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In searching for strong homologies between multiple nucleic acid or protein sequences, 
researchers commonly look at fixed-length segments in common to the sequences. Such 
homologies form the foundation of segment-based algorithms for multiple alignment of 
protein sequences. The researcher uses settings of "unusualness of multiple matches" to 
calibrate the algorithms. In applications where a researcher has found a multiple matching 
word, statistical significance helps gauge the unusualness of the observed match. Previous 
approximations for the unusualness of multiple matches are based on large sample theory, 
and are sometimes quite inaccurate. Section 2 illustrates this inaccuracy, and provides 
accurate approximations for the probability of a common word in R out of R sequences. 
Section 3 generalizes the approximation to multiple matching in R out of S sequences. 
Section 4 describes a more complex approximation that incorporates exact probabilities and 
yields excellent accuracy; this approximation is useful for checking the simpler approxima- 
tions over a range of values. �9 1997 Society for Mathematical Biology 

1. Introduction. The unusualness of matching common words in multiple 
sequences is important in studying homologies between protein and nu- 
cleotide sequences, and plays a role in a variety of multiple alignment 
algorithms. Sobel and Martinez (1986) describe their multiple alignment 
program which uses an algorithm to locate common segments among 
multiple sequences. The significance levels are approximated by scrambling 
sequences. The computational algorithm of Waterman et al. (1984) is based 
on looking for common words or subsequences. Waterman (1986) discusses 
the multiple sequence alignment algorithm based on matching "consensus" 
words of user specified length (and allowed mismatches). He loqks for a 
common word of length k. (To restrict the amount of shifting and reduce 
the comparisons, he focuses within a window of width W.) He notes the 
importance of evaluating statistical significance and describes a direct 
approach. Karlin and Ost (1987, 1988) develop very general asymptotic 
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results for such matching, and we will compare the approximations based 
on their results with new approximations developed in this paper. 

Leung et al. (1991) survey a variety of methods for finding similar 
segments in multiple sequences. They develop a computational algorithm 
for finding multiple matches or repeats. They note: "The method achieves 
great speed by requiring the segments of all reported alignments to share a 
'core block' of identical letters exceeding some minimum length. It is 
recommended that  this 'core' parameter be chosen with reference to the 
statistical properties of maximal length common words among random 
letter sequences." For this purpose, they refer to Karlin and Ost (1988). 

We seek to evaluate the accuracy of existing asymptotic formulae that 
are used as approximations for the probability of a common word appearing 
in multiple protein sequences. For the case of two sequences and the 
probability of a common word in the same positions in the two aligned 
sequences, highly accurate approximations, exact results and tight bounds 
are known, both for the case of perfect or imperfect matches; see Glaz and 
Naus (1991). 

For the case of a common word anywhere in two sequences, Mott et al. 
(1990) and Sheng and Naus (1994) give highly accurate approximations. 
Even the asymptotic formula of Karlin and Ost (1988), usually gives 
excellent approximations for two sequences, though care must be taken to 
use the right modification of the asymptotic formula (see equation (4) 
below). For the case of a common word in the same position in multiple 
aligned sequences accurate approximations (similar to those for two aligned 
sequences) as well as asymptotic results (Karlin and Ost, 1987) exist. 

For the case of the probability of a word in common to (but in any 
position in) multiple sequences, Karlin and Ost (1988) give an asymptotic 
approximation. One might suspect, based on the excellence of the modified 
asymptotic result for two sequences, that this approximation would give 
excellent accuracy for more than two sequences. Our results indicate that 
the accuracy of the existing asymptotic approximations deteriorates as the 
number of sequences increase. 

2. Comparison of Asymptotic Formula for Probability of a Word in Com- 
mon to Multiple Sequences. Given S independent sequences, each of T 
letters, we seek the probability PR,s(W, T) that there exists a word of length 
w that is common to at least R of the S sequences. Karlin and Ost (1988) 
derive asymptotic results for PR, s(W, T) for the case where each sequence 
consists of i.i.d, letters, as well as the more general case of dependent 
sequences of letters. For simplicity in our comparisons in this section, we 
will begin with the case of independent and identically distributed se- 
quences of i.i.d, letters: Sequence 1: Xll, Xaz,... ,Xar; Sequence 2: 
X21 , Xz2,... , X2r;. . .  ; Sequence S: Xsl, Xs2,. . . ,  Xsr, where all the Xij are 
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mutually independent and identically distributed with P ( S i j  = k)=p~, for 
k = 1, 2 , . . . ,  m, where m is the number of different letters in the alphabet. 

