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In previous work (Freedman and Wolkowicz, 1986; Bull. math. Biol. 48, 493-508) it was shown 
that in a predator-prey system where the prey population exhibits group defence, it is possible 
that enrichment of the environment could lead to extinction of the predator population. 

In this paper a third population is introduced and criteria are derived under which persistence 
of all populations will occur. In particular, criteria for a superpredator and for a competitor to 
stabilize the system in the sense of persistence are analyzed. 

I. Introduction. In a previous paper, Freedman and Wolkowicz (1986) 
considered a predator-prey system in which the prey population exhibited 
group defence. Specific examples to illustrate group defence were musk ox 
(Tenet, 1965) for which lone oxen or pairs are often successfully attacked by 
wolves, but groups of six or more are rarely if ever successfully attacked; prey 
identification by predators which cannot identify their prey as such when they 
swarm as opposed to flying individually (Holmes and Bethel, 1972); microbial 
toxicity by some species of microbes competing with others in a chemostat so 
that if the amount of toxicity is sufficient due to the size of the population, 
competitive outcome may be reversed (Yang and Humphrey, 1975). Group 
defence by yellow-hooded blackbirds against parasitism by cowbirds has been 
indicated by May and Robinson (1985). Further to this work Wolkowicz 
(1988) has looked at bifurcation problems in models with group defence and 
Mischaikow and Wolkowicz (1986) have indicated how connection matrices 
can be utilized in analyzing predator-prey models with group defence. 

A consequence of the analysis in Freedman and Wolkowicz (1986) is that in 
the case of no mutual interference, if the carrying capacity of the prey 
population is sufficiently large, the predator population is almost always 
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driven to extinction. Biologically, this is intuitive, since the environment is such 
that the prey population can increase to the point where group defence 
prevents the predator population from increasing at any level. This is also 
related to the paradox of enrichment as described in Rosenzweig (1971). 

The overriding theme of that part of the above-mentioned paper is that 
group defence can lead to extinction. Yet in nature the predators of prey 
exhibiting group defence do not seem to go extinct. There could be many 
reasons why this is so. One of these was considered in Freedman and 
Wolkowicz (1986), namely mutual interference among predators. 

In the present paper, we consider another way in which the predator is 
prevented from heading to extinction, namely, through interactions of the 
predator-prey system with a third population. This is a reasonable situation to 
consider since rarely will a predator-prey system exist in nature in isolation. 

The techniques for examining the three-species interaction models will be 
similar to those utilized in Freedman and Waltman (1984, 1985) and Freedman 
and So (1985). We will define persistence in dynamical systems and derive 
criteria for such persistence to hold in our models. The definition of persistence 
(and uniform persistence) defined in the text will intuitively agree with a 
biological interpretation of persistence, namely the survival of all populations 
in an interacting community. 

A third population could interact with the predator-prey system in many 
ways. After a general discussion, we will consider two specific ways, namely by 
forming a food chain, and by competition with the prey. Both of these are 
discussed in Freedman and Waltman (1984), but without group defence and 
with restricting all boundary invariant sets to be equilibria. 

The organization of the remainder of this paper is as follows. In the next 
section we will present the model and the definition of persistence. In Section 3 
we present our main results followed by specific applications to "food chain" 
and "one predator-two competing prey" systems in Section 4. We finish with a 
discussion in Section 5. The proof of our main theorem is deferred to the 
Appendix. 

2. The Model.  We take as a model of our three interacting populations the 
system of autonomous Kolmogorov-type differential equations 

ic = xF(x ,  y, z) 

~ = y G ( x ,  y, z) 

= zH(x ,  y, z) 

x(O) = x o >~ O, y(O) = Yo >1 O, z(O) = z o >f 0 

d 
�9 = ~ ,  x , y ,  z~>O. (2.1) 
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Simultaneously, we will consider the submodel 

fi = uf(u, v) 

f; = vg(u, v), 

u(O) = Uo >10, v (O)= Vo >>.0, 

where 

f(u,  v) = F(u, v, 0), g(u, v) = G(u, v, 0). 

