean that none of the eigenvalues for 
the spatial operator qk fell in the interval where the growth rate r(q, y) was 
positive (Fig. 1). However, as D decreases, there may be a value of ql, that 
gives a spatial instability. For example, if r(q,y)> 0 on the interval 
0.1 < q < 0.2, then D/I  2 would have to be at least as small as 0.2/7r 2 
before there could be an value of qk for which there was instability. This 
contrasts with the situation in the previous paragraph where q took on 
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continuous values. In the next section, we will also illustrate this point with 
a finite-dimensional system of discretely coupled cells in a ring. 

We now derive conditions on the coefficients of the community matrix 
A - M I qk= 0 which will lead to the above type of Turing-Hopf instability. In 
the next section, we use these conditions applied to biological models. Let 
A~z, A I3A23  denote the 2 • 2 matrices formed from A by eliminating, 
respectively, the third, second, and first row and column. The Routh-  
Hurwitz stability criteria are 

qk -- tr A > 0 (2.13) 

- det A + qk det A23 > 0 (2.14) 

det A + qk det A23 

+ (qk - tr A)(det  A12 + det A13 + det A23 - q1,(a22 + a33) ) > 0. (2.15) 

We require these to hold for qk = 0 so that the system is stable to spatially 
homogeneous perturbations (k = 0). We also require that these hold for k 
large and positive so that there is no infinite wavelength instability. For the 
diffusion operator k large and positive, it means qk ~ ~, and for the 
Gaussian convolution operator, it means q~ ~ 1. In any case, we require 
det A23 > 0 and a22-  a23 < 0. Now, consider where (2.13) and (2.14) are 
met, but (2.15) is violated for some range of qk which does not contain 0. 
The function 

H ( q k  ) = _qk(a222 _+_ a33) + [tr A(a22 + a33) + det A12 + det A13]q k 

- tr A(det  A12 + det Aa3 + det A23) + det A (2.16) 

is negative over this range of qk. At criticality, that is, when we are in the 
situation illustrated by Fig. 1, we have that 

H(q~,o) = 0 

H ' (  qk o) = O. 

This yields the pure imaginary eigenvalues given by (2.12) which, in terms 
of the original matrix A, is 

1 

W o = { d e t A 1 2 + d e t A a 3 + d e t A 2 3 - q k o ( a 2 2 + a 3 3 ) }  2. (2.17) 
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N o t e  first tha t  0 = H'(qk o) implies  tha t  

t r  A(a22 + a33) + det  A12 + det  A13 
(2.18) 

q~0 = 2(a22 + a33) 

which,  w h e n  subs t i tu ted  into H(q,%) = O, yields 

[tr A(a22 + a33) + de t  A12 + de t  A13] 2 

= 4(a22 + a33)[tr  A ( d e t  A12 + det  A13 + det  A23) - de t  A ] .  (2.19) 

N o t e  tha t  since tr  A < 0 and  tha t  a22 + a33 < 0, this m e a n s  that  in o r d e r  
fo r  q~0 to  be  posit ive,  it is necessa ry  for  de t  A12 + de t  A13 to be  negat ive  
(see (2.18)). F u r t h e r m o r e ,  f r o m  (2.19), A23 must  be  la rger  in m a g n i t u d e  

than  A12 +A13 , which  is negat ive.  

3. Examples. 

3.1. Lotka-Volterra dynamics. T h e  first example  we cons ide r  is an eco- 
logical m o d e l  whose  in te rac t ions  are  shown in Fig. 2(A). Assuming  

+/- + 

+/" A B 

C D 
Figure 2. Interactions among three species that can give rise to pattern forma- 
tion when only u spatially interacts. (A) An ecological model where u and v 
compete, w eats u and v eats w. This example is analysed in detail in the text. 
(B) A disease model with mobile susceptibles u, infecteds v and recovereds w. 
(C) A non-transitive predator prey model u eats v, v eats w and w eats u. (D) A 
neural model in which there is one principle neuron u which can synapse others 
like it, and a local inhibitory interneuron v and a local excitatory interneuron w. 
This example is described in detail in the text. 
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Lotka -Vo l t e r r a  dynamics with only u diffusing, we obtain 

O lg o~ 2 bl 

= D  
Ot O~X 2 

+ u ( r  1 + aHu + alzV + a13w) (3.1) 

o3u 

Ot 
_ _  = v ( r  2 + a21u  + a22v  + a 2 3 w )  (3.2) 

o~w 

Ot 
_ _  = w ( r  3 + a31u  + a32v + a33w). (3.3) 

The coexistence equilibrium satisfies 

al a12 a3][u0] Irl] 
a21 a22 a23 Uo = _ r 2 . 

a31 a32 a33 Wo F3 

(3.4) 

The linearized community matrix is 

A = 
alluO a12Uo al3Uo 

a21u~ a22u~ a23u~ /" 
a31Wo a32Wo a33Wo J 

(3.5) 

