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Abstract: In this paper, it is dealt with that the Hamiltonian formulation of non- 

linear water waves in a two-fluid system, which consists of two layers of constant- 

density incompressible "inviscid fluid with a horizontal bottom, an interface and a free 

surface. The velocity potentials are expanded in power series of the vertical coordi- 

nate. By taking the kinetic thickness of lower fluid-layer and the reduced kinetic 

thickness of upper fluid-layer as the generalized displacements, choosing the velocity 

potentials at the interface and free surface as the generalized momenta and using 

Hamilton' s principle, the Hamiltonian canonical equations for the system are de- 

rived with the Legendre transfomuuion under the shallow water assumption. Hence 

the results for single-layer fluid are extended to the case of stratified fluid. 
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Introduction 

The geometrization of mechanics is a tendency of the development of continuum mechanics 

and draws extensive attention of researchers. Through the efforts in one and half a century, the 

geometrical theory of dynamics of particles and rigid bodies has laid a solid foundation and during 

the past decades, people turned to explore the corresponding theory for continuum mechanics. In 

recent years, the study of Hamiltonian structure, symmetries and conservation laws for water 

waves has become one of important subjects in dynamics of water waves. And thus a new system 

of treating water waves was brought about, in which the aim is to turn the investigation of water 

waves into that of infinite-dimensional Hami.ltonian structure and to study the water waves with 

the concepts and techniques in classical Hamiltonian mechanics and modem theory of mathematics, 

such as the differential manifold, the symplectic geometry, the Lie group and the Lie algebra. 

J. C. Luke first established the variational principle for water waves [1] , and the G. B. 

Whitham continued to investigate the variational principles for several problems of water waves 

and their applications C2] . V. E. Zakharov C3] found that the governing equations for water waves, 

under the assumptions of inviscidity, irrotationality, incompressibility and uniformity of density, 

form the Hamiltortian dynamical system, in which the positive-definite Hamiltonian functional is 

the total energy of fluid and the elevation r /o f  free surface and the velocity potential ~ at free 

surface represent the canonical variables. In fact, r/is the generalized displacement of infinite di- 
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mension, and ~ is the corresponding generalized momentum. V. E. Zakharov' s pioneering 
work opened a new way to explore the Hamiltonian canonical structure of the problems on water 

waves, a novel approach to study water waves [3] . J. W. Miles and D. M. Milder investigated 
rather completely Hamil ton 's  principle and the Hamiltonian canonical equations for water 
waves[4, 5]. T. B. Benjamin and P. J. Olver (1982) analyzed the relation between the Hamilto- 

nian structure for the original and approximate of water waves problems [6] . The existing fruitful 
results on the Hamiltonian formulation of water waves have been briefly reviewed in Ref. [7] .  

The Shallow water approximation and the Boussinesq assumption have been used for many 
years. The related idea and techniques are based on the estimation of magnitude order, that is, 

preserving the principal nonlinear terms and dispersion terms in the equations of motion. The ad- 
vantage of doing so is the appropriate simplification and the accompanying drawhackis the destruc- 
tion of Hamiltonian structure of the problems. In the Hamiltonian formulation, the Hamiltonian 
canonical vm'iables have not been changed and the corresponding approximation are automatically 
canonical, i. e . ,  Hamiltonian-slructure-preserving. For the Hamiltonian formulation of single- 
layered fluid under the shallow water approximation, W. Craig and M. D. Groves (1994) de- 
rived the approximate Hamiltonian equations of various orders for 2-D shallow water waves by using 
a convergent Tayler expansion of the Din'chlet-Neumann operators [s] . Starting form Hamilton's 
principle and using the Legendre transformation, the authors presented the Hamiltonian canonical 
equations for single-layered fluid [9] and the obtained results agreed with those in Ref. [8] ,  while 
the approach was simpler and the physical meaning clearer. In this paper, we shall further extend 
the results in Ref. [9] and under the shallow water assumption, consider a two-fluid system studied 
in Ref. [ 10]. We shall expand the velocity potential for the lower fluid as a series in terms of 
that at the bottom and the velocity potential for the upper fluid as a series in terms of that at the 
interface. And then the kinetic thickness ~1 of lower fluid and the reduced kinetic thickness ~2 of 
the upper fluid are taken as the generaliTed displacements; the velocity potential ~1 of lower fluid 

at the interface and the velocity potential ~2 of upper fluid at the free surface as the generalized 
momenta. That is to say, ( ~1, ~ t )  and ( ~2, ~2) constitute the pair of dual variables. Then 
with the Legendre transformation, the corresponding Hamiltonian canonical equations are derived 
for the system. Hence, the results in Refs. [3, 4, 9] are extended to a two-fluid system and other 
forms of equations governing nonlinear shallow water waves in the system are given, slightly dif- 
ferent from those presented in Ref. [ 10 ] ,  but more concise, which are in agreement with each 

other in the linearized approximation. 