y'fn _R Let A = k=l/Jk. For the special case of an equally likely m-letter 
alphabet, Pk = 1/m, and A = (1/m) R- 1. Karlin and Ost's (1988) asymptotic 
result for the case of independent and identically distributed sequences 
of i.i.d, letters states that for T sufficiently large, and w of order R log T/  
( - log A) that 

Pg.s(w,T) ~ 1 - exp{-  (1 - A)TRCSA TM} (1) 

where C s = S!/R!(S - R)!. More precisely, w = [{R log T/( - l o g  A)} + 1 + 
x], where [y] denotes the largest integer less than or equal to y. 

In this section, we will be making comparisons and interpretations for the 
special case S = R, where the common word of length w appears in all S 
sequences. For this case, Karlin and Ost's (1988) asymptotic result reduces 
to 

PR,R(W, T) ~ 1 - exp{-  (1 - A)TRAw}. (2) 

The asymptotic results (1) and (2) are based on mathematically rigorous 
conditions, which assure the result in the limit. Whether these results 
provide useful approximations depends on the rate of convergence to the 
limit, together with the range of sequence lengths and word lengths of 
interest to biologists. 

Karlin et al. (1985) state that the asymptotic result (2) is an excellent 
approximation for the probability of the longest matching word. (See their 
comment on p. 37 in reference to their equation (1) which, for the 
independence model, reduces to result (2).) In their paper, they focus on 
the longest words in common to three immunoglobulin sequences, and use 
high significance levels. For this case of three long sequences and highly 
unusual long matches, approximation (2) is reasonable, although (4) below 
is better. For more or shorter sequences approximation, (2) is less accurate. 
The discussion that follows is from the perspective of developing approxi- 
mations and assessing their accuracy for a practical range of word lengths 
and sequence lengths. 

Consider first the situation where the R sequences are aligned one above 
the other. A is the probability that the first letter in each of the R 
sequences is the same. Consider the R words consisting of the first w 
letters in each of the R sequences; Z TM is the probability that the R words 
are the same word. There are approximately T R ways that we can pick the 
starting letter of each word in the R sequences, and the expected number 
of these ways where all R words match is approximately TRA w. For small 
values of PR, R(W,T), the probability that any particular set of starting 
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positions for the R words (one from each sequence) leads to a common 
R-way match is very small, and this leads via a Poisson-type approximation 
to 

PR,R(W, T) ~ 1 - exp{ - TRAw}. (3) 

Note that when an R-sequence w + 1 letter match occurs, this is double 
counted as two w-letter word matches. Subtracting TRA w+~ from the 
expectation used in (3) gives (2). Equivalently, we can view the declumping 
as requiring the R-way w-letter word matches to also satisfy that at least 
one of the letters preceding the R words differs. Either view gives the 
(1 - A) term in (2), which handles one type of dependence in the matches. 
A somewhat better approximation is gotten by taking (T - w + 1) R as the 
number  of possible starting positions for the R words (one from each 
sequence). In a similar way, a modified Karlin and Ost's approximation is 

Pe.n(W, T) ~ 1 - exp{-  (1 - A ) ( T -  w + DRAw}. (4) 

While approximation (4) works better than (2), and for the case of R = 2 
sequences is an excellent approximation, it appears  to deteriorate for even 
a moderate  number  of sequences. We note there is a strong dependence 
between the multiple matching in different combinations of positions. For 
example, consider R -- 9 sequences with w = 4. Consider a match for two of 
the sets of starting positions considered in (T - w + 1) R or (TR). In set one, 
let Xlj =Xzj  . . . . .  Xgj, for j = 1, 2, 3,4; the first four letters in each of 
the nine sequences match. In set two, let Xaj =Xzj  . . . . .  Xsj =X9,j+6, 
for j = 1,2,3,4. These two sets of matches are highly dependent.  We 
conjecture that this type of dependence has more impact on the inaccuracy 
of the approximations (2)-(4) as the number  of sequences increases. 