(2.2) 

(2.3) 

We think ofx(t) as a prey population, and y(t) as its predator population, z(t) 
represents a third population which interacts with one or both of x and y. 
Simultaneously, system (2.2) represents the predator-prey subsystem by 
setting z( t )-O in (2.1). 

2.1. Hypotheses. We impose hypotheses which simulate our requirements. 
The first hypothesis is a motherhood hypothesis for ODE models. 

(H1): F, G, H are sufficiently smooth so that solutions to initial value 
problems of (2.1) exist uniquely, and are continuable for all positive t. 

(H2): F(0, 0, 0) > 0; there exists a unique K >  0 such that F(K, 0, 0) -- 0; there 
exists a unique C > 0  such that F(0, C, 0)--0. 

The above hypothesis may be interpreted as stating that for small 
populations, in the absence of other interactions, the prey population grows in 
time. However, there is a carrying capacity of the environment beyond which 
the prey population will decline. Further, for small values of x, but large values 
of y, the x population will decline. 

(H3): Fy(x, y, z) <<, O. Since y is a predator of x, the larger the y population, the 
smaller the specific growth rate of x. 

(H4): G(0, y, 0) < 0; there exists B(y) >1 A (y) > 0 such that B(0) > A (0) > 0 and 
G(A(y), y, 0)=0,  G(B(y), y, 0)=0, O~ y ~  y u ~  o0. 

For small values of x, the predator population declines. For fixed positive 
predator values, possibly not too large, there is a range of prey values for which 
the predator population will increase. However, if the population is too large, 
the predator population will once more decrease (group defence effect). A(y) 
and B(y) are the predator isoclines. If there were no group defence effects, B(y) 
would not exist at all. A(y) is the isocline corresponding to dy/dt = 0 when p(x) 
is increasing and B(y) to dy/dt = 0 when p(x) is decreasing. 

(H5): There exists D > 0  such that A(O)<<.D<.B(O), and 

Gx(x,O,O)>O, O<.x<D 

<0, D<x.  

This once more shows the group defence effect. 
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(H6): Gy(x, y, 0)<~0. 
A larger predator population will decrease its specific growth rate due to 

intraspecific competition for its food. 
The hypotheses relating to F z, G~ and H are deferred to later on in the text, 

since they are related to boundedness and persistence criteria, as well as to the 
type of interactions between z and x, y. 

Note that if Gy(x, y, 0)=0,  then A ( y ) -  A(O), B ( y ) -  B(O), yM= + oe and 
A(O) < D < B(O). If Gy(x, y, 0)<0  on {(x, y): A(y) <~ x <~ B(y), O <~ y <~ yM}, then 
a (o) = 8 ( 0 )  = 0. 

2.2. Dissipativeness. In order to have a biologically realistic model, we will 
require system (2.1) to be dissipative. Dissipativeness may be interpreted as 
saying that in time all populations are uniformly limited by their environments. 
Hence we assume, 

(H7): There exists c~, fl, ? > 0 such that fl(x o, Yo, zo) ~ d = {(x, y, z):0 ~< x ~< ~, 
O <. y <~ fl, 0~<z~<?} for all x o, Yo, zo >>'O, where f~(xo, Yo, zo) is the omega limit 
set of the orbit initiating at (x o , Yo, zo). 

In specific cases (H7) may follow from other hypotheses. 

2.3. Persistence. Let N( t )>0  for t~>0. We say that N(t) is persistent 
provided lim inf N(t) > 0. A differential equation exhibits persistence provided 

t - * o O  

all solutions with positive initial conditions are persistent. 
A differential equation exhibits uniform persistence provided there exists ~ > 0 

such that each solution N(t) for which N(0)> 0 satisfies N(t)> 0 for t > 0 and 
lim inf N(t) >~ ft. 

t " *  oO 

A system of differential equations in R" exhibits (uniform) persistence 
provided each component of the solution is (uniformly) persistent. 

These definitions agree with those used in Freedman and So (1985), 
Freedman and Waltman (1985) and Freedman and Wolkowicz (1986). 
Biologically, if the interactions between populations can be represented by a 
system of differential equations, then persistence of this system corresponds to 
the survival of all interacting populations. 

2.4. The predator-prey submodel. For submodel (2.2), hypotheses 
(H1)-(H7) become as follows: 

(h 1): Existence, uniqueness and continuability of solutions of initial value 
problems for (2.2). 

