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A new algorithm for optimal sequence alignment allowing for long insertions and deletions is 
developed. The algorithm requires O ( ( L + C ) M N )  computational steps, O(LN)  primary 
memory and O(MN) secondary memory storage, where M and N (M~> N) are sequence lengths, 
L (typically L~< 3) is the number of segment specifying the gap weighting function, and C is a 
constant. We have also modified our earlier traceback algorithm so that it finds all and only the 
optimal alignments in a compact form of a directed graph. The current versions accept a set of 
aligned sequences as input, which facilitates multiple sequence alignment by some iterative 
procedures. 

1. Introduction. Currently the most reliable and widely used methods for 
aligning a pair of biological sequences are those based on dynamic 
programming. Since the first development by Needleman and Wunsch (1970), 
these alignment methods have undergone great advances both in mathematics 
(Sellers, 1974; Waterman et al., 1976; Smith et al., 1981) and in algorithms 
(Sankoff, 1972; Gotoh, 1982; Wilbur and Lipman, 1983; Ukkonen, 1983; 
Fickett, 1984). Some earlier methods used a gap-weighting function w(k) 
directly proportional to the gap length k, i.e. w(k)=kw(1). However, 
accumulating experience with real biological sequences has revealed that better 
alignments are available when a length-independent term is supplemented to 
the gap-weighting function, i.e. w(k) is linear as a function of k (Fitch and 
Smith, 1983). Gotoh (1982) first showed an O(MN) algorithm with a linear 
(affine) gap weighting function, where M and N (M~> N) are sequence lengths. 
Gotoh's algorithm has been further improved and generalized in several 
respects (Fredman, 1984; Taylor, 1984; Waterman, 1984; Altschul and 
Erickson, 1986; Gotoh, 1986; Myers and Miller, 1988). 

Because a long stretch in a biological sequence can be lost or added by a 
single mutational event such as unequal crossing-over or transposition of a 
movable element, the probability of occurrence of a long gap seems almost 
independent of the gap length, while short insertions or deletions would occur 
in a length-dependent frequency. One way to incorporate this situation into 
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alignment procedures is to use a "local" sequence matching method (Smith and 
Waterman, 1981; Gotoh, 1987). Another way is to use a global alignment 
method with concave gap-weighting functions. Waterman et al. (1976) 
presented an O ( M N ( M + N ) )  algorithm which allows any non-decreasing 
functions as the gap costs. Later Waterman (1984) proposed a more efficient 
algorithm, conjectured to require O ( M N  log(M)) computational steps, with a 
concave gap-weighting function. Miller and Myers (1988) have recently 
improved Waterman's method so that both computation time and storage are 
considerably saved. However Miller and Myers' algorithm produces only one 
(or at most two) optimal alignment, even if there are many alternative optimal 
alignments. Moreover its implementation is sometimes difficult because many 
arrays of variable size must be allocated at run time. 

We present here a much simpler algorithm when w(k) is given by a piecewise 
linear function (see Fig. 1). The algorithm is a straightforward extension of our 
previous method with a linear gap-weighting function (Gotoh, 1982). We also 
demonstrate an efficient method to obtain a solution set which includes all and 
only the optimal alignments in a compact form of a directed graph. Although 
the accepted functional forms are somewhat restricted, the algorithm is simple 
and fast, and produces as good alignments as do more general methods. 
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Figure 1. A piec~wise linear gap-weighting function. The thick solid lines represent a 
piecewise linear gap-weighting function, w(k), which approximates a smooth 

concave function (thin line). 