1 V a r i a t i o n a l  P r i n c i p l e  a n d  H a m i l t o n i a n  C a n o n i c a l  E q u a t i o n s  fo r  t h e  Two-  

F l u i d  S y s t e m  

We consider the irrotational motion of two layers of h~aniscible incoml~essible comtant-density 

inviscid fluids. Suppose that the ratio of density of upper and lower fluids is tr( = p2/Pl ) ;  the 
(static) thicknesses of upper and lower fluids are h2 and h i ; the horizontal coordinates are x = 

( xl ,  x2), and the vertical coordinate is y ,  while the horizontal bottom is at y = 0; the elevation 

of interface is ~ l (x ,  t ) ,  and the elevation of free surface is r/2(x, t ) .  Denote s x R(r) as 
the considered domain of time and space. Assunae that the stratification of fluids is statically sta- 

ble (i.  e . ,  a < 1) and the ratios of hi and h2 to the characteristic wave-length obey the shallow 
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water assumption, i. e . ,  hl/2 a:z 1 and h2/2 ~ 1. 
From Hamilton's principle 

f~, 1 12 gy)dy ,  L2= af,1 ' Ll "- ('2" [ "41 ql(.~ [ V 42 

we can obtain the governing equations for the two-fluid system but 
boundary conditions. From the variational principle 

f2'( 1 12 ) L[ = 4 1 , , + ~  I V4x + gy dy,  

L~ = a ~2,, +-~ I 7 42 + gy dy, 

it follows that 

\ 
12 - gy )dy ,  ( l a ,b )  

( lc )  

cannot get the comple~ 

(2a) 

(2b) 

(2c) 

where 41 and #2 are the velocity potentials of upper and lower fluids respectively; 4i,, = 3 4 / 3 t ,  
~i,x = 3$i/Ox, ( i = 1, 2); g is the gravitational acceleration; 7 is the Hamilton's operator. 

Eqs. (3a ~ 3h) are just the governing equations and boundary conditions for the two-fluid sys- 
tem, so the variational principle (2) (i. e . ,  the principle of stationary pressure) can be regarded 
as the generalization of Luke' s variational principle for single-layered fluid [ ~]. Comparing the La- 
grangian function L * in Eqs. (2) and the Lagrangian function L in Hamilton' s principle ( 1 ) ,  we 
have 

I., = - L *  + f ~ ' ( I  7 41 12 + 4,,+)ay +f;i([ V 42 12 + 42,+)dy = 

-- L* -- [41(--  7 1 , "  " V 417  71 + 4 1 , y ) ] y = r / , -  [4141 ,y ]y - -O-  

o41 7241dy - [42 ( -  72,, - 7 427 72 + 42,r)]r=,l~ - 

[42(42, r+ 742771)]r=,1,  , f ' l  427242dy+ 
- h e 

a[~. a ar~. a f t , .  a af~,4a 
~ : 0  41 ~ #,ay + ~Jo 4,ay - ~j~,~2 ~ ~2dy + ~ j , ,  = y, (4) 

where the dummy indices follow the summation convention and the additional terms other than the 

7 ~1 = O, 0 < y < 71, (3a) 

7 ~2 = O, 71 < Y < 72, (3b) 

72, t + V 42 V 72 -- 42,y = 0, y = 112, (3c) 
1 

42,, + "~( 7 42) 2 + gY = O, Y = 72, (3d) 

71,t + 7 41 7 71 - 41,r = O, Y = 71, (3e) 

71,t "]" 7 42 7 71 -- 42,y = 0, Y = 71' (3f) 
1 ) (  ) 

+ ~ ( 7 ~ 1 )  2 + g y  - ~  4 2 , , + ~ ' ( 7 4 2 )  2+ gY = O, Y = 71, (3g) 

41,r = O, y = O, (3h) 
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term of divergence in Eq. (4) embody the conservation of mass. If ~i and p~ satisfy Eqs. (3), 

then those additional terms will disappear, while the last four terms in Eq. (4) will disappear as 
the boundary terms in the variational approach. Therefore L" and L can be considered to be dy- 
namicaUy equivalent. 