(h2):f(0, 0) > 0; there exists a unique K >  0 such thatf(K, 0) -- 0; there exists a 
unique C > 0 such that f(0, C) = 0. 

(ha): fy(x, y )~0 .  
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(h4): 9(0, y)<0; there exists B(y)>.A(y)>O such that 
9(A(y), y)=0, 9(B(y), y)=0, O<<.y<<.yu<~ ~ .  

(h5): There exists D > 0  such that A(O)<~D<<.B(O) and 

B(0)>A(0) and 

9x(x, 0)>0, O<~x>D 

<0, D < x  

(h6): 9y(x, y) <<. O. 
(h7): There exists ~, f l>0 such that f~(x o, yo)C~Co={(x, y):0~<x~<a, 

O<~y<~fl} for all Xo, yo~>0. This follows automatically from hypotheses 
(h2)-(h6). 

Using similar techniques of analysis as those used for the class of models in 
Freedman and Wolkowicz (a subset of the class of models considered here), 
under the above hypotheses it can be shown that there are two positive 
equilibria, (xl, 331) and (~2,332) with ~t < 22. The first ofthese may be stable or 
unstable and there may be one or more limit cycles surrounding it. The second 
of them is always a saddle point. Now we state our next hypothesis, which is 
equivalent to the extinction case in group defence. 

(H8) = (h8) X2 < g. 

Under assumption (h8) there is a set of positive measure of positive initial 
values of system (2.2) for which lim (x(t), y(t))= (K, 0), representing extinction 

t ' -* ~X3 

of the predator population. 

3. Persistence Results. In this section we analyze system (2.1), and obtain 
criteria for persistence. These criteria follow lines established in Freedman and 
Waltman (1984, 1985) and involve invariant sets located in the coordinate axes 
and planes. 

3.1. Equilibria. In system (2.1) under hypotheses (H1)-(H7), certain 
equilibria always exist, while others may or may not exist. We consider all of 
these. 

Eo(0, 0, 0) and Er(K, 0, 0) always exist. There are no equilibria on the 
positive y-axis. However, there may or may not be an equilibrium of the form 
EL(0, 0, L) for some L > 0. 

We have already established the existence of two equilibria in the interior of 
the positive x-y plane,/~I(Yx, 371,0) and E20~2,332, 0). There may or may not 
be one or more equilibria in the interior of the positive x-z  plane of the form 
/~(~, 0, 33) and similarly for the y-z plane of the form E(0, )7, 5). 
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Finally there may or may not be one or more equilibria in the interior of the 
positive octant of the form E*(x*, y*, z*). In Corollary 2 we establish criteria 
for such an equilibrium to exist. 

3.2. Stability of equilibria. In order to discuss the local stability properties 
of the equilibria mentioned in the above subsection, we need to compute the 
variational matrix about all of these equilibria. If E~ ~ yO, z o) is an 
equilibrium, then the equations 

xOF(x o, yO, zO)=yOG(x o, yO, zO)=zOH(xO ' yO, zO)=0 (3.1) 

holds. The variational matrix about E ~ is given by 

[ x~ + F x~ x~ ] 
o G M ~  / y~ Y~ Y z / '  (3.2) 

L z~  oM, 

where all functions are evaluated at (x ~ yO, zO). 
Taking the equilibria in order and utilizing appropriate corresponding 

notations for M ~ we get 

Mo = I F(O, O, o) o o 1 
o G(O, O, O) 0 

o H(O, O, O) 

M~= I 
KF,,(K, O, O) KFy(K, O, O) KFz(K, O, O) ] 

J G(K, O, O) 0 

0 H(K, O, O) 

M~= 

0 0 ] 
a(O, O, L) 0 

LLH~(O, o, L) LH~(O, O, L) LH~(O, O, L) 

[ ~Fx(~i, Z, O) 
~/, = [ZGx(~, Z, 0) J PiGy(s Yl, 0) 371Gz(s 37i, 0) 

0 H(.~, 37~, O) 

, i = 1 , 2  
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I 
~ex( ~ o, e) ~GI~, o, e) ~e~(~, o, e) -] 

