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Abstract: Bifurcations of one kind of reaction-diffusion equations , v’ + p(u - u*) = 0(p
is a parameter , 4 < k € Z*) , with boundary value condition u(0) = u(x) = 0 are dis-
cussed . By means of singularity theory based on the method of Liapunov-Schmidt reduction ,
satisfactory results can be acquired .

Key words: Liapunov-Schmidt reduction; singularity theory; bifurcation
CLC number: O175.1 Document code: A

Introduction

|
One kind of steady state reaction-diffusion equations is read as ({1, 2], etc),
F(u,;x):u”+p(u—ul‘)=0 (1)
with boundary value condition
u(0) = u(x) = 0, (2)
where p is a parameter, 1 < k € Z*.
LetX = {u € C*[0,n] | u(0) = u(x) =0}, ¥ = C°[0,x]. Then F(u, u)isa
map from X x R onto Y. We define inner products on these spaces by (u,») =

ru(s)v(é)dé. For every u, (1) has a trivial solution u = 0.
0

Consider the linearized equation
DuF(O,y) Av=2v4+w=0 (3)
with boundary value condition
’U(O) = ‘11(7() =0. (4)
Obviously, (3) and (4) have nontrivial solutions v = c¢sinnx (¢ is an arbitrary constant) iff x =
pn = n*(n € Z*). For u # p,, (3) has only one solution u = 0.
With the increase of the exponent k& of u, it is more and more difficult to deal with
bifurcations of (1) with (2). This paper will deal with the cases k > 4. In section 1, we apply
Liapunov-Schmidt reduction ([3 ~ 6]) to (1) at the bifurcation point (u, g) = (0, n*) to get
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bifurcation equation. Section 2 is devoted to bifurcation analysis of the bifurcation equation
derived in section 1.

1 Liapunov-Schmidt Reduction

Let L, = D,F(0,n*), kerL, = span{sinnfé} = span{e}. L,:X — Y is a Fredholm
operator of index zero (see [3]). Now we split the spaces into
X =ketL, d M, Y = N @ rangel,, (5)
where M = (kerL,)1, N = (rangel, )L . It is evident that L, is a self-adjoint operator, i.e.,
L} = L,. According to Fredholm alternative, we have (rangelL, )" = kerL, . It immediately
follows that (rangeL,, )J‘ = kerL, .
Let P, be the orthogonal projector from Y onto rangelL, . According to Liapunov-Schmidt
reduction, (1) is equivalent to
P.F(v+w,pu) =0, vEC kerL,, wE M (6)
and
(I-P)F(v+w, u) =0. (7)
Due to implicit function theorem (for instance, see [4], (6) is solved for a unique w (v,
1) (w(0, n*) = 0). Substituting w(», g) into (7) yields the reduced equation
(I =P)F(v+w(v,p),p) =0, (8)
which is called the bifurcation equation. Taking inner product of (8) with e and applying ¢ €
(rangel, )" leads to

(e, F(v + w(v,pu),p)) = 0. (9)
Let v = xe, the equation above can be rewritten as
g(x,p) = (e, F(xe + w(x,u),p)) =0, (10)

which is also called the bifurcation equation of (1) at (u, x) = (0, n*). So the bifurcation
phenomena of (1) are reduced to those of (10). However, it is impossible to find the exact
expression of the solution to (10), therefore, we need to compute the derivatives of the reduced
function g(x, p), which is useful for our sequential discussion. Before rendering the
derivatives, we define
(de)(y y(vgsm) = 2. ﬁ—G(y+ S"jt'vua)‘ s (11)
ya at1 at,‘ ‘:XJ ¥ t = =120
v; € R*(i = 1,2,--,k) . It is evident that (d"G)(,.,a) is a symmetric, multilinear function of
k arguments.
We rewrite P, F(xe + w(x,p),u) = Ofor P, F(v + w,u) = 0. Repeated application of

the chain rule to g(x, g) and P, F(xe + w(x,u), p) yields the following formulas.

g. = (e, dF(e + w,)), (12)
gt = (e, dF(wz) + Fle+ w,,e + w,)), (13)
g2 = (e, dF(wy) +3d Fle + w,,w2) + Fle+ w,,e + w,,e + w,)), (14)
gt = (e, dF(wy) +3d F(w, ,w?) + 48 Fe + w,,w.) +

