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Abstract: By using the precise integration method, the numerical solution of  linear 

quadratic Ga~sian ( L Q G )  optimal control problem was discussed. Based on the 

separation principle, the LQG control problem decomposes, or separates, into an optimal 

state-feedback control problem and an optimal state estimation problem. That is the off-line 

solution of two sets of Riccati differential equations and the on-line integration solution of  the 

state vector from a set of time-variant differential equations. The present algorithms are not 

only appropriate to solve the two-point boundary-value problem and the corresponding 

Riccati differential equation, but aL~o can be used to solve the estimated state from the time- 

variant differential equations. The high precision of precise integration is of  advantage for 

the control and estimation. Numerical examples demonstrate the high precision and 

effectiveness of the algorithm. 
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Introduction 

Consider the linear system of the measurement feedback control 

Sc = A x  + B w  + B 2 u ,  1) 

y = C x  + v ,  (2) 
where x is the n-dimensional state vector, y is a q-vector of measurements, u is an m-vector of 

control inputs, w and v are /-vector, q-vector of white-noise process with known statistical 

properties respectively, A ,  B ,  B2,  C are known time-invariant matrices with the proper sizes 

and controllable and observable properties, and w ( t ) and v ( t )  have the properties as follows 

E [ v ( t l ) v T ( t 2 ) ]  = V ~ ( t  2 - t l ) ,  E [ W ( t l ) w T ( t 2 ) ]  = W ~ ( t  2 - t l ) ,  ] 
(3)  I E[w]  = 0, E[v ]  = O, E [ v ( t , ) w T ( t o . ) ]  = O, 
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in which E indicates mean value, intensity matrices W and V are l x l ,  q x q positive definite 

matrices respectively. The initial state can be given as 

E [ x ( 0 ) ]  = ~ 0 , E [ ( x ( 0 )  - 2 0 ) ( x ( 0 )  - :~0) r ]  = P0 ,  (4) 

where V ( t ) and W ( t ) are not correlative with x ( 0 ) .  

In the case of the LQG generalized regulator problem, it is well-known that the synthesis is 

achieved via a decomposition, or separation, into an optimal state-feedback control problem and 

an optimal state estimation problem. The optimal state-feedback controller is given in terms of the 

solution of a Riccati differential equation, which is solved backwards in time from a terminal 

condition. The optimal state estimator is the Kalman filter and the filter gain is given in terms of 

the solution of a second Riccati differential equation, which is solved forwards in time from an 

initial condition. This is known as the separation principle [1-5] Based on this principle, our 

solution of the LQG control problem follows standard lines of argument. Therefore, we will solve 

two kinds of Riccati differential equations 

P ( t )  = B W B  T + A P  + P A  T - p c T v - I c P ,  P ( O )  = P o ,  (5) 

S ( t )  = -  Q - S A  - A T S  + S B ~ R - 1 B T S ,  S ( t f )  = S f ,  (6) 

and the state estimation needs to solve 

.~ ( t )  = A 2  + p c T v - I ( y  - C 2 )  + B ~ u ,  ~ ( 0 )  = x o ,  (7) 

. t ( t )  : [ A  - B ~ K ( t ) ] x ,  u = -  K x ,  K = R - l B T S ( t ) .  (8) 

where K is the gain matrix, and P ( t ) and S ( t ) are the solutions to Riccati differential equations 

(5) and (6) respectively. 

Although the separation principle is well-known, the corresponding numerical computation 

still has a number of problems to be solved. In computational mechanics, the precise integration 

method was presented for the ordinary differential equation appropriate to both initial value 

problems [6'7] and two-point boundary-value problems of corresponding Riccad differential 

equations [8] . Even if Eq. (8) is time-variant because of S ( t ) ,  its precise integration method has 

been presented [9] . Also the precise integration of Kalman-Bucy filtering problems can be seen 

Ref. [10 ] .  In Refs. [9] and [103, the analytic characteristics of the Riccati differential equations 

and the state vector equation of optimal control are applied in deriving the highly precise 

numerical solution, so that the full computer precision is reached. Since the feedback control 

vector u is of key importance, the computation of LQG measurement feedback control vectors is 

followed with great interest. In this paper, the precise integration of LQG control problem is 

presented. 