Our approach mitigates this type of dependence by starting with a word 
in a given starting position in the first sequence, and approximating the 
probability that that word appears anywhere within each of the other R - 1 
sequences. The same is done for each other word in the ( T -  w + 1) other 
starting positions in the first sequence. The approximation is refined further 
to take into account that not all of the (T - w + 1) words are expected to be 
distinct. There still remains dependence because of the overlapping nature 
of words within the first sequence. Section 4 describes a more complex 
approximation to handle some of this dependence.  However, based on 
comparisons with both the more complex approximation and simulation 
studies, the easy to compute approximation (8) appears quite accurate. 

2.1. Our simpler approximation. Consider the first w letters of sequence 
1 as a random word. Let R w denote the probability that this random word 
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appears somewhere in each of the other R -  1 sequences. There are 
( T -  w + 1) words in sequence 1. The probability that any particular one of 
them appears in all R - 1 other sequences is R w. The expected number  of 
such matches is ( T  - w + 1 ) R  w. We can adjust somewhat for overlapping in 
counting sets of w-word matches by requiring that when a particular word 
in sequence 1 appears in all R - 1 other sequences, the letter preceding the 
word in sequence 1 differs from the letter preceding the matching word in 
at least one of the R - 1 other sequences. This has the effect of multiplying 
the expectation by (1 _ p R - 1 )  = 1 - A. The expected number  of such decou- 
pied matches is ( T -  w + 1)Rw(1 - A). In section 4, we discuss finding R w 

exactly, and more complex approximations for PR.R(W, T ) .  In the present 
section, we approximate R w as follows. Let 6 i denote the probability that 
the random word of w letters (the first w letters in sequence 1) appears 
somewhere in sequence i. From the independence of the R - 1 sequences, 
R w is approximately I~R=2 ~i' and for the i.i.d, sequences case, R w is 
approximately 6 R-1. Approximately (as opposed to exactly) because even 
though the sequences are independent,  and the occurrence of a fixed word 
in sequence i is independent  of the occurrence of that word in sequence j, 
it is not true that the occurrence of a random word in sequence i is 
independent  of a random word in sequence j'. This is because certain word 
patterns which can occur in overlapping positions have somewhat different 
probabilities of occurring in a sequence than other patterns that cannot 
overlap. The more complex approximations and bounds of Section 4 take 
into account the types of patterns that can occur. In the present section, we 
take the approximation Rw --- 6 R 1, and use this in the approximations for 
PR, R ( w , T ) .  For the comparisons studied, this simplification did not lose 
much accuracy. We approximate the expected number  of decoupled 
matches by ( T - w  + 1 )6R-1 (1 -  A). A Poisson-type approximation gives, 
for the probability that at least one of the T - w + 1 words in sequence 1 
appears in common to all R sequences, 

PR,R(W, T) ~ 1 - exp{ -  ( T - w  + 1)6R-1(1 -- h)). (5) 

Note that we can also approximate 6, the probability that the first w 
(random) letters of sequence 1 appear somewhere in sequence 2. There are 
(T - w + 1) starting positions for the matching word in sequence 2, and the 
probability that in at least one of these positions the two words match is 

6 ~  1 - e x p ( - ( T -  w + 1)p w} (6) 

where p = Ekmlp 2. For the case of an equally likely m-letter alphabet, 
p = 1 / m .  

By expanding the right-hand side of (6), we see that when ( T  - w + 1 )p  w 

is sufficiently small, then it approximates 6. Substituting this into (5), and 
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noting that (pW)n-1 = Aw shows a situation where approximation (5) with 
(6) has a similar limit as (4). One can compute and compare these and 
other approximations such as the refinement (8) to study when they differ 
and when they are similar. This, together with simulations, provides infor- 
mation on the accuracy of the approximations. 

The approximation based on (5) and (6) gives quite good accuracy. Ta- 
ble 1 compares approximations (5) and (6) with a refined but simple to 
compute approximation (8) discussed below, with a more complex approxi- 
mation (14) discussed in Section 4, with the Karlin and Ost (1988) approxi- 
mation (2) and its modified form (4), and with simulations based on 100,000 
trials. Table 2 gives additional comparisons for five-letter words. In Table 1 
(Table 2), the lengths of the sequences are chosen so that the probability of 
a four-letter (five-letter) word in common to all sequences is as close to 0.01 
and 0.05 as possible. For shorter sequences, the probabilities will be 
smaller. 