68 F(e+ w, e+ w,,w2) + &FFle+ w,, .6+ w)), (15)

v
4
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(e,dF(wy) + 58 F(w,* e + w,) + 108> F(w,?,w,) +

g =
108 F(e + w, e + w,,w?) + 10d* F(e + w, e + w, ,e + w, ,w,*) +
ISdSF(e+w,,w,’,wx’)+d5F(e+’w,,"‘,e + w,)); (16)
4
gt = (e,dF(wys) + 64 F(e + w, ,w;) + 158 F(w,? ,w,*) +

108 F(w, yw,) + 158 F(e + w,,e + w, ,w,*) +
6O0L Fle + w, , w2 ,w?) + 158 Fw, , w2, w) +
458 F(e + w, e + w,,w,,w?) + 208 Fle + w, , " ,e + w, ,w}) +
———
3
158 F(e + w,, e + w,,w2) + F(e + w, e+ w,)), (17)

v -V -
4 6

gx' = (e, dF(w,;) + 1 F(e + w, ,ws) + 218 F(w, ,w,) +
358 F(wy ,wy) + 218 Fle + w, ,e + w, ,w, ) +
904> F(e + w, ,w?,ws) + 10 Fle + w, ,w?,w.>) +
1058 F(w, ,wr,w>) + 358 F(e + w, ,e + w,,e + w, ,w,;*) +
210d* Fe + w,,e + w, ,w,,w,) + 1054 F(e + w, , w2, w,?,w}) +

OF Fle+ w,, e+ w, ,w?,w?) + 268 Fle + w,, e + w,,w}) +

3 T
12d° Fe + w, > ye + w,,w?) +d Fle + w,, e + w,)), (18)

. . : N » :
g, = (e, dF(w,) + F,), (19)
g = (e,dF, (e + w,) + dF(w,,) + £Fle + w,,w,)), (20)
P,dF(e + w,) = 0, (21)
PdF(e+ w ,e+ w, )+ PdF(wz?) =0, (22)

P.EF(e+ w,,e + w,,e+w,)+3PLFle+w,,w)+ PdF(w2) =0, (23)
Pd*Fle+ w,,e + wy,e + wy,e + w,) + 6P Fle+ w,,e + w,,w?) +
3P, d*F(w; ,w?) + 4P, & F(e + w,,w>) + P, dD(w.) = 0, (24)

P& F(e+ w,, e+ w,) +10P,d Fle + w, e + w,,e + w, ,w}?) +
5

15P, P Fle + w,,wp,w?) + 0P, F(e + w,,e + w,,w?) +

10P, d* (w2 ,w?) + 5P, & Fle + w,,w*) + P.dF(w,;) = 0, (25)
PdF(e+ w,, e+ w,) +15P,EF(e+ w, , e+ w,,w?) +
¥ ’ — /

20P d*Fe + w,,e + wy,e + w,,w) + 43P *Fle + w,,e + w, ,w;,w.?) +
60P . d°F(e + w, ,wr,w?) + 15P . F(w, ,w,w?) +
0P, & F(wy ,w?) + 15P. & Fle + w,,e + w, ,w?) +
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P.dF(ws) + 6P & F(e + w,,w,;) + 15P, & F(w,,w2) = 0, (26)

Pd Fle+ w,,,e+w,) +12P, & F(e + w,,",e + w,,w.?) +
v .

5

26P, & Fle + w,,,e + w,,w) + OP . F(e+ w,,",e+ w,,w2,w) +

v -
4 3

210P d* Fe + w,,e + w,,wz?,w>) + 105P &' Fe + w,, w2, w? ,w?) +
105P, & F(w ,wr,w?) +35P,d* Fle + w,,e + w,,e + w,,w,*) +
9P, & Fle+ w, , w2, w,') + TOP L Fle + w,,w ,w) +

35P, & Fwy ,w) + 21P. & Fle + w, e + w,,w*) +

PdF(wy) + TP, d*F(e + w,,w,*) + 21P & F(w,2,w?) = 0, (27)
P.dF(w,) + P.F, =0, (28)
PedFy(e +w,) + PedF(w,#) + Pesz(e + wz,wﬂ) =0. (29)

The main purpose of (21) ~ (29), etc is to determine w, ,w,’, """, W, , W, , ** Which are

necessary for (12) ~ (20), etc.
2 Bifurcation Analysis

Singularity theory“"‘ﬂ based on the method of Liapunov-Schmidt plays an important role in
static bifurcation analysis of nonlinear problems. The definitions and results, contained in the
recognition problem (one aspect of singularity theory), are introduced as follows.

E,, = lglg:C” map from R* x R onto R on some neighborhood of (0,0)}. We call

the elements of E_ , germs. Obviously, E, , is a linear space.

vz
Consider

flz,p) =0, (z,0) € Ux VC R, (30)
where f € E, ,,(0,0) € U x Vand f(0,0) = £,(0,0) =0, i.e., (0,0) is a singular point
of f.