We choose u o = v o = w o = 1, the bifurcation parameter  as y = a12 and 

0 a12 
A = - 8  0 �9 (3.6) 

1 - 2  2 

Thus, rl = 1 -  a12, r 2 = 0 and r 3 = 3. Using the results of  the previous 
section, we find that a120 = - 1.494, and the equat ion D k 2 / l  2 = 1.738 = q0 
yields the critical wavenumber.  The frequency of  the bifurcation solution is 
oJ 0 = 2.9192. Fig. 3 shows the numerical  solution for a12 = 1.6 > a12 ~ on an 
interval of  length 10 with D = 0.1 and D = 0.4 and Neumann  boundary  
conditions. Note  that increasing the diffusion fourfold doubles the wave- 
length as expected. 

To get some insight into the global pa t t em formation picture, we con- 
sider the same system coupled with discrete diffusion be tween  two subpop- 
ulations ua and u 2. In this case, qk takes on the two values, q0 = 0 and 
q~ = 2D.  Unlike the continuous case, there are only two eigenmodes,  the 
symmetric one and the anti-symmetric mode  corresponding to the 
wavenumbers  k = 0 and k = 1, respectively. Thus, the spatial p a t t e m  can be  
induced by using D as a bifurcation parameter .  Indeed,  for each value of  
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~A) 

Figure 3. Space-t ime plots of the solutions to the ecological example given in 
Fig. 2(A). The variable u(x,t) is plotted in grey scale with low (u = 0.8) 
population black and high (u = 1.6) populations white. Other species look 
identical up to a scale and a temporal phase shift. Time increases downward 
from 0 to 50 and space increases from left to right from 0 to 10. Upper  picture: 
D = 0.1; lower picture D = 0.4. (Mesh is 200 points. Heun integration with a 
step size of 0.005 is used. Initial data are a small random perturbation from the 
rest state. Boundary conditions are Neumann.) 
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ale > aa20, there will be two values of  D where  there  is a H o p f  bifurcation, 
Dl(a12) < D2(aa2) (Fig. 4 (A)). As a12 ~ a120, Di(a12 ~ q o / 2  = 0.869. For  
D 1 < D < D2, there is a stable periodic solution in which Ul(t) and u2(t) (as 
well as v, w) oscillate 180 ~ out  of phase. Fig. 4(B) illustrates the bifurcation 
diagram for a12 = 1.6 as D is varied, and Fig. 4(C) shows a solut ion to the 
coupled system when  /31 = 1.6 and D = 1. 

Fig. 2(B) and (C) show some other  interactions that  can give rise to 
spontaneous  spa t io - t empora l  pa t te rn  formation.  By way of example, lin- 
earized matrices yielding bifurcations for (B) and (C) with q J0 = 0.067 and 
q~0 = 0.2, respectively, are 

[1,05067, 1] [17, 21 
A =  - 1  0 a n d A - -  - 1  - 1  . (3.7) 

0.1 - 0 . 6  0.5 - 1  1 

Note  that  the structure of Fig. 2(B) is that  of a classical epidemiological  
mode l  with mobile susceptibles (u) and stationary infecteds (v) and recov- 
ereds (w). Recovereds  are temporari ly  immune  before  enter ing the suscep- 
tible class. Here ,  arrows between u and v indicate infection via a non- 
linear incidence function, and arrows f rom v to w and f rom w to u indicate 
m o v e m e n t  genera ted  by linear rate constants (Hethcote  and Levin, 1989). 

3.2. A neural net. In this example, we consider a neural  ne twork in 
which the coupling is not  th rough diffusion, but  ra ther  through a convolu- 
tion. The  coupling constraints on this particular example are quite strong in 
order  that  no biological principles be violated. Fig. 2(D) shows the connec- 
tions among  the three  cells. We imagine that  u represents  the activity of a 
cortical pyramidal  cell, and that  this cell sends synapses outward to o ther  
cells of the same type. Within the local area, we assume that  there  are two 
populat ions  of interneurons:  v is the activity of an inhibitory cell and w is 
that  of the excitatory cell. We assume that  the background or steady-state 
activity is set of 0. The  equat ions  are 

Ou (Jo L ) - f  all C(X, y ) u ( y ,  t) dy - a21 v + a 3 l w  (3.8) 
Ot 

cgU 
. . . .  a22v + g( al2u) (3.9) 
Ot 

OW 
- -  = --a33w + h(a13u) (3.10) 
3t 

where f ,  g, h vanish at the origin and have a slope of 1 at that  point. All 
coupling coefficients are positive. The  connect ion function c(x, y) is nor- 
malized so that  its integral over y is 1 for all x. 
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(B) 
Figure 4. Global picture of pattern formation for the ecological example given 
in Fig. 2(A). (A) U as a function of the diffusion coefficient D for a12 = 1.6 
showing the bifurcation to stable periodic solutions (filled circles) as D is varied. 
Stable fixed points are thick lines and unstable are thin. (B) Two-parameter 
curve of Hopf bifurcation points. Minimum is the critical value of al2 and D for 
pattern formation. For any a12 above this curve, the fixed point is unstable and 
there will be periodic solutions. (C) A periodic solution for D = 1 and a12 = 1.6 
showing the two spatially distributed subpopulations of u, ul(t) and u2(t). 
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(c) 
F i g u r e  4. (Cominued). 