The comparisons illustrate several points. We see that as the number of 
sequences increase, the Karlin and Ost (1988) approximation deteriorates 
even with the modified form (4). The new approximations represents a 
substantial improvement in accuracy over the Karlin and Ost (K and O) 
approximations, with the improvement most dramatic as the number of 
sequences increases. However, we also see from Table 1 that our approxi- 

Table 1. Probability of a four-letter word in common to R out of R i.i.d, sequences 
each of T letters drawn from an equally likely four-letter alphabet 

Probability of a word in common 

No. of Length of Our (5) 
seqs. (R) seqs. (T) K and O K and O (4) and (6) Our (8) Our (14) Simulation 

2 5 0.071 0.012 0.012 0.012 0.015 0.015 
3 12 0.024 0.010 0.010 0.010 0.010 0.010 
4 24 0.019 0.011 0.010 0.010 0.010 0.010 
5 39 0.021 0.014 0.011 0.010 0.010 0.010 
6 55 0.025 0.018 0.011 0.010 0.010 0.011 
7 71 0.032 0.024 0.011 0.010 0.010 0.010 
8 87 0.045 0.034 0.011 0.010 0.010 0.010 
9 103 0.068 0.053 0.012 0.010 0.010 0.010 

10 118 0.105 0.082 0.012 0.010 0.010 0.010 

2 7 0.134 0.046 0.045 0.045 0.052 0.052 
3 19 0.093 0.057 0.054 0.052 0.052 0.051 
4 36 0.094 0.067 0.056 0.053 0.052 0.053 
5 54 0.101 0.077 0.053 0.048 0.048 0.047 
6 74 0.139 0.110 0.057 0.050 0.051 0.050 
7 93 0.192 0.156 0.059 0.050 0.051 0.051 
8 111 0.274 0.227 0.060 0.049 0.050 0.051 
9 128 0.393 0.332 0.060 0.048 0.049 0.050 

10 145 0.581 0.506 0.063 0.049 0.051 0.050 
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Probability of a word in common 

No. of Length of K and Our (5) 
seqs. (R) seqs. (T) K and O O-modif. (4) and (6) Our (8) Our (14) 

2 7 0.035 0.007 0.009 0.009 0.008 
3 27 0.017 0.011 0.011 0.011 0.011 
4 63 0.014 0.011 0.010 0.010 0.010 
5 112 0.016 0.013 0.011 0.010 0.010 
6 166 0.018 0.016 0.011 0.010 0.010 
7 223 0.024 0,021 0.011 0.010 0.010 
8 280 0.03l 0.028 0.011 0.010 0.010 
9 337 0.045 0.041 0.012 0.010 0.010 

10 392 0.067 0.061 0.012 0.010 0.010 

2 12 0.100 0.046 0.060 0.060 0.049 
3 43 0.069 0.052 0.053 0.052 0.049 
4 95 0.072 0.061 0.054 0.052 0.051 
5 156 0.080 0.071 0.054 0.050 0.050 
6 222 0.101 0.091 0.055 0.050 0.050 
7 289 0.136 0.124 0.057 0.050 0.050 
8 354 0.189 0.174 0.058 0.049 0.050 
9 418 0.275 0.256 0.060 0.050 0,050 

10 479 0.402 0.376 0.062 0.050 0.050 

ma t ion  based  on  (5) and  (6) seems  to  ove res t ima te  s o m e w h a t  the  probabi l -  
i ty o f  a c o m m o n  match .  T h e  fol lowing modi f ica t ion  o f  app rox ima t ions  (5) 
and  (6) appea r s  m o r e  accura te .  