Suppose that f,h € E_ ,. We shall say that fand h are equivalents if

flx,p) = S(x,p ))R(2(x,u)), (31)
where Q(x,p) = (X(x,u), A(g)) is a C* diffemorphism on the neighborhood of the
origin, $(x,x)) € E,,, and X(0,0) = A(0) =0, A’(0) > 0, X.(0,0) >0, S(0,0) >
0.If A(y) = p, then we say that f and h are strongly equivalents.

The following basic facts are easily verified (see [5]). If f and h are equivalents, then 1)
fand h have same singular points, 2) n;(p) = n,(A(u))(ns(g) denotes the number of
sotutions of f(x, ) = 0, so does n, (A(x)), 3) the stability of the equilibrium solution of £ =
g(x,p) is the same as that of £ = A(x,u).

Theorem1 Agemmf € E, ,

fefo==fi = =0 (32)

is swongly equivalent to ex* + dpx iff atx = x = 0,

and
e = sgnf;t,8 = sgnf,, . (33)
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The bifurcation diagrams below are known to us.
Now let us discuss the bifurcation Eq.(10) .
According to (11), we have
(dF)@,. & = & + n’¢, (34)
at ! , ! K
! 2 e - 2 2 _
(d F)(O.n)(519 &) = 3———51-"3,1[2(ti& +nt6) - n (;h&) ] l, emg=0 T

i=1 H

0 (l%xkand!l > 1)
[ (35)

k
—nzk!HEi (l=k)
i=1
From (21), we can get P,L (e + w,(0,n*)) = 0. Since L, : M — rangel, is invertible

and e € kerl,,w, € M, then
10, (0,r%) = 0. (36)

] ——

Fig.1 Bifurcation diagram of Fig.2 Bifurcation diagram of Fig.3 Bifurcation diagram of

dx/dt = - &* + ux dx/de = - 25 + px dx/dt = =5 + ux
(4<k€Z,k A< k€Z,k 4<k€Z,k
is even) is odd) is even)

Furthermore, from (22) ~ (27), etc and (35) and exerting the fact that L, is invertible and
wy € M(j € Z*), we obtain

wy(0,n*) = 0 (1 =2,,k-1); (37)
and
P,(- n*kle*) + P,Lws(0,n*) = 0, (38)
1.e.,
wr(0,n*) = n?kVL;W(Pe). (39)

Letting (12) ~ (18), etc evaluate on (0, n*) and applying (35) ~ (37) and (39) to them,

we can procure
g~ (0,n%)
g (0,n?)

0(L=1,,k-1). (40)
(e, Laws(0,n%) + (- n?kle*)) =

(e, L, (n*kIL;'P.e*) - n®kle*) (using (38)) =

(e,n*k1P.e* — n’kle*) =

- n*kl(e,e) (P,e* € rangeL,, e € (rangeL,)).  (41)

I

Lemmal let], = J.u(sinnE)"'d$(m,n € Z*). Then
0
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— 1 - (= n
(m = DI 1= DT s odg,

I, = 42
" (m-DI! . (42)
——=—x if m is even.
m!!
Proof I, = j (sinné)™dé = (m - (L, - I,,). So, I, = '”—n:l [._,. By
0
induction,
_ 1t - IR I »
(m =Dy tmisoaa [{mm DM 1= DT e 4 0qq,
I ml!l _ m!! n ]
™ — B! - - 1
(m—'ll)'—'—lo if m is even ﬂ—%‘-n if m is even.

By Lemma 1, (41) is

- E%ﬂ'—lﬁ s[1-(=1D"] ifkiseven
g (0,m2) = (43)
n“{k! ')' . .
R if k is odd.
Let (u,u) = (0,n*), then (28) and (29) can be changed into
PeL"w/1 (0,n*) = 0, (44)
and
P.e+ P.Lw,(0,n) =0, (45)
i.e.,
w#(O,nz) = 0, (46)
ww(O,nz) = 0. (47)
Substituting (46) and (47) into (19) and (20), respectively, we can get
g.(0,n*) =0, (48)

8, (0,n%) = (e,e) = (49)

xr
2
Now we list our result except that n is even in {43) (this case is very complicated and is
scheduled later) .
Casel Lkisodd(4 < k€ Z*).