2. Algorithm. To make the description clear, we briefly reproduce here the 
algorithm of Waterman et al. (1976). Let the two sequences under comparison 

b e  a = ala2 �9 �9 aM and b = bib2.  �9 �9 bN. The algorithm evaluates the elements of 
"distance matrix" D(m, n) by induction: 

D(m, n)= min{D(m-- 1, n-- 1)+ d(am, bn) , F(m, n), G(m, n)), (1) 
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F(m, n)= min (D(m-k, n)+w(k)}, (2) 
l<~k<~m 

G(m, n)=  min {D(m, n - k ) + w ( k ) } ,  (3) 
l~<k~<n 

and d(a,,, b,,) is a measure of dissimilarity between residues a m and b,. Under 
certain initial conditions, the induction proceeds in any appropriate order from 
m = 1 to M and n = 1 to N. D(M,  N) is the desired distance between sequences a 
and b, and the path(s) through which the minimum value for D(m, n) is chosen 
at each step gives the optimal alignment(s). The algorithm finishes after 
O ( M N ( M  + N)) computational steps. 

Now we consider the case of w(k) being piecewise linear, i.e. w(k) = wi(k ) = 
u ik+v  i ( K i _ x < k ~ K i ,  for l<~i<~L), where Ko=0,  KL=OO, ui>ui+l>/O, 
w i( Ki) <~ w , + a ( Ki), and w i( Ki + 1)>wi+ a ( Ki + 1)(1 <<. i < L ). Then: 

D ( m -  k, n) + wi(k ) >>. D ( m -  k, n) + w i_ l(k), (4) 

for k<~Ki_ 1 ( I<i~<L)  and: 

D ( m - k ,  n)+ wi(k)> D ( m - k ,  n)+ wi+ l(k), (5) 

for k > K i (1 <~ i < L ) because w i( k ) <~ w i + l ( k ) for k <~ K i, and w i( k ) > w i + l ( k ) for 
k > K i . These imply that outside the range where w(k)= wi(k ), i.e. k <<. K i_ 1 or 
k > K  i, there is at least one other term that is smaller than or equal to 
D ( m -  k )+  wi(k ). Hence, returning to equation (2), we get: 

F(m, n) = m i n [  min { D ( m -  k, n) + wi(k)}] 
l<~i<~L Ki-l<k<~min(Ki,ra) 

= min {Fi(m, n)}, (6) 
l <.i~L 

where: 

F/(m, n)--- min {D(m- k, n) + wi(k) } 
l ~ k ~ m  

= min{D(m-  1, n) + vi, F / (m-  1, n)} + ui. (7) 

Note that the domain of wi(k ) is extended in the definition of Fi(m, n). The last 
equation has been derived in the same manner as described in Gotoh (1982). By 
symmetric logic, we get: 
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G(m, n)-- min {Gi(m, n)}, (8) 
l <~i<~L 

and: 

Gi(m, n)=min{ D(m, n -  1)+vi, Gi(m, n -  1)} + u i. (9) 

If we define Fo(m, n)-D(m-1,  n-1)+d(am, bn), and Fii+L(m, n)-Gi(m, n), 
equation (1)is rewritten as: 

D(m, n)--- min {F//(m, n)}. (10) 
O<~i<~2L 

Combination of equation (10) with equations (7) and (9) completes one cycle 
of the induction process. Because it takes O(L) steps to calculate equation (10), 
and constant steps for equations (7) and (9), the total process finishes in 
O((L + C)MN) computational steps. Moreover, because a single row, column, 
or reverse diagonal of each matrix of D, and F~ is enough to hold the 
information accessed later, the program will run with O(LN) (or at most 
O(L(M + N)) memory. 

3. Traceback 
3.1. Abstract structure of optimal alignments. When two sequences are 

compared, possibly many alignments may have the minimum distance, i.e. 
multiple alignments may be "optimal". The set of these optimal alignments is 
called a solution set. Unfortunately, it is often impractical to enumerate all the 
optimal alignments in the standard manner. As discussed below, however, the 
complete structure of a solution set can be compactly represented in terms of a 
directed acyclic graph (solution graph). Our traceback algorithm is now 
adapted for producing the solution graph more efficiently and completely than 
those previously proposed (Gotoh, 1986). 