2.2. Refining the approximation (5) and (6). In  deve lop ing  e q u a t i o n  (5), 
we n o t e  tha t  t he r e  are  abou t  ( T - w  + 1) words  in s e q u e n c e  1. W e  then  
app rox ima te  the probabi l i ty  tha t  at  least  o n e  o f  these  words  appea r s  in all 

the  o t h e r  R -  1 sequences .  H o w e v e r ,  this a p p r o a c h  assumes  tha t  the  
( T  - w + 1) words  are  all distinct. This  would  no t  b e  t rue  if ( T  - w + 1) > 4 w, 

the  to ta l  possible n u m b e r  of  w- le t te r  words  f r o m  a four - l e t t e r  a lphabet .  
This  is no t  a p r o b l e m  for  any o f  the examples  in Tab l e  1. O f  g r ea t e r  
impor t ance ,  we do  no t  expec t  tha t  all the  ( T  - w + 1) words  in s eq u en ce  1 
are  distinct. L e t  V = C w d e n o t e  the  n u m b e r  o f  possible  w- le t te r  words  f r o m  

a C- le t t e r  a lphabet .  Given  tha t  ( T - w  + 1) words  are  p icked  at r a n d o m  
(with r e p l a c e m e n t )  f r o m  the  V possible  words ,  let  T*  d e n o t e  the  expec t ed  
n u m b e r  o f  dist inct  words:  

T* = V(1 - { ( V -  1)/v}T-w+I). (7) 
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This result is the expected number of V cells that are occupied when 
(T - w + 1) balls are distributed at random. The proof follows by letting 
Z i = 1 iff cell i is occupied, 0 otherwise, i = 1, 2 , . . . ,  V. The number of 
occupied cells is the sum of the Zis. E(Z  i )=P(Z i=  1)=  1 - { ( V -  
1)/V} T-w+1. Our modified approximation replaces ( T - w  + 1) by T* in 
equation (5), but not in equation (6). The approximation is 

PR,R(W, T) ~ 1 - exp{ - (T*)t~R-I(1 -- A)} (8) 

where T* is given by equation (7), and 6 is given by (6). 
Approximation (8) involves a two-stage Poisson approximation. The first 

stage approximates 6 using equation (6). The second stage incorporates 
this value into equation (8) to find the match probability. We would expect 
the Poisson approximation for 6 in the first stage to be reasonably accurate 
when ( T -  w + 1) is large and pW is small. We would expect the second 
stage Poisson approximation (8) to be accurate when 6 n-1 is small and T 
is large. 

Tables 1 and 2 study the accuracy of the approximations for small 
probabilities (0.05, 0.01) of R-way matching. We anticipate and find that the 
Poisson approximations (8) and approximation (14) are accurate for this 
case. Table 3 studies the accuracy of the approximations for w and R fixed 
and letting T increase. This leads to higher values for the probabilities. 
While approximation (4) deteriorates as T increases (particularly for larger 
R), approximations (8) and (14) remain highly accurate. 

Table 4 relates the size of unusual match word, number of sequences, 
and common sequence length for the case of a four-letter equally likely 
alphabet and independent sequences. For a given w and R, approximation 
(8) is used to find the sequence length T for which the match probability is 
0.010. Bold terms indicate cases where approximations (8) and Karlin and 
Ost (4) are within 0.001. For R = 2,3,4, the approximations give close 
results, and similarly for R = 5 for w/> 8. 

We see from Tables 1 and 2 that for match probabilities less than 0.05, T 
does not have to be very large for the approximation to the match 
probability to be very accurate. For the case of very short sequences (for 
example T = 5, 7 and w = 4), approximation (8) loses accuracy. In these 
cases, R is typically small. If T is small, R = 2, one should use the more 
accurate approximations of Mott et al. (1990) or Sheng and Naus (1994). 
For T very small, and R small and greater than 2, one can use approxima- 
tion (14) or even simulations. For all of the situations listed in Table 4, for 
R i> 3, we anticipate approximation (8) to be accurate. For match probabili- 
ties of 0.05 (or greater; see Table 3), the sequences will be even larger (than 
for the cases for 0.01), and we anticipate approximation (8) to be accurate. 

Table 4 illustrates how the sequence size grows with word size and 
number of sequences for a match probability of 0.01. For six or more 
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No. of Length of Probability of a word in common 

seqs. (R) seqs. (T) K and O (4) Our (8) Our (14) Simulation 

12 0.010 0.010 0.010 0.010 
19 0.057 0.052 0.052 0.051 
23 0.108 0.097 0.097 0.096 
30 0.245 0.214 0.213 0.212 
40 0.515 0.443 0.438 0.440 
50 0.774 0.678 0.671 0.675 
60 0.929 0.852 0.846 0.849 