= ~ (~ ,  o, ~) o J ke,ux(~, o, e) en~(~, o, e) en~(~, o, e) 

M = )TG~(0, )7, if) ~ar(0, )7, ~) )TGz(0, )7, if) . (3.3) 

~n~(0, ~, e) ~n,(0, )7, ~) ~nz(0, )7, e) 

To obtain M*, simply substitute (x*, y*, z*) for (x ~ y0, z 0) in M ~ 
From the hypotheses of our model, we can say the following. E o is a saddle 

point since F(0, 0, 0)>0 and G(0, 0, 0)<0. The dimensions of its stable and 
unstable manifolds depend on H(0, 0, 0). 

From (H2) and (H8), Fx(K, 0 ,0)<0,  G(K, 0 ,0)<0,  and hence E K is 
asymptotically stable in the plane, corresponding to extinction of the predator 
population in model (2.2) for a large set of initial values. Further, E~ will be 
stable or unstable in the z direction as H(K,  0, 0) is negative or positive, 
respectively. 

Nothing can be said about the stability of E L if it exists until further 
hypotheses are imposed in specific cases. 

As previously mentioned,/~x can be stable or unstable in the x - y  plane. 
However, E 2 is a saddle point in this plane. E i, i= 1, 2, is stable or unstable in 
the z direction depending on whether H(s 37i, 0) is negative or positive, 
respectively. 

At this time nothing can be said about the stability characteristics of E, if it 
exists in the x - y  plane. However, clearly /~ is stable or unstable in the y 
direction according to whether G(s 0, s is negative or positive, respectively. 

Similarly/~ if it exists is stable or unstable in the x direction according to 
whether F(0, )7, s is negative or positive, respectively. 

Nothing can be said for this general model about the stability of E*, should it 
exist. 

3.3. Periodic orbits. There may be one or more periodic orbits in any of the 
coordinate planes. Consider first the x - y  plane. As already mentioned, if there 
is a periodic orbit in this plane, it must surround E 1. Let x = q~(t), y = ~k(t), z = 0 
be a parametrization of such periodic orbit if it exists. Then except in critical 
cases, the stability of this periodic orbit is given by Floquet multipliers of the 
variational system. 

gp(t) = P(t)~(t) ,  <}(0) = I, (3.4) 
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where P(t) is the matrix (Pij(t))3 • 3, I is the identity matrix,  and 

Pl 1(t) = q~(t)Fx(q~(t), ~(t), 0 )+  F(~p(t), ~(t), 0) 

p12(t) = q~(t)Fr(q~(t), ~k(t), 0) 

px3(t) = (p(t)Fz(q~(t), ~k(t), O) 

p2,(t) = ~(t)G~(q)(t), ~(t), O) 

P22(t) = ~(t)Gr(q)(t), ~k(t), O) + G(~o(t), r 0) 

P23(t) = ~k(t)Gz(~p(t), I~(t), O) 

P31(t)=P32(t) =0 

Pa3(t) = H(~o(t), ~0(t), 0). (3.5) 

Let ~o be the period of the periodic solution. Then,  clearly, the Floquet  
multiplier corresponding to the z direction is given by 
exp{o~-lS~H(q~(t), ~(t), 0)dt}.  Hence the periodic solution is stable or 
unstable in the z direction according to whether  S'~H(q~(t), ~(t), 0 ) d t  is 
negative or positive, respectively. 

Similarly, if E exists and there are one or more  periodic solutions in the x-z  
plane surrounding it with parametr izat ion x = q~(t), y = 0, z = ((t) and period 03, 
then this periodic solution is stable or unstable in the y directions according to 
whether j'~' G(q3(t), 0, ((t)) dt is negative or positive, respectively. 

Finally, if/~ exists and there are one or more  periodic solutions sur rounding 
it in the y-z plane with parametrizat ion x = 0, y = ~(t), z = ((t) and with period 
03, then the periodic solution is at tracting or repelling in the x direction in 
accordance with J'~F(0, ~(t), ('(t)) dt  being negative or positive, respectively. 