For a representative example, we consider alignment between a = AGT and 
b--TGAGTT, the problem previously discussed by Altschul and Erickson 
(1986). There are three optimal alignments (Fig. 2) between a and b when 
d(x, x)=0,  and u=v=d(x, y)=  1 (x#y). 

Each alignment is also exhibited by a path in a two-dimensional Cartesian 
coordinate system (Fig. 2b). A diagonal stretch in a path represents a run of 
matches (a matching block), and a vertical or horizontal stretch represents a 
deletion in either sequence. It is obvious that there is a one-to-one 
correspondence between such a path (and hence an alignment) and the list of 
coordinates at the terminals of each stretch in the path. We call such a list a 
skeletal representation of the alignment (Fig. 2c). Adjacent elements, (i, j) and 
(m, n), in a skeletal representation have one of the three relations: (1) 
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Figure 2. Various forms of representation of the three optimal alignments between 
a = AGT and b = TGAGTT. Ia] Standard alignments, I'b] path representations in a 
Cartesian coordinate system, [c] skeletal representations (A-C) and a solution 

graph (D), and [d] their reduced forms. 

i - j = m - n ,  which corresponds to a matching block of a~+lai+ 2 . . .  
a m "b j+ lbj+2 . . .  b,; (2) i =  m and j <  n, which corresponds to an insertion of 
bj + 1 bj + 2 �9 �9 �9 b, opposite to the site between a i and a t + 1 ; or (3) i < m and j = n, 
which corresponds to an insertion of a~+la~+ 2 . . .  a m opposite to the site 
between b~ and bj+ 1- 

The composite structure of the optimal paths (Fig. 2D-b) is equivalent to the 
directed graph (Fig. 2D-c) which we will call the solution graph of optimal 
alignments between a and b. Each arc in a solution graph represents either a 
matching block (diagonal arc) or a deletion/insertion (non-diagonal arc), while 
a node corresponds to the coordinates at a terminal of such a block. A node is a 
branch node if it is a head of or a tail of more than one arc. A skeletal 
representation is a special solution graph with no branch node. A solution 
graph is acyclic because i<<.m andj~<n for any arc ( i , j ) ~ ( m ,  n). 

Given a solution graph, it is easy to decompose it into individual skeletal 
representations by a depth-first search algorithm (Aho et al., 1983). Variants of 
depth-first search algorithm are also useful to evaluate various interesting 
properties associated to the optimal alignments, e.g. the number of optimal 
alignments, the average percentage of sequence identities, etc. 
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3.2. Reduced form. We assume here that a deletion in one sequence is never 
immediately followed by a deletion in the other sequence. This is a desirable 
property for biological sequence alignment, and ensured if u z >t max d(x, y)/2. 
Then, diagonal and non-diagonal arcs alternately appear in an optimal path. If 
an optimal path starts or ends with a non-diagonal arc, the source (0, 0) or the 
sink (M, N) is regarded as an empty diagonal arc that precedes or follows the 
terminal non-diagonal arc. In such a case, non-diagonal arcs and their tails are 
dispensable because they can be recovered by interpolation from the 
neighbouring nodes. Namely, if ( i , j ) ~ ( k ,  l) and (k, l ) ~ ( m ,  n) are adjacent 
diagonal and non-diagonal arcs, respectively, then k - l = i - j  and either k = m 
or I=n,  and therefore (k, l) is obtained from (i,j) and (m, n) as: 

i - j > m - n = ~ k = m  and l = m - i + j ,  

i - j < m - n = , . k = n + i - j  and l=n .  

Alternatively, a node (m, n) in a reduced solution graph may be interpreted 
to represent a matching block that starts with a m + x and b, + ~, whereas an arc 
( i , j ) ~ ( m ,  n) represents an insertion that ends with a m or b. (depending on the 
sign of i - j -  m + n). The output from our traceback routine described below is 
a reduced form of solution graph such as that shown in Fig. 2D-d. 