24 0.011 0.010 0.010 0.010 
36 0.067 0.053 0.052 0.053 
50 0.249 0.181 0.179 0.178 
60 0.462 0.330 0.326 0.322 
70 0.693 0.508 0.501 0.503 
80 0.873 0.683 0.674 0.672 
90 0.965 0.824 0.816 0.819 

39 0.014 0.010 0.010 0.010 
54 0.077 0.048 0.048 0.047 
60 0.130 0.078 0.078 0.078 
70 0.269 0.152 0.152 0.151 
80 0.466 0.261 0.259 0.259 
90 0.685 0.398 0.395 0.394 

100 0.864 0.549 0.545 0.543 

87 0.034 0.010 0.010 0.010 
111 0.227 0.049 0.050 0.051 
125 0.494 0.104 0.106 0.107 
135 0.722 0.163 0.166 .0168 
145 0.899 0.242 0.245 0.245 
155 0.981 0.339 0.343 0.342 
165 0.999 0.451 0.455 0.455 
175 1.000 0.569 0.573 0.574 

Table 4. Sequence lengths T that give w-word R sequence match probability = 0.01 by 
approximation (8) for a four-letter equally likely alphabet 

Word size Number of sequences: R 

W 2 3 4 5 6 7 8 9 10 

4 5 12 24 39 55 71 87 103 118 
5 7 27 63 112 166 223 280 337 392 
6 12 62 171 327 511 710 914 1119 1321 
7 21 149 473 972 1591 2280 3006 3745 4485 
8 37 366 1322 2915 4987 7373 9943 12609 15310 
9 67 913 3716 8775 15693 23927 33011 42598 52442 

10 128 2287 10477 26477 49494 77838 109873 144287 180112 

Bold terms also give close to 0.01 under Karlin and Ost (4), close being + 0.001. 
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Table 5. Probability of a w-letter word in common to R out of R i.i.d, sequences 
each of T letters drawn from an equally likely four-letter alphabet 

No. of Word length Length of (100,000) Bonferroni 
seqs. (R) (w) seqs. (T) K and O (4) Our (8) Simul. Bd. (15) 

4 6 172 0.0111 0.0102 0.0103 0.0107 
4 6 257 0.0561 0.0498 0.0493 0.0536 
4 7 474 0.0107 0.0101 0.0096 0.0105 
4 7 713 0.0544 0.0500 0.0508 0.0533 
6 4 74 0.110 0.050 0.050 0.060 
6 5 222 0.091 0.050 0.050 0.057 
6 6 682 0.080 0.050 - -  0.056 

10 4 145 0.506 0.049 0.050 0.068 
10 5 479 0.376 0.050 - -  0.064 
10 6 1605 0.287 0.050 - -  0.062 

sequences, the sequence lengths are such as to make simulations difficult 
for more than short word lengths. For match probabilities of 0.05, the 
sequence sizes are even longer. Our previous results indicate that the 
differences between approximations (4) and (8) will be clearest for six or 
more sequences, and easier to detect as match probabilities increase. This 
point is illustrated by the entries in Table 5. This is why our simulations are 
limited to small word sizes. Section 4, equation (15) gives ( T -  w + 1)R w as 
an exact Bonferroni upper bound fo r  PR, R(W,T). Table 5 computes the 
bound, and compares it with approximations (4) and (8), and simulations for 
w- -4 ,  5, 6, 7. The bound is useful in demonstrating for longer (and more 
difficult to simulate) sequences the slow convergence of the asymptotic 
approximation (4) for six or more sequences. 

2.3. Generalization to different sequence lengths and compositions. 

Case a: Independently but Not Identically Distributed Sequences of i.i.d. 
Letters. Given R sequences {X12},{X2j},...,{Xnj}, where for {X/y}, j = 
1,2, . . . ,T/  for i =  1 ,2 , . . . ,R .  Let P(Xiy =k)  =Pi,~ for k = 1 , 2 , . . . , m  for an 
m-letter alphabet. T1, T 2 . . . .  , T R are the lengths of the different sequences, 
and Pi,~ allows for different letter likelihoods in the different sequences. 
Following the reasoning leading to approximation (8), we find its general- 
ization: 