1 K a l m a n - B u c y  F i l t e r i n g  E q u a t i o n  U n d e r  C o n t r o l  

For two kinds of Riccati differential equations described by Eqs. (5)  and ( 6 ) ,  the variational 

approach with interval mixed energy was developed to derive the whole set of equations and 

algorithm of precise integration [6- s] Let the length of a time step be 71, time points are as 

follows 

to = O, " " ,  tk = kr  1, " " ,  te = k f r ] .  (9) 

Suppose that tk is present time, and Sk and Pk can be computed by the precise integration. For 

any k,  S and P matrices have been the off-line solution of the corresponding Riccati differential 
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equations[9,10] . 

To obtain the real time integration of the state vector :f:, substituting u in Eq. (8) into 

Zq. (7) gives 
( t )  = ( A  - B 2 R - 1 B T S ) e  + p c T v - l g ( t ) ,  (10) 

~ ( t )  = y ( t )  - C ~ ( t ) ,  (11) 
where ~ is called as the new information vector [11] , and also it is a white-noise process and 

satisfies 

E [ ~ ( t ) ~ w ( t  + r ) ]  : V - 3 ( r ) ,  E t a ]  : 0. 

Eq . (10 )  is Kalman-Bucy filtering equation under control. Solving Eq. (10) is key to LOG 

measurement feedback control problem. 

2 A p p l i c a t i o n  of  t h e  P r e c i s e  I n t e g r a t i o n  M e t h o d  

P_x t. (10) is the linear non-homogeneous differential equation of Kalman-Bucy filtering 

estimation vector 2 ( t ) .  If we regard white-noise vectors ~ as external inputs, homogeneous 

equation of Eq.(10)  is the same as Eq . (8 ) .  Because of S ( t ) ,  Eq. (8)  is time-variant 

differential equation. In Ref. [ 9 ] ,  the precise integration of the response matrix F21 ( t ) F ,  (0) to 

initial value problem has been presented. In this paper, the sign �9 ( t , 0 )  denotes this response 

matrix. However, the integration of a non-homogeneous equation need the impulsc response 

function ~ (  t ,  t o ) ,  and the step-by-step integration for the step size 7] need �9 ( t  + 7, t ) (  ~ (  t ,  

t) = I ) .  All these matrices can be computed by the precise integration method (see appendix). 

On the basis of ordinary differential equation theory, the solution to a non-homogeneous 

linear differential equation (10) is 

.~( t )  = ~ ( t , t o ) ~  + ~ ( t , t a ) ' f ( t a ) d t a ,  f ( t a )  = P ( t a ) c r v - l ~ ( t a ) .  
t o 

Applying this formula to each time step ( t  k , tk+ 1 ) and using Newton-Cotes integration method 

give 

$'(tk+t) = O(t l ,  + r] , t~) '2k  + ~O(tk + r ] , t a ) ' P ( t a ) C T V - l ~ ( t a ) d t a  
k 

~ ( t k  + r] , tk) '2~ + [ ~ ( t k  + r l , t k ) p k c T v - a ( y  k - C:~k) + 

Pk+l cT V-1 (Yk+l - Ca~k§ ) ] 7]/2. (12a)  

Re-write Eq. (12a) as (implicit form) 

$'k+1 = vk - Nka~+l , Nk = ( 7]/2)-Pk+1 cT V-1 C, ] 

vk = ~ ( t k  + r ] , t k ) ' [~k  + P k C r V - l ( y k  - C:~k) ' ( r ] /2) ]  + I (12) 

Pk+l C T V -1Y~+I" (7]/2).  

Consequently, we obtain 

:~+1 = ( I  + Nk)-lVk. 

This is the precise integration formula of Kalrnan-Bucy filtering equation under control. Since it is 

related to measurement value, it needs the real time computation. The quantity of real time should 

reduce to the lowest limit. Thus, the parts of the off-line computation should be distinguished. 

Such as S~, P~, ~ ( t ~  + r] , t~)(see Refs.[9],  [10] and appendix), Pv,~ = p ~ c T v - ~ ' ( r ] / 2 ) ,  

N~ = Pv,~+~ "C ,  ( I  + N~) -~ for all k should be computed and stored in advance. 
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3 N u m e r i c a l  E x a m p l e s  

E x a m p l e  I Suppose  that a one -d imens iona l  system is described by  

n = 1, A = - 0 . 8 ,  Q = 0 . 6 4 ,  B2R-1B2 = 2 5 . 0 ;  tf = 0 . 4 ,  Sf = 0 . 0 1 ;  

IV = 1 . 0 ,  V = 1 . 0 ,  B = 0 . 8 ,  C = 5 . 0 ;  P0 = 0 . 0 1 ;  

~0 = 1 . 0 ,  y is the measu remen t  with inc lus ion of  Gaussian whi te -noise  p rocess .  Compute  e ( t )  

and u .  