3.3. Traceback. The principle of the traceback procedure is to construct the 
reduced form of solution graph for every subsequences ala 2 . . .  a m and bib 2 . . .  
b, (1 ~< m ~< M, 1 ~< n ~< N). We use two kinds of linked lists to implement these 
solution graphs. Each element of the first kind of list (primary list) is a "SAVE 1- 
type" record consisting of four members, {m, n, p, q}, where (m, n) specifies a 
matching block that starts with am + ~ and b, + 1. The pointer variable p points to 
an previously stored record, {m', n', p', q'}, and indicates (m', n ' )~ (m ,  n) is an 
arc in the reduced solution graph for subsequences ala 2 . . ,  a m and bib 2 . . .  b,.  
Variable q is a pointer to secondary list composed of"SAVE2-type" records of 
the form {p, q}. The role of the secondary list is to manage multiple paths from 
the same direction as discussed later in detail. 

Figure 3 shows the outline of the algorithm. A Boolean variable E~(m, n) 
indicates whether F~(rn, n) has been chosen, and El(m, n) = true means that one 
or more optimal path comes to the point (m, n) from the direction indicated by 
i. Pi(m, n) is a SAVE2-type record with two pointer variables. Note that an 
assignment to a record means a copy of the values for all members. Traceback 
information is stored when (m, n) represents a matching block, i.e. E~(m, n)= 
true for some i>  0 and Eo(m + 1, n + 1)= true. The latter condition is testable 
only after the induction proceeds to the point (m+ 1, n +  1), and hence the 
actual storing operation must be retarded until the function adr(m, n) is called 
at point (m + 1, n + 1). This function refreshes the pointers after storing the 
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SAVEl-type records as indicated by Ei(m, n). If Ei(m, n)=true for several i, 
(m, n) is a branch node where paths from different directions join. 

Function link(m, n, i), on the other hand, handles joining of paths from the 
same direction, e.g. (k, n)--',(m, n) and (l, n)--,,(m, n), when: 

O(m, n) = Fi(m, n)=O(k, n)+wi(m-k)=O(l ,  n)+w~(m-l), (11) 

l <~i<~L, and k <l<m. 
If equation (11) holds, then: 

Fi(l, n)= O(l, n) + v~, (12) 

because there is some x (0 ~< x < l) so that: 

O(x, n) + wi(l-  x )= Fi(l, n) <~ D(k, n) + wi( l -k  ) 

= O(l, n) + vi= Fi(m, n ) - u  i �9 (m- l )  <~ O(x, n) + wi(l-  x ). 

The last relation derives from F~(m, n)<~D(x, n )+wi (m-x  ) for any x<m. Of 
course similar arguments apply when L < i ~ 2L. A set of joining arcs from the 
same direction is therefore best implemented by a singly linked list (secondary 
list) which increases a new element when the two terms in the right member of 
equation (7) [or equation (9)] have the same value. (This is equivalent to 
equation (12) with m -  1 substituted for l.) Function link(m, n, i) manages the 
addition of a new element. The entry to a secondary list is held in Pi. q(m, n) 
while the terminal of each list is indicated by q = nil. 

Figure 4 shows the results of a run of the algorithm for the example in Fig. 2. 
The arrows in Figs 4B and C indicate the routes of traceback. We extract only 
the nodes that contribute to the optimal alignments with the structural 
information about their links inherited. At this stage, the duplicate nodes which 
may appear when wi(K~)= wi§ 1 (Ki) and the optimal alignment(s) happens to 
have a gap(s) of just the length of K~ are eliminated. The resulting directed 
graph is the desired solution graph in a reduced~ (Fig. 2D-d) if the 
directions of arrows are reversed. 