PR,R(W;T1,Tz,. . . ,Tk)= I - -exp  - T *  6 i 1 -  Ph (9) 

where 

= 1 -  w + 1)Re w} 
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m 

Pi = ~_, Pl,kPi,k. 
k=l 

Karlin et al. (1989) follow a warning of Arratia and Waterman that there 
are problems with the asymptotic approximations when the pi,~ differ 
sharply from sequence to sequence. They note that for two independent 
sequences of independent letters, a sufficient condition for convergence of 
the approximation is for maxl~k<.m(pl,k,p2,k)<~ 1/-~2. They note that if 
the sequences have the same probabilities, the condition holds. Even if this 
is not the case, but one sequence has an equally probable alphabet, then in 
practice the condition is likely to be met. In applying our approximation (9), 
choose for sequence 1 the sequence that has closest to equal probabilities. 
This will help in the approximation of the 6~. The pairwise condition would 
be maxl<~k~m(Pl, kPi.k ) <~ ~ i ,  for i = 2 , 3 , . . . , R .  Karlin et al. (1989) give 
the sufficient condition for the convergence of their approximation for R 

m R independent sequences, that maxi, k(pi, k) ~< (Ek = I(FIi= 1Pi, k))l/g. On p. 152, 
they apply their approximation to the following example of a matching 
w-word in four out of four sequences of lengths 2165, 1985, 1648 and 3915 
with respective probabilities (Pr, Pc, PA, Pc) of (0.327, 0.203, 0.261, 0.210); 
(0.318, 0.198, 0.275, 0.208); (0.264, 0.203, 0.263, 0.270); (0.274, 0.181, 0.307, 
0.238). Using their criterion (10), they find that a w = 9 is significant at the 
0.01 level. Using their formula (10) gives probability of a w >~ 8 -- 0.20, and 
probability of a w >~ 9 of 0.004. Using our approximation (9), and taking the 
third sequence (T = 1648) as our first sequence since it has the most nearly 
equal pi s gives probabilities for a w ~> 8 of 0.11 and for a w/> 9 of 0.002, 
which leads to the same conclusion as Karlin et al. If we had taken a 
different sequence as our sequence 1, the conclusion would be the same, 
although the probabilities would vary (for w = 8 between 0.113 and 0.148; 
for w = 9 between 0.0021 and 0.0029). 

Case b: Independently but Not Identically Distributed Sequences of 
Dependent (but Stationary) Distributed Letters. Note that for case a, Pi w 
is the probability of a word match between the first w letters of sequence 1 
and the first w letters of sequence i. Let ai(w) denote the probability of a 
match between the first w letters of sequence 1 and the first w letters of 
sequence i. This probability can be computed as the sum over all possible 
w-words of the product of the probabilities of the word appearing in 
sequence 1 and sequence i. Approximation (9) is generalized to case b by 
replacing Pi w by Gi(w) in the approximation for 6 i. 
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3. Generalizing the Approximation to Perfect Matches in R out of S 
Sequences. This section gives two approximations for the probability of a 
perfect w-letter word match in at least R out of the S sequences. Consider 
the V= C w possible w-letter words from a C-letter alphabet. Use (6) to 
approximate 6, the probability that a given w-letter word appears in a 
random sequence of T letters. The probability that a particular (fixed) 
w-letter word appears in at least R out of S independent sequences, each 
of length T letters, is the sum of binomial probabilities: 

S 

G(RIS; 8) : ~ CSS'(1 - ~ ) s - i .  (10) 
i = R  

Order the V possible w-letter words in alphabetical order; let E i denote 
the event that the ith word appears in at least R out of the S sequences. 
The probability that at least one of the V possible words appears in exactly 
R out of S sequences is PR, s(W, T )=  P( U Ei). Using the Bonferroni lower 
bound and Hunter upper bound 

~_~P(E~) - ~_.,P(EiAEj) <~ P(U E i) <~ Y'~P(Ei) - ~.,P(EifhEi+,) 

gives the approximate bounds 

VG( R[S; 6) - C~G2( R IS; 6) <~ PR,s(w, T) 

<~ VG(RIS; 6) - ( V -  1)G2(RIS; 6). (11) 

The second approximation writes P( U E i )  = 1 - P(f') El), and approxi- 
mates P(E c) by 1 - G(RIS; 6). Taking the further approximation P( ('1E c) 
"~ YIP( E[) gives 

PR,s(w,T) • 1 -  [ 1 - -G(RIS ;  6)] v (12) 

where 6 can be approximated as in (6) or by 

S* = 1 - { ( V -  1)/V} r -~+l  (13) 

Table 6 compares the approximation (12), approximate bounds (11), with 
the Karlin and Ost (1) and modified form, and simulations based on 100,000 
trials. For cases where we were able to simulate, our approximation 
appeared more accurate than the Karlin and Ost approximations. For many 
cases, approximation (12) gave the closest approximation. 