3.4. Acyclicity and isolatedness of invariant sets. In addi t ion to equilibria 
and periodic orbits, there could occur other closed paths on the boundary  of 
R 3 , namely homoclinic (Freedman and Wolkowicz, 1986) or heteroclinic 
(Freedman and Waltman,  1985) orbits. These are special cases of cyclic sets of 
invariant manifolds as defined in Butler et al. (1986) or Butler and Wal tman 
(1986). 

A closed invariant set dr' 1 is said to be chained to a closed invariant set dr' 2 if 
there exists a point  u such that  if (9(u) is the orbit through u and A(u), f](u) are 
the a- and co limit sets of C(u) respectively, then A(u)c~J/l~c~ and 
f~(u)c~dr 2 ~ b .  In this case we say J t ' l  ~ s / l  2. If ~/1--~/'2---~ " ' "  "--~'k, we say 
that  {Jg~ . . . . .  ~ / / k }  forms a chain. If d/k = ~ 1 ,  then the chain forms a cycle. If 
no cycle exists in some set contained in our  space, we say the set is acyclic. 

In the case that  there are closed invariant sets on the boundary  which are 
connected to each other in a closed chain (see Butler et al., 1986; or Butler and 
Waltman,  1986), persistence may  or may not  occur, and in any case if it occurs, 
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is extremely difficult to prove. In Butler and Waltman (1986) and Freedman 
and Waltman (1985) and the references therein, examples are given of 
nonpersistence in the case of such cyclicity. Hence we assume 

(H9)=(h9): For system (2.1) (and hence (2.2)), the boundary of R 3 is 
acyclic. 

Note that the above hypothesis precludes those cases from consideration 
where there is a homoclinic orbit in model (2.2). 

It is possible that closed invariant sets on the boundary of Ra+ are not 
isolated (as in certain Lotka-Volterra equations). If this occurs, it also presents 
a major problem in proving persistence by our techniques, and indeed is 
essential in the proof of the Butler-McGehee Lemma (Freedman and 
Waltman, 1984). Hence we further assume 

(H10) = (hl0): All closed invariant sets on the boundary of R3+ for system 
(2.1) (and hence for system (2.2)) are isolated on that boundary. 

3.5. Persistence criteria. The main results of this paper are given in 
Theorem 1 and Corollary 2 which appear below. 

THEOREM 1. Let hypotheses (H1)-(H10) hold. Let EL, if it exists, have a 
nontrivial strong unstable manifold. In addition let the followin 9 hold 

H(K, 0, 0) > 0 (3.6a) 

H(s )7,, 0)> 0, i= 1, 2 (3.6b) 

G(~, 0, ~)> 0 for each E that exists (3.6c) 

F(0, )7, ~)>0 for each E that exists. (3.6d) 

Further, let 

oil(go(t), ~(t), O) dt>O (3.7a) 

f ~  G((o(t), O, ~(t)) dt>O (3.7b) 

f o  F(O, ~(t), ((t)) dt >O (3.7c) 

provided that the appropriate corresponding planar periodic solution exists. Then 
system (2.1) exhibits persistence. 

COROLLARY 2. In addition to the hypotheses of Theorem 1, let all closed 
invariant sets in the boundary of R 3 be isolated with respect to the interior of Ra+ . 
Then system (2.1) exhibits uniform persistence and E* exists. 
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The proofs of these are deferred to the Appendix. 
Basically, Theorem 1 describes how the z population can aid the y(predator) 

population so that it survives, z must interact with x and y in such a way that no 
closed invariant set on the boundary can be an attractor with respect to any 
orbits initiating in the interior ofR 3 , i.e. these closed invariant sets repel in the 
direction of the interior. 

4. Examples. In this section we give two examples to illustrate how our 
theorem may be applied. The first example we consider will be the situation 
where z(t) represents a population competing with x(t). In the second example, 
z(t) will form a food chain by predating on y(t). 

4.1. Persistence as a consequence of competition. In this example we think of 
z(t) as representing a population which competes with x(t). This will be 
reprsented through the following additional hypotheses on system (2.1) (also 
see Hutson, 1984). 

(J1): Fz(x, y, z)<0  when x, z>0.  
The larger the z population, the greater the competition effect on x. 

(J2): Gz(X, y, z)>/O. 
If Gz(x, y, z)>0,  then z is also a prey ofy. If Gz(x, y, z)-=_= 0, then z and y do not 
interact directly. 