4. Comparison with Other Methods. Some years ago we showed an 
O((L + C)MN) algorithm for optimal sequence alignment with piecewise linear 
gap-weighting functions (Gotoh, 1982). The present method is simpler and 
uses less memory space than the earlier version. Our algorithm imposes a 
limitation in the form of gap-weighting function as compared with the more 
general approach of Waterman (1984). However, the improved speed and 
reduced memory requirement well counterbalance the quality of the alignment 
which might be affected a little, if any, by the approximation in the gap- 
weighting function. Very recently, Miller and Myers (1988) have proposed two 
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function adr(m,n): SAVE2-type; 
begin 

adr.p := Current position of the primary list; 
adr.q := nil; 
for  i := 0 t o  2L d o  

if Ei(m,n) then 
write { m, n, Pi(m,n) } into the primary list; 

e n d ;  
end; 

function link(m,n,i): SAVE2-type; 
begin 

link.p := Po(m,n).p; 
link.q := Current position of the secondary list; 
write { Pi(m,n) } into the secondary list; 

e n d ;  

for  m : =  1 t o  M do  begin  
for  n :=  I t o  N d o  begin  

for i : =  1 t o  L do  begin  
j := L + i; 
Fi(m,n) := Min { D(m-l,n) + vi, Fi(m-l,n) } + ui; 
Fi(m,n) := Min { D(m,n-1) + vi, Fi(m,n-l) ) + ui; 
i~ D(m-l,n) + v i < Fi(m-l,n) then ~ 

Pi(m,n) := Po(m-l,n) else 
if D(m-l,n) + v i = Fi(m-l,n) then 

Pi(m,n) := link(m-l,n,i) 
else Pi(m,n) := Pi(m-l,n); 
if D(s,n-1) + v i < Fi(m,n-1 ) then 

Pi(m,n) := Po(~,n-1) else 
if D(m,~-1) + v i = Fi(m,n-1 ) then 

Pi(m,n) := lin~(m,n-l,j) 
else P~(m,n) := Pj(m,n-1); 

end; 
Fo(m,n) := D(m-l,n-1) + d(am,bn) ; 
D(m,n) Min { Fi(m,n) (0 �9 i ~ 2L) } 
for i := 0 to 2L do 

if D(s,n) = Fi(m,n) then Ei(m,n) := true 
else Ei(m,n) false; 

if Eo(m,n ) a n d  Ei(m-l,n-1) for some i > 0 then 
PO(m,n) := adr(m-l,n-1) 

else 
PO(m,n) := Po(m-l,n-1); 

e n d ;  
end; 
Plast := adr(M,N); 

Figure 3. Algorithm of the forward process for optimal sequence alignment with a 
piecewise linear gap-weighting function. This is not a program itself and does not 

use exactly correct PASCAL grammar. 

related algorithms which have considerably better empirical performance than 
Waterman's algorithm. Miller and Myers' Algorithm 2 (MM-2) takes 
O(MNlog(N+M)) asymptotic calculation time for general concave gap- 
weighting functions, and O(MN log(L)) time for piecewise linear functions. 
Thus the asymptotic performance of MM-2 is better than our algorithm that 
takes O(MN(L + C)) calculation time. For small values of L, however, our 
algorithm seems to be more efficient than MM-2, since the overhead in MM-2 
due to management of a number of stacks and function calls of binary searches 
lowers the execution rate below that theoretically expected. We have long felt 
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(A) (B) 
m n FO F1 F2 EO E1 E2 PO Pl P2 qo ql q2 # m n p q 