E x a m p l e  2 Consider  a four -d imens iona l  sys tem 

n = 4 ,  tf = 16,  Sf  = d i a g [ 1 0 . 0 ,  1 0 . 0 ,  1 0 . 0 ,  1 0 . 0 ] ,  

A = 
o 01 1 0 0 0 

- 2  1 0 ' 

0 . 5  - 0 . 5  0 0 

Q = 

2 - 

- I  

0 

0 

o l o  o 
8 2 R - t  B~ = 0 0 ' BWBT = 

0 0 0 0.25-J 

C = [0 ,  0 ,  0,  0 . 5 ] ,  V = [ 1 ] ,  Po = d i ag [0 . 1 ,  0. 

1~ I 0 

0 1 ' 

0 0 

2 - 1 0 0 ]  

- 1  1 0 

0 0 1 ' 

0 0 0 2 

1, 0 . 1 , 0 . 1 ] ,  2o = [ 1 . 0 ,  1.0,  0 ,  0 ]  T , 

y is the measurement  with inc lus ion of  Gauss ian  whi te-noise  process .  Show 2 ( t ) and u .  

By the precise in tegra t ion ,  the numerica l  results of  state es t imat ion vectors  2 ( t ) and opt imal  

contzol vectors u see Figs .  1 ~ 6 .  

W e  can verify a special case as fo l lows:  

Suppose the y is the determinate  measurement  Yk = CX'k,  in which  xk is the solut ion of  

homogeneous  equat ion (8 )  at tk .  F rom E q . ( 1 2 ) ,  that is 

Yk+l = C~k+l = C ~ ( q  + r / , t k ) s  

so that 

2~+1 = 2k+1.  ( 1 3 )  

The numer ica l  results prove this conc lus ion .  See Figs .  1 and 2 .  
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In Figs. 3 - 6, some representative results for the optimal control vectors u are presented, in 

which measurements y are superposed by the different orders of magnitude of the white-noise. 

When the quantity of  the noise is about 1/10 of signal, Figs .3 - 4 show that the numerical results 

at the same time points for the different time step size is very closed. Even if the quantity of the 

noise is almost the same order of magnitude of signal, Figs. 5 ~ 6 show that numerical results at 

the same time points for the different time step size is still closed. All these show that the precise 

integration method is not sensitive to the length of a time step. Furthermore, the numerical results 

show that the corresponding state estimation vectors also have the above characteristics. 

4 Concluding Remarks 

For LQG measurement feedback control problems, the numerical results in this paper show 

that the characteristics of high precision of the precise integration method. Even for the time- 

variant differential equations and two sets of Riccati differential equation, their solutions still are 

highly precise by combining the precise integration method with the separation principle. Since 

there are many similarities between the solution of the LQG measurement feedback control 

problem and the H| generalized regulator problem, further applying the precise integration 

method to H| control problems has great potentiatites. 
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A p p e n d i x  T h e  P r e c i s e  C o m p u t a t i o n  of S i n g l e - s t e p  I m p u l s e  R e s p o n s e  Func t i ep .  

~ ( t k  + r l , t k )  

For the time interval ( t l ,  tl + r]), based on the time interval condensation equations ~n Ref. [9 ] ,  let 

the solution matrix Sk+ t of Riccati differential equation at time tk+ t = tl + r] be ( E2, G2, F2 ) to constitute 

virtual time interval ( Sk+~ , 0, I )  ; while let single-step mixed energy matrices [ E(  7]), G( r]), F(7]) ] be 

( E t , G t , F t ) , so that 

Sk = E(r] )  + FT(7 / ) [S ; [ t  + G( rl) ] - t  F (  r/) , (A . I )  

v , ( t~)  = [I  + 6 ( , 7 ) S k + , ] - ~ F ( ~ ) ,  V,( t~ . , )  = I.  ( h . 2 )  

Applying the corresponding equation in Ref. [9 ] ,  we have 

Xt+, = g ~ , t ( t i + t ) ' g , ( t t ) x l  = F ~ ( t l ) x l .  

For any k, this formula is satisfied. Thus, single-step impulse response function is of the form 

�9 (tk + 7 , tk)  = F~(t~). (A.3)  

F , ( t k )  can be obtained from E q . ( A . 2 ) .  

Note that the matrices E ( r ] ) ,  G( r / ) ,  F( r / )  and the solution matrix of Riccati differential equation can 

be computed by the precise integration method ( see Ref. [ 9 ] ) �9 Therefore, for any k, Eq. ( A. 3 ) can be 

calculated precisely. 