Note that this type of interaction matrix is found in nerve membrane  
models in which the three variables (u, v,w) represent,  respectively, the 
membrane  potential, a delayed rectifier, and an inward current  (e.g. the 
Morr i s -Lecar  model,  1981). In this case, the coupling would be via diffu- 
sion, and this would then represent  a cable. Another  example of this type of  
connection topology is found in a neural  model  due to Goldstein and Rail 
(1974). 

For  the present  example, we take 

( 1 1 ) 
f(u) = 4.046 1 + e -~u-'zS~ 1 + e "25 (3.11) 

which vanishes at 0 and has the required slope. For  simplicity, we assume 
that g(u)= h(u)= u. With the value a21 as the bifurcation parameter ,  we 
set a31 = 7.4, all  = 9.5, a22 = 6, a33 = 3.3, a13 = 2 ,  a12 = 7.875. The  connec- 
tivity is periodic over the length of  the domain L = 1, and is given by 
c(x,y) =Ke -Ix-yj/~ with o-= 0.02 and K =  25 chosen so the integral is 1. 
With this choice of  parameters,  we find that a 2 1  c = 9.9638 and qk0 = 0.045. 
With the choice of the exponential kernel,  we thus find that k 0 = 0.04/o- 
and w 0 --- 3. Fig. 5 shows a simulation with a21 -- 10. The  simulation shows 
that traveling waves have bifurcated from the trivial state and have a 
wavelength of 2. The wavelength is exactly what the linear analysis predicts, 
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Figure 5. Numerical solution to (3.8, 3.11) on a periodic domain of length 1 with 
a discretization of 200 points. Heun's method is used with a step size of 0.025. 
Initial data are a small random perturbation from 0. Space is horizontal and 
time is vertical; time interval is t = 30-t = 45. Grey scale represents u = -0.2 
(black) to u = 0.4 (white). 

and since the length of t ime illustrated in the figure is 15 time units, the 
period of the oscillation is about 1.9, which gives a frequency that is slightly 
higher than that at the Hopf  bifurcation. 

4. Discussion. We have shown that spontaneous symmetry breaking pat- 
terns can occur in systems in which only one variable interacts spatially. All 
remaining variables are localized. The intuition behind this type of pat tern 
formation is not clear; there are no simple statements such as "lateral 
inhibition" causes pat tern formation. Here,  there are a variety of different 
scenarios, and there seems to be little common about them. For  example, in 
the community  example, no variable exerts self positive feedback, while in 
the neural  net  example, this feedback is required for the instability. In 
two-species systems, the interactions necessary for pat tern formation are 
simple; the cross terms are of the "negative" feedback type. In three-species 
models, the cross terms are of both types, and there seems to be no obvious 
pat tern to them. In the two worked examples, the diffusing species had 
negative and positive feedback loops. We do not  know if this is a necessary 
condition. However,  in the neural  net  model,  if both feedback loops to u 
are negative, there will be no pat tern formation, nor  will there be if both 
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are positive. Thus, this mechanism seems to require some fine balance 
between the interactions, and thus is not as robust as the typical two-species 
pattern-forming systems. 

The notion that spat io- temporal  bifurcations can occur in coupled 
systems is not new. Smale (1973) and Kishimoto et al. (1983) show that 
three- or four-species systems with diagonal (but not scalar) diffusion can 
exhibit spatially patterned oscillations. Ermentrout  (1981) constructs exam- 
ples in three-species systems. However, as in the Smale and Kishimoto et 
al. work, each species is allowed to diffuse. A two-component neural net  in 
which spatial interactions were allowed for both components  was also 
shown to exhibit Tur ing -Hopf  bifurcations (Ermentrout,  1979). What is 
unusual in the present case is that there is only one spatial scale, so that 
the instability is driven by the dynamics rather than by the differences in 
spatial scales. Levin and Segel (1985) explore some scalar models (thus with 
only one mobile species) in which the spatial interactions are nonlinear; 
these nonlinearities lead to spatial patterning. Thus, the Turing mechanism 
is not the only way to get such patterns. Our  main goal in this note was to 
provoke discussion about the current understanding of mechanisms for 
spontaneous pattern formation in biological systems. 

The work of B. Ermentrout  was supported in part by NSF Grant DMS-93- 
03706. The work of M. Lewis was supported in part by NSF Grant 
DMS-9457816 and a research fellowship from the Alfred P. Sloan Foun- 
dation. 
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