4. Incorporating Exact Results into the Approximation. Naus and Sheng 
(1996) derive results to measure the unusualness of perfect or almost 
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Table 6. Probability of a w-letter word in common to at least R out of S i.i.d, sequences 
each of T letters drawn from an equally likely four-letter alphabet 

Number  of Length of Probability of a word in common 
seqs. K and K and Our Our Our 

w R S (T) O (1) O (1") a (11) LB (11) UB (12) Simul. b 

4 5 6 20 0.0044 0.0020 0 .0016 0.0016 0.0016 0.0015 
30 0.033 0.020 0.014 0.014 0.014 0.014 
40 0.133 0.092 0.058 0.060 0.059 0.058 
50 0.353 0.273 0.156 0.171 0.162 0.159 
60 0.661 0.567 0.324 0.405 0.336 0.326 
70 0.904 0.847 0.482 0.801 0.556 0.537 

5 7 12 100 0.066 0.050 0.025 0.025 0.025 
8 12 100 0.0042 0.0030 0.0015 0.0015 0.0015 

8 10 20 5000 0.078 0.077 0.027 0.027 0.027 

a K and O (1") uses approximation (1), but  replaces T by (T - w + 1). 
b 100,000 trials. (12) is computed using 6" defined in (13). 

perfect matches in multiply aligned sequences; they also find the probability 
of high scoring segments in all possible alignments of two sequences for 
various scoring systems. Theorem 2 of Section 6 of that paper gives an 
approximation for the probability that there exists a word of length w that 
is common to all of R random sequences. The approach is to condition on 
various pattern types for the word, and to find component  probabilities that 
are used in the approximation. 

The approximation is developed as follows. Let E,  denote the event that 
the first w letters of the random sequence 1 appear somewhere in each of 
the other R - 1 sequences. Let R w denote P(Ea) ,  where the probability is 
evaluated over the distribution of all possibilities for the first w letters of 
sequence 1. Let E 1 denote the event that the w-letter word consisting of 
letters t through t + w - 1 in sequence 1 appears somewhere in each of the 
other R - 1 sequences. Let Rw+ 1 denote  P{(E  1 A E2), where the probabil- 
ity is computed over the distribution of all possibilities for the first w + 1 
letters of sequence 1. The approach is to get exactly the component  
probabilities Rw and Rw+l,  and incorporate them into the following 
approximation: 

PR,R( W , T )  = P( U Ei)  = 1 - P( E~) P( E~IE~) P( E~ IE~) P (  E,~IE~) ... 

l - P (  c c c T*-I = E , ) { P ( E 2 1 E 1 ) }  (14) 

1 (1 Rw){(1 2 R w + R w + l ) / ( 1  _ . , T * - I  
. . . . .  

where, in Naus and Sheng (1996), T* = T - w + 1. Here,  T* is defined as in 
equation (7). 
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We can also develop upper  bounds  for PR, R( w, T)  using R w. The Bonfer-  
roni upper  bound  is 

P R , R ( W , T ) = P ( U E i ) < ~  ~ P ( E  i) = ( T - W +  I ) R  w. (15) 

Table 5 illustrates the usefulness of this bound. 
Naus and Sheng (1996) generalize the approach in Sheng and Naus 

(1994) to get the exact component  probabilities R,, and Rw+ 1. We have 
since developed a difference equat ion approach that extends the range of  
computat ion of  R w and Rw+ 1- Programs and details are available from the 
authors. 

The approximation (14) is still computationally more  complex than the 
simple approximations (5) and (6) and (8) developed above. For  many cases, 
approximations (8) and (14) give similar results. We used the more  com- 
plex approximation (14) as a benchmark against which to compare  the 
simpler approximations, particularly in the case of  many long sequences 
where simulations were impractical. For  practical applications, we would 
use approximation (8) or its generalizations. 
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