At(u,p) = (0, n°), g = g, = =gt =g, =0, g+ =~ el " B =
T
—2'_.
Case2 kisevenandnisodd(d < k € Z*,n € Z).
) 2 k!! 2 T
At(u,,,z) = (0,n"), g =8 =" = &M = 8, = 0, g} =——‘nk(+—1)y B = 5

According to theorem 1, we have
Theorem 2 Suppose that k is odd (4 < k¥ € Z*). Then g{x, u) is strongly equivalent

5 : . . . 3 2y
to - ¥ + (¢ - n”)x. Furthermore, the bifurcation dlagramofa—lj = F(u, p)at(0, n*)is

similar to Fig.2.
Theorem 3 Suppose that kisevenand nis odd (4 < k € Z* ,n € Z*) . Then g(x, 1)
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a . . . d
is strongly equivalent to — x* + (u - n*)x . Furthermore, the bifurcation diagram of a—’: = F(u,

w) at (0, n?) is similar to Fig.1.
From (43), g. (0, n?) = 0if k and n are even. In order to investigate the case that k and
n are even (see(43)), let’s elaborate. Let
K(E) = mlin{l | g/(0,n*) 20, k< 1€ Z*, k and n are even}. (50)
(50) implies that
g:(0,n%) =0, 1 = k+1,k+2,+, K(k) - 1. (51)
Several definitions are given as follows. We call d'F (&, +, &) quasi-item of g~ if it
arises in the right hand of (52)
g = <C,ZECEI...E.diF(El'"E")> (52)
i=1 § ¢,
where C; .., € Z*,§ ,"",§; denote the derivatives of some order of xe + w(x, p) with

respect to x, E denotes the sum of all possible items. For example, when m = 5,: = 2,
6 €

[ g

Ecslgzsz(&,Ez) = 5&F(e + w,,wy) + 108 F(w, ,w,?),d*F(e + w,,w,) and

8¢

d&* F(w, ,w,) are quasi-items of g (see (16)). We call the quasi-item d'F(&,,-, &) of g.~
ak
dictionary sequencing if k, < k, < - < k;, where &, = m(xe + w(x,p)) . The following

lemma is easily verified but important.
Lemma 2  Assume that d'F( 71,7 > ;) which is dictionary sequencing is an arbitrary
quasi-item of g.» . Then

Dk = m, (53)

ak
where 7 = é-—k-(xe + w(x,/x)).
xi

Proof 1) m =1

Differentiating F(xe + w(x, p), ) with respect to x one time leads tod F (e + w, ), which
shows that (53) is true for m = 1.

2) Assume that an arbitrary quasi-item d'F( 71,7 s ;) satisfies

1

Eki = m.

i=l

After differentiating g,~ with respect to x one time again, we can have
3 , R ‘ AL
a—x(le(Y]n"',m)) = d"*F(e + Wy Prstt s ) + ?_{le( 771,---,51—,---,771).

Obviously,
L+ ki+ vk =1+m,
which indicates that (53) is true for m + 1.
By mathematical induction, (53) is true, indeed. O

Remark 1 The condition, dictionary sequencing, is not necessary for our proof.
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Now let us find K(k).

By using (35), only when (d*F) (o, .2y (7, , 74 ) is a quasi-item of g,« (0, n?) (K'is
bigger than k. ), then g (0,n*) may be non-zero. Assume that (d*F), % (7;,,m) is
dictionary sequencing. According to (37) and (39), only when

(d*F) .. (e + w0, E Wy, Wt )
k-1

appears in g (0,n*), then g« (0,n%) 5 0. By lemma 2, K’ = 2k — 1 is what we want to

seek, i.e., K(k) = 2k - 1. Now we can get
g>(0,n) = (e, Lyw> (0,n%) + n®>Ny(- k1)e* w2 (0,n%)) =
- n*(k1)?Ny (e, LJP*) (N, € Z7). (54)
(For example, when k = 2 and n is even, then at (u, x) = (0, n*), g = g, = g* = O,

- 5%n?
gx’ = 2

(u,p) = (0,n%), g =g = =g¢=0,g7 = (e,n"35(=41)e’w2(0,n*)) %0, at

this moment, K(4) = 7.)
Let L;'P,e* = & € M, then L,z = P.e*. Since (e*,e) = O(k and n are even and use

, at this moment, K(2) = 3. See [3]. When £ = 4 and n is even, then at

lemma 1), therefore , ef € range L, , which implies P.e* = ef. So, L,z = ¢ = (sinnx)*,
i.e.,
i@’ + n*u = (sinnx)*, (55)
and the boundary value condition is
Z(0) = E(x) = 0. (56)
Before seeking the solution to (55) and (56), we prove the following lemma which is
needed.
Lemma 3 One particular solution to
v + ou = (sinwx)’ (@ and { are constants, [ € Z*) (57
is
1) iflisevenand a — i*w? 5 0(i = 0,2,---,1 - 2,1), then