Since ~l is the harmonic function and satisfies the boundary condition at bottom ~l,r It=0 = 
0, therefore #1 can be expanded as 

1 2 ,t)+ r = 9 1 ( X , t ) - ' ~ y  V2~l(X O(h4/2t4), (5)  

where 91(X, t) = #I(X,  0, t ) .  
#2 is also the harmonic function and can be expanded as 

1 #2 = 92(X, t) § ( Y -  r ] l )~b- -~ ' (y  - 7~1)2 V292(X, t)  + 0(h3/23), (6) 

where 92(x,  t) = #2(x, 7/1, t) and # = [8#2/8Y]r = %. Under the shallow water assumption, 

we have 

1 2 2 O ( h 4 / ; t 4 ) ,  (Ta) 

~2 = 92 + ~b -- 1 ~ 2 V 2 9 2  + O(h3/A3), (7b) 

in which ~ = 7?2 - 771 is the "kinetic thickness" of lower fluid; #1 is the velocity potential of low- 

er fluid at the interface; ~2 is the velocity potential of upper fluid at the free surface. Substituting 
Eq. (5) into Eq. (2a) and neglecting the smaller quantifies lead to 

1 1 2 
91,x,91 z,] + 

1 t V 2 "~'7]~[ V291, + 91,x, 91.x, -- ( V291)2] �9 (8) 

Inserting Eq. (7a) into Eq. (8) and taking 

f f n , l l,,dxd, = f f a V1Ol)dxdt - f f nvl.,  ldxd,, (9) 

into account, the first term of right hand side in Eq. (9) turns into the boundary term in varia- 
tional approach, so Eq. (8) is reduced to 

1 1 2 1 3 
L; - -  ~l,t(~l + [~-7~l(~l,xpl,x, + "2-g'ql - "6"V1( V2(~1)2] " (10) 

Substituting Eq. (6) into Eq. (2b) and using Eq. (7b), we obtain 
I;: 1 1 

#,dy = ~92,t + ~2 ~t -- "6" ~3 V 2 92, l - -  

1 8 2 1 a_t( + ~ '~ ' -  2 ~ V292),  (11) 

If~ 22% 1 1~3( V q))2 __ 1~3 V 92 ~ V 292 + V #2 V #2dy = ~' [  6t( V 92) 2 + 

1 

1(332 16:3( V ~)2 1 ~ (  v ~)2~2 1 ~ : ( ~  (i92)2 - .~. ~3( V 2~2)2 + .~. -- -- -- 
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1 1 

At the interface of two fluids, the normal components of velocities are equal and by using 

Eq. (3e) we approximately have 

3y r = , l , -  8y r='l, = 0 = 7h,t, (13) 

became under the shallow water assumption V 7]1 and V 7]2 are small. 
Discarding the boundary terms which have no effect on the results in variational approach, 

we can obtain the Hamiltonian in the corresponding Hamilton's principle 

1 1 2 1 3 )2]_ 
---- -- L* ---- 7]1,tO1 + o.~t02 -- [2"7]1( V O1) 2 + ~'g7]l - 7711(  V201  

1 1 1 2 l g ~ ( ~  
6 ~ 3 (  V + -- 2711 a [ ~ $ ( V  02) 2.- 202)2 ~-$711,t + + )] (14) 

Set ~1 ---- 711 and ~'2 -- o.S. Then Eq. (14) reduces to 
1 2 1 3 z : +  2,,02- v 01)  2 + v 2 0 , ) 2 ]  - 

[ 1  _ 1 1 ] 
~'2( V 0 2 )  2 -- 60.21 ~.23( V202)2  + "2" ~'2~'2, t + ~ g~2( ~'2 + 2o.(1) . (15)  

We may as well choose ( ~'l, ~'2 ) as the generalized displacements of the two-fluid system. By 

definition we have 
aT, aT, 

Pl -- a~'l. t -- O1, P2 - 8~2, ' - 02,  (16) 

which indicates that the generalized momenta of the system are ( O1, 02) .  For single-layer fluid, 
the generalized displacement and momentum are respectively the elevation 7] of flee surface and 
the velocity potential �9 at the free surface and thus ( 7], O) constitute the canonical variables of 
the system, Eqs. (15) and (16) indicate that for the two-fluid system, two pairs of dual vari- 
ables, ( ~1, O1) and ( ~2, 02) form the canonical variables, in which ( ~1, ~2) are the "kinetic 
thickness" of lower fluid and the "reduced kinetic thickness" of upper fluid respectively. Making 
the Legendre transformation for Eq. (15) gives the Hamiltonian of the two-fluid system 