(J3): H(0, 0, 0)>0; there exists a unique L > 0  such that H(0, 0, L)=0 .  
Hx(X, y, z)<0,  Hy(x, y, z)<, O, H~(x, O, z)<0  for x, z>0 .  

In the absence of predation and competition, z is capable of growing to 
carrying capacity L. If Hy > 0 then z is a prey of y, and if Hy = 0, then it is not. 

For this model, since both x(t) and z(t) are self limiting through their 
carrying capacities, and since y(t) is limited by x(t) and possibly z(t), hypothesis 
(H7) will be automatically satisfied. 

We note that in the competitive x-z plane, there cannot be any nontrivial 
periodic solutions, so that (3.7b) is meaningless. 

The requirement in Theorem 1 that H(K, 0, 0)> 0 holds implies that in the 
competitive x-y  plane solutions initiating near (K, 0, 0) are repelled into the 
interior of the plane, i.e. x cannot always outcompete z. 

The condition that E L be a saddle point requires that at least one of 
F(0, 0, L) > 0, G(0, 0, L) > 0 hold. If z is a prey of y, G(0, 0, L) > 0 may or may 
not hold. Ifz is not a prey of y, then G(0, 0, L )=  G(0, 0, 0)< 0. If F(0, 0, L )>  0, 
then solutions initiating near (0, 0, L) are repelled into the interior. Combining 
with the previous statements, we see that in this case there must exist an 
equilibrium of the type/~, which is asymptotically stable in the x-y  plane. There 
may exist other equilibria of the type E as well. At least one of these must then 
be a saddle point in the x-y  plane. 
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4.2. A food chain. We consider the example where z(t) is a predator ofy(t). 
In this case z(t) must also predate on x(t), for otherwise persistence would be 
impossible. The hypotheses, in addition to (H 1)-(H 10), are as follows (also see 
Rescigno and Jones, 1972). 

(Q1): F~(x, y, z)<0  for z>0.  
z(t) is a predator of x(t). 

(Q2): Gz(x, y, z)<0  for z>0.  
z(t) is a predator of y(t). 

(Q3): n(0,  y, z)<0,  Hx(x, y, z)>0,  Hr(x, y, z)>0, Hz(x, y, z)<<, O. 
Without the x population, neither y nor z can survive. However, increasing 

either x or y increases the growth rate of z. For fixed x and y, increasing z may 
increase its intraspecific competition for food which in turn may lead to a 
decrease in its growth rate. 

Note that under hypotheses (Q1)-(Q3), E L and/~ do not exist. 
The requirement in Theorem 1 that H(K, O, 0)>0 implies that the z 

population can survive on the x population in the absence of the y population. 
This also implies that a unique (because of (Q 1)-(Q3)) equilibrium of the type 
/~ also exists. In other words, the x population exhibits effective group defence 
against the y-population, but not against the z population. 

5. Discussion. In this paper we have considered a predator-prey system, 
where the prey population exhibits group defence against the predator 
population, and where the predator-prey system interacts with a third 
population in such a way that extinction of any population is prevented. 

We have modelled our interacting populations by a system of autonomous 
ordinary differential equations. The hypotheses on this system simulate 
predator-prey behaviours with group defence (Freedman and Wolkowicz, 
1986), where the predator cannot survive on the prey due to group defence 
effects in the absence of additional interactions. 

The main theorem in subsection 3.5 gives additional conditions for 
persistence of all three populations. Most of these conditions state that 
invariant sets in the planes repel orbits initiating near them in the interior of 
R 3 . Biologically, this may be interpreted as saying that the third population 
can successfully invade a system where the other two are interacting in a closed 
environment. 

Some of the conditions, such as acyclicity and isolatedness of closed 
invariant sets are for technical mathematical reasons, since without these 
conditions our techniques for proving persistence do not seem to work. No 
biological interpretations for these are available at this time. 

However, the condition that H(K, 0, 0) > 0 is readily interpreted in terms of 
the interactions between the x population and the z population in the absence 
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of the y population. This condition implies that at carrying capacity, the prey 
can be successfully invaded by the z population. 