%23
u = EaZE(sinwx)Zi (58)
i=0
where
o - L o = - G+2)(+ ol)cu'mj+2 G=1-2,1-4,+,2,0); (59)
a - I"w” a - jw
2) iflisodd and a - *w® = 0(i = 1,3,-,1 -2,1), then
(1+1)2
u = 2 @a;_y (sinawz)* ! (60)
i=1
where
a; = 1') 3 aj =_(]+2)(J.'>+})w‘aj+2(j: l—2,l-4,"',3,1)- (61)
a - I"w a - jw”
Proof Suppose that
1
u = Eai(sinwx)i (62)

is0

satisfies (57), then
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gi(i - 1Dw?a;(sinwz)? + Z;(a - i*w?)a;(sinwz)’ = (sinwx)’. (63)
It immediately follows that
(a - llzwz)al =1,
{(i +2)(i + Daaj, + (@~ P0?)a; =0(i = 1-2,1-4,-).
If lisevenand a - i*w® %« 0(i = 0,2,"-,1 -2,1), we can get (59) . However, a;,a;,

(64)

.-+, ay_, are arbitrary contants, so we can let them be zero. Hence, we finish the proof of the

case 1). Similarly, that case 2) is also true. U
Corollary 1 One particular solution to (55) is

123

U, = Eai(sinwx)ﬂ, (65)

i=0

a;(i = 0,1,--,k/2) is given by

1 (2i -3
ayg = - C,a; = EC,ai = WG
(' 2 k/2,C k1] ) (66)
PEAT T (R -3)Nat - D))
Proof According to lemma 3, one particular solution of (55) is
k2
U, = Zai(sinwx)zi, (67)
1 20 +2 ) .
where Qrsa = (1 _ kl)nz’ai = 2: _ lai+1 (L = 0,1,"',15/2- 1).
o oo 22 0 Qie2)(Qivd) k! s (68)
P 2e-1 T (i -D@i+1) T e e ’
II@i-bn
(k -3)11

Giomnn (G =2.3.k2-1),

E(Zj—l): k- 311 G-, (69)
-k G=0),

)
-C (i =0),
1 .
o =42¢ =D, (70)
(2i -3)1! ., \
(21:)!! C (l =H13, yk/ﬂ)a
k!
where C = maka < 0. L__]
Now we can get the solution to (55) and (56)
2
L = cysinnx + c,cosnx + Eai(sinnx)zi, (71)

0

a; (i =0,1,--,k/2) are given by (70), & € M,5(0) = &(x) = 0. Since & € M, then (e,
u) = 0, which implies that ¢, = 0(n is even and apply lemma 1) . Due to (56), ¢, = - a,.
Next, we should determine (e,e*"!, L71P e*) (see (54)).
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(e,et'L;'Pe*) = (et @) =
jai<<5innx)k,(sinnx)2i> =
) (k-1 (k+1)H
BV T 2(k+2)11 T
- Ct
A (20 =31k +2i - DI
2 @Ok +2i)!!
(k-1

- =77 G G (72)
1 1 f" (20 =31k + Dk +3)(k+2i-1)
2720k +2) T &4 @DTIE +2)(k + 4 (k + 20)

. ED*(kE-1)IINC
gzu—l(o,n'> = n< ) (k” ) * Ter. (73)

. So,

where Gk =

For different %, G, may have different signs. For example, when k = 4,6,8,10,12,14,16,18,
G, > 0; when k = 20, G, < 0. Since C < 0, therefore, the sign of g,+-1 is the same as that of —
G, .
Case3 kandnarceven (4 < k€ Z, n€Z"). At (u,p) = (0,n%),
n*(k1)*(k - 1)IINCr T

& = & = " = gt =g, = 0, g+ = AN %+ B = 7

Theorem 4 Suppose that kand nareeven (4 < k€ Z' ,n € 2" ). If G, 5 0, then, g(x,
) is strongly equivalent to — sgnG,x™*"' + (x — n’)x. Furthermore, the bifurcation diagram of

d 2N s e . .. .
E;—I: = F(u,p)at(0,n®) is similar to Fig.1 for the case of G, > 0, or is similar to Fig.3 for the

case of G, < O .

Remark 2 Theorem 4 does not contain the case of G, = 0. If G, = 0, we need the higher order
derivative of g with tespect to x which is gaw (0, %) 5 0 .
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