0 0  0 | | 1 0 0  1 0 0  0 0 0  
0 1  | | 2 0 0 1  0 0 1  0 0 0  
0 2  | | 3 0 0 1  0 0 1  0 0 0  
0 3  | | 4 0 0 1  0 0 1  0 0 0  
0 4  | | 5 0 0 1  0 0 1  0 0 0  
0 5  | 1 7 4  5 0 0  ~ 0 0 1  0 0 0  
0 5  | | 7 0 0 1  0 0 1  0 0 0  
1 0  |  | 0 1 0  0 1 0  0 0 0  
1 1  1 4 4  1 0 0  1 0 0  0 0 0  
1 2  3 5 3  1 0 1  2 0 1  0 0 0  
1 3  3 6 4  1 0 0  3 0 1  0 0 0  
1 4  5 7 5  1 0 1  4 0 3  0 0 1  
1 5  6 8 6  1 0 1  5 0 3  0 0 1  
1 6  7 9 7  1 0 1  6 0 3  0 0 1  
2 0  |  | 0 1 0  0 1 0  0 0 0  
2 1  3 3 5  1 1 0  7 1 0  0 0 0  
2 2  1 5 5  1 0 0  1 2 7  0 0 0  
2 3  4 5 3  0 0 1  2 3 1  0 0 0  
2 4  3 7 4  1 0 0  3 4 1  0 0 0  
2 5  6 8 5  0 0 1  4 5 3  0 0 2  
2 6  7 9 6  0 0 1  5 6 3  0 0 2  
3 0  |  | 0 1 0  0 1 0  0 0 0  
3 1  3 4 6  1 0 0  8 1 0  0 0 0  
3 2  4 3 5  0 1 0  7 1 8  0 0 0  
3 3  2 5 5  1 0 0  1 2 7  0 0 0  
3 4  4 5 4  1 0 1  9 3 1  0 0 0  
3 5  3 7 5  1 0 0  3 4 1  0 0 0  
3 5  5 8 5  1 0 1  1 0 5 3  0 0 0  

I 

/ 
i / 

i I 

P// q 

Figure 4. Results of execution of the algorithm. (A) Matrix elements of F~, E~, 
P~. p(p~), and P~. q(q~). The values shown are at the end of each cycle in the induction. 
The constants true and false are represented by 1 and 0, respectively. (B) The 
primary and (C) the secondary lists. Arrows indicate the routes of traceback. 
Record Nos. 11 and 12 in the primary list realize a joining of arcs from different 
directions, while record No. 10 in the primary and No. 2 in the secondary lists 

realize a joining from the same direction. 

no practical disadvantage even with two segments (L = 2) of linear functions. 
For a fixed L, our algorithm may be implemented in a manner  suitable for 
parallel processing. It is not immediately clear whether a complete solution set 
is easily available with a modification of MM-2 which is designed to get only 
one optimal alignment. 

The traceback algorithm discussed above has fixed the incompleteness in 
those of Taylor (1984) and Gotoh (1986); Taylor's method might find non- 
optimal alignments (Altschul and Erickson, 1986) whereas Gotoh's might miss 
some optimal alignments like Fig. 2C since only a single path was taken from 
one direction at each node. Now we get all and only the optimal alignments 
with a single O ( ( L +  C)MN)  induction process and a traceback routine with 
O(T) operations, where T is the total number of gaps in all the optimal 
alignments. Our traceback routine is much more efficient than that of Altschul 
and Erickson (1986) for the same purpose, because only those records that 
participate in the final solutions are read and processed, and because the data 
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structure is fully adapted for the subsequent depth-first-search routine. 
Altschul and Erickson's method takes additional O(MN) steps for "edge 
assignment", and the final alignments are available after further bit manipula- 
tions the cost of which can be serious. To directly assess the performance, we 
implemented Altschul and Erickson's method with accommodation to a 
piecewise linear gap function. The results tested on an IBM PC-AT are shown 
in Table 1, which indicate that our method is really less time-consuming than 
Altschul and Erickson's, although the relative efficiency may be significantly 
machine-dependent. Compared with the method of Altschul and Erickson, the 
present method for linear gap-weighting functions (L = 1) requires consider- 
ably larger storage, the precise size of which varies with the sequences and 
weight values as well as the sequence lengths. From a number of examinations 
we estimate that the storage requirement for alignment of protein sequences is 
about three times more than that needed by a bit map produced by Altschul 
and Erickson's method. For nucleotide sequences, the storage requirement 
amounts to six to nine times of Altschul and Erickson's bit map. However, the 
storage required in our method is only slightly dependent on L while it 
increases in proportion to L with a direct modification of Altschul and 
Erickson's method (examples are shown in Table 1). Hence, the required 
storage becomes comparable as L increases. 