One can easily see the role ofz in its relation to the predator y. The predator 
cannot survive on the prey, not because there are too few prey, but rather 
because there are too many. It is then the role of the z population to bring the 
prey population down to a level where the group defence mechanism no longer 
is in effect. 

This was illustrated by the two examples. In the first example the z 
population is a competitor with the prey for certain resources. The z population 
may itself be a prey ofy and supply sufficient food for y to survive. If not, then z 
must outcompete x to the point where the x population level is lowered, but not 
so low that x goes extinct. In other words, as competitors, x and z must be 
capable of coexisting in the absence of y. This, of course, can occur even in 
Lotka-Volterra models of coexistence. 

In the second example, the z population is a predator of both the x and y 
populations. The y population is in the anomalous situation of requiring z for 
its own survival, but at the same time must pay the cost by having z predate on 
it as well. Hence z is at the same time a predator and obligate mutualist of y. 

These two examples indicate only two interpretations of the z population. 
There are many other possible interpretations, z could be a pure mutualist of y, 
or z could predate on x and not interact directly with y, for instance. 

This paper deals with survival of the predator population as a consequence 
of the predator-prey system interacting with a third population. Another 
mechanism leading to survival of the predator population was discussed in 
Freedman and Wolkowicz (1986), namely mutual interference among 
predators. 

There could be other mechanisms leading to predator survival. It may be 
that the predator-prey system will interact with several other populations, 
leading to predator survival. Possible dispersal among patches in a hetero- 
geneous environment or the introduction of time delays will lead to predator 
survival. We leave investigations of these other possibilities to future work. 

APPENDIX 

In this appendix we prove Theorem I and Corollary 2. First  we require a lemma. 

LEMMA (BUTLER-McGEREE).  Let Po6~t", #(Po) be the orbit through Po, f~(Po) be the omega 
limit set of  (9( Po). Let J// be a compact, isolated invariant set in R ~, and let W + (J/l) ( W -(d/ ) )  be the 
strong stable (unstable) manifold of  d /  and W + (~t')(W,~ (.A/)) be the weak stable (unstable) 
manifold of  J/{. Suppose that W + (~//)\ W + (dt')nf~(Po) ~ q~( W~ (J//)\  W - (.~')ng)(Po) # qS) then 
W + ( , , / t ) \ J t 'n~(Po)  # q~ and W -  ( , ~ ) \ , , / t ~ ( P o )  # ~b. 

The proof  may be found in Butler and Wal tman (1986). 
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Proof of Theorem I. We first note that the dissipativeness of system (2. I) implies that if Po~R 3, 
the nonnegative orthant, then ~(Po) is contained in a compact set. In addition, we note that the 
coordinate planes are invariant, and by isolatedness, there are at most a finite number of closed, 
finite invariant sets in the coordinate planes. 

Now let J[1 be a compact invariant set in the coordinate planes. Further, suppose 
J/1 c~fl(Po)q: q5 for some Po~int R 3 . By hypotheses (3.6) and (3.7), (9(Po) cannot approach ~ t  
monotonically, and hence W+~(JCl)\W+(J,[l)c~f~(Po)~C~. Now by the Lemma, 

Hence there is a point P~ such that PI~W+(~(41)kJ41 and PI~(Po). By the properties of 
omega limit sets of dynamical systems, cl (9(P~)c~(Po). If cl (P(P~) is unbounded, we have a 
contradiction. If not there must exist an invariant set in the coordinate planes, J42 such that 
J42-~J[~ and Ji2r~(Po): / :  ~b. Repeating the arguments for J / l ,  we conclude the existence of 
J43, J /4,  �9 �9 �9 But this must terminate after a finite number of times, since there are only a finite 
number of such invariant sets in the coordinate planes and they are acyclic. Hence there is a k 
such that Pk ~ W + (Jik)\~iikn~(Po) and cl (9(Pk) is unbounded, contradicting the statement that 
~1~(Po)~ ~. 

Since ~(Q) is an invariant set when Qe~R3+, then f~(Po)n(SR3+ =(~ and system (2.1) is 
persistent. 

Proof of Corollary 2. By assumption of this Corollary, system (2.1) now satisfies all the 
assumptions of Theorem of Butler et al. (1986), from which the Corollary follows. 
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