1 2 1 3  201)2 ] [1 ~2(V 02)2+ 

1 1 ~ , t ]  �9 1 "[~2  2~1) -~g~2~'~- + . _ __~3(6o.2 V202) 2 + "~'~2 (17) 

Thus far we have obtained the Hamiltonian functional for the considered system 

H = f f  I-Idx. (18) 
S o 

It is easy to verify that the following relation holds: 

~ , ( 1  12 ) ~ ( 1  12 ) ~I = "~1 V ~1 + gy dy + a ~ 1  7 ~2 + gy dy, (19) 

which means H in Eq. (18) is the total energy of the system. It can be shown that from the vari- 
ational principle 

~ff (~101  + ~ 2 0 2 -  H ) d x d t  ---- 0,  (20) O 
we can derive the governing equations and the complete set of boundary conditions. And Eq. 
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(20) is an alternative formulation of Eq. ( 1 ) ,  which has dynamical equivalence with Eq. (2) 
( see Ref. [ 9] ) .  Following the procedure in Ref. [9 ],  we can give out the Hamiltonian canoni- 
cal equation for the system 

U, = J ~--U' (21) 

(0 
whereU - ( ~ 1 , ~ 2 , ~ 1 , ~ 2 )  T, J = - 12 , 1 2 i s t h e 2 x 2 u n i t m a t r i x a n d J i s t h e m e a -  

sure matrix of simplectic geometry. Substituting Eqs. ( 17 ) and ( 1 8 ) into the Hamiltonlan carlo - 
uical equation (21) yields the governing equations for the two-fluid system 

SH 1 2( 
[1,t - ~O1 - -  V ( [ i V O l ) - ~ ' V  [137201), (22a) 

~H.  ___1 2( , 
~2,, -- ~02 ---- V(~2"7 02)--30.2 7 [3V202) (22b) 

1 1 OL, = - ~  = - ~ ( 7 0 1 )  2 - g ( [ 1  + ~2) + : [ 2 ( 7 2 0 1 )  2+  ([1,,~2),,  (22c) 

�9 ( 1 1 $H 1 , + [ 2 ) +  m [ 2 (  7202)2 [2,,. (22d) O2't ---- -- ~ 2  ---- -- ~ ' (  7 02) 2 g ,  ~1 0./ 20.2 -- 2" 

Nondimensionize Eq. (22) and only consider two-dimensional flow. Let 

7 O1 - "  u l ,  7 02--~ u2, (23 )  

and 

711 ---- ~l ---- 1 + [1, 7]2 - 711 = [2/0. = r(1 + ~2), (24) 
where r = h 2 / h l  is the thickness ratio of upper and lower fluids at rest. Under the linearization 
approximation, Eq. (22) turns into 

8~I 8Ul a~2 aU2 ' 1 
at = o ,  at o, 

aUl a~'l a[2 aU2 a[2 a~'l l (25): 
at +wTf  = o ,  at = 0 .  

The corresponding characteristic equation is 

(C 2 - 1)(C 2 - r) - o7" = 0, (26) 
which has solution 

C2= 1 [ ( 1  + r) •  - /.2) + 4 a t ] ,  (27) 

C+ and C_ are the velocities of linear gravity waves, corresponding to the fast mode (surface 

mode) and slow mode (internal mode) respectively (see Ref. [10]) .  
For the two-fluid system considered herein, Dai Shiqiang derived the general i Ted Boussinesq 

equation, starting from the shallow water approximation and taking vertical average of veloci- 
ties [1~ . The equations in F.q. (22) are slightly different from those presented by Dai Shiqiang, 
while the linearized form Eq. (25) agrees with those in Ref. [ 10]. The dispersion term derived 
with the shallow water approximation for the Hamiltonian system contains only the derivatives 
with respect to space variables, which is different from that in the Bonssinesq equation, which is 
the derivative with respect to space and time variables. 
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2 C o n c l u s i o n  

In the present paper, for a two-fluid system, the appropriate canonical variables (i .  e . ,  
generaliTed displacements and momenta) have been chosen for the fast time, that is, the kinetic 
thickness of the lower fluid and the reduced kinetic thickness of upper fluid have been taken as the 
generaliTed displacements and the velocity potentials at interface and free surface as the general- 
ized momenta respectively, The results show that the procedure presented above is an effective 
way to enter the Hamiltonian system. Exactly speaking, one should first establish Hamilton' s 
principle for the system, then define the appropriate canonical variables and finally obtain the 
Hamiltonian canonical equations via the Legendre transformation. The results herein are the ex- 
tention of those in Refs. [3 ] ,  [4] and [ 9].  
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