5. Implementation and an Example. We originally implemented the algor- 
ithm in C on a SONY NEWS-831 engineering workstation running under 
UNIX (4.2 BSD). The codes were then transferred to an IBM PC-AT, 
compiled with Turbo-C compiler (Borland International) and proven to be 
portable with minor changes. The sources, on an MS-DOS-format floppy disk, 
will be available from the author upon request. 

Figure 5 shows alignments of human (Anderson et al., 1981) and X. laevis 
(Roe et al., 1985) mitochondrial 12s rRNAs at the 5' portions. Each alignment 
is a representative of a solution set obtained with parameter sets in a domain of 
the same label (Fig. 6). A shadowed region in Fig. 6 has a complicated 
structure which is not detailed because the condition u I >~max d(x, y)/2 is 
violated or corresponding alignments have excessive gaps. All solutions shown 
are obtained with two- or three-segment gap functions, whereas solutions other 
than A, C, and K are not available with linear gap functions. Alignment F or 
one of its equivalents is most likely to be the correct one as judged from the 
proposed secondary structure models (Zwieb et al., 1981; Roe et al., 1985) and 
consistency of alignments with other mammalian sequences. The minute 
differences of solution D, G, I or J from F might be considered insignificant, but 
none of these plausible solutions is obtained with linear gap functions. The 
propriety of the use of piecewise linear gap-weighting function is also 
demonstrated by Monte Carlo simulations as the large values for normalized 
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Figure 5. Optimal alignments at the 5' portions of human (upper) and ,I". laevis 
(lower) mitochondrial 12S rRNAs. Each alignment is a representative of a solution 
set obtained with sets of parameter values specified in Fig. 6 by a domain with the 
same label. The numbers of equivalent solutions (n), matched identical (c) or non- 
identical (r) residues, unpaired residues (u) and gaps (~) are shown above each 
alignment. Some statistics associated with these alignments are listed in Table 1. 
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Figure 6. Parameter domains that give the same optimal solutions whose 
representatives are shown in Fig. 5. (A) Linear or (B) two-segment linear gap- 
weighting functions are used. Parameters u I and v I are varied with fixed values for 
d(x,x)=O, d(x,y)=lO (x~y), u2=5, and KI=10. Shadowed regions are not 
examined because u 1 <max d(x, y)/2, or are uninteresting because too many gaps 

are involved in the corresponding alignments. 

deviation from the average (Table 1). Table 1 also shows that the value for 
constant C is approximately 2 to 3, though it actually depends on 
implementation. 

in addition to the two major improvements described above, the current 
versions (alp for protein sequences and aln for nucleotide sequences) have been 
improved in several other points. First, a set of aligned sequences is accepted as 
input, which facilitate multiple-sequence alignment with some iterative 
procedure. Second, several command-line options are supported to make a 
number of calculations automatically. For example, "alp/aln-e catalog_file" 
performs alignment between every pair of sequences listed in the catalog_file. 
(Most of the options are common to those used in our local pattern matching 
programs, psm/nsm (Gotoh, 1987).) Similarly, "alp/aln -b tree_file" constructs 
a multiple-sequence alignment iteratively from closer pairs of sequences (or sets 
of aligned sequences) in much the same manner as noted by Waterman and 
Perlwitz (1984) and Feng and Doolittle (1987), where tree_file contains the 
sequence names and topological information about their relatedness. In 
combination with our three-sequence matching programs alp3/aln3 (Gotoh, 
1986), multiple-sequence alignments of good quality are obtainable. An 
alignment of cytochrome P450 proteins with nearly 40 members was obtained 
in this way, and evolutionary and structural implications derived from the 
alignment are discussed elsewhere (Gotoh and Fujii-Kuriyama, 1989). 
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