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We present a new symmetric model of the idiotypic immune network. The model specifies clones 
of B-lymphocytes and incorporates: (1) influx and decay of cells; (2) symmetric stimulatory and 
inhibitory idiotypic interactions; (3) an explicit affinity parameter (matrix); (4) external (i.e. non- 
idiotypic) antigens. Suppression is the dominant interaction, i.e. strong idiotypic interactions are 
always suppressive. This precludes reciprocal stimulation of large clones and thus infinite 
proliferation. Idiotypic interactions first evoke proliferation, this enlarges the clones, and may in 
turn evoke suppression. We investigate the effect ofidiotypic interactions on normal proliferative 
immune responses to antigens (e.g. viruses). 

A 2-D, i.e. two clone, network has a maximum of three stable equilibria: the virgin state and 
two asymmetric immune states. The immune states only exist if the affinity of the idiotypic 
interaction is high enough. Stimulation with antigen leads to a switch from the virgin state to the 
corresponding immune state. The network therefore remembers antigens, i.e. it accounts for 
immunity/memory by switching beteen multiple stable states. 3-D systems have, depending on 
the affinities, 9 qualitatively different states. Most of these also account for memory by state 
switching. 

Our idiotypic network however fails to account for the control of proliferation, e.g. 
suppression of excessive proliferation. In symmetric networks, the proliferating clones suppress 
their anti-idiotypic suppressors long before the latter can suppress the former. The absence of 
proliferation control violates the general assumption that idiotypic interactions play an 
important role in immune regulation. We therefore test the robustness of these results by 
abandoning our assumption that proliferation occurs before suppression. We thus define an 
"escape from suppression" model, i.e. in the "virgin" state idiotypic interactions are now 
suppressive. This system erratically accounts for memory and never for suppression. We 
conclude that our"absence of suppression from idiotypic interactions" does not hinge upon our 
"proliferation before suppression" assumption. 

1. Introduction. The immune system consists of a large number (> 107) of 
different clones of lymphocytes. The lymphocytes comprising such a clone all 
share identical antigen receptors. The variable (V) regions of these receptors 
are generated by random processes such as somatic recombination and 
somatic mutation (Early et al., 1980; Berek et al., 1985). The primary repertoire 
can therefore be visualized as a large (random) array of receptor molecules. Out 
of the total array of (random) antigen receptors, an antigen "selects" those 
structures (those paratopes) that provide a mirror image of the antigenic 
structure (the epitope, Jerne, 1974). This is clonal selection theory (Burnet, 
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1959). Only the clones with a receptor (paratope) that fits to one of the antigen 
epitopes become activated and proliferate. Following a period of proliferation, 
the B-cells acquire an effector function: they secrete their antigen receptors as 
antibody molecules which in turn eliminate the antigen. In the present paper we 
ignore the important facts that most B-cell responses require help from helper T 
cells. 

Jerne proposed his network hypothesis in 1974. Network theory is an 
implication of the axiom that the (random) primary repertoire is complete 
(Jerne, 1984). Jerne argued that the V-regions of lymphocyte receptors should 
also be recognized by other receptor molecules (paratopes). The antigenic 
determinants provided by a receptor molecule are called idiotypes (Jerne, 
1974). The interaction between two receptor molecules (i.e. a paratope seeing 
an idiotype) is an idiotypic interaction. The set of such interactions defines the 
immune network. Via their idiotypic anti-idiotypic interactions, different 
clones should thus be able to interact in either a stimulatory or a suppressive 
manner. The existence of network interactions, i.e. of idiotypic interactions, 
has since been proved with numerous experimental data (Jerne, 1984). 
Moreover the possibility that the functioning of immune systems is regulated 
by network interactions seems intriguing. Several authors have suggested that 
immune networks may acount for: (1) the maintenance of steady states (Jerne, 
1974; Cooper et al., 1984); (2) the control of proliferation (Jerne, 1974; Cooper 
et al., 1984); (3) the development of immunological memory (i.e. immunity, see 
Jerne, 1974); (4) low zone tolerance (Jerne, 1974); (5) self-non-self discrimina- 
tion (Hoffmann, 1975; Jerne, 1984; Holmberg et al., 1986). Similarly, idiotypic 
networks have aroused considerable theoretical interest (Richter, 1975; 1978; 
Hoffmann, 1975; 1979; 1980; 1982; Hiernaux, 1977; Seghers, 1979; Gunther 
and Hoffmann, 1982, Fey et al., 1984; Fey and Eichmann, 1985; Kaufman et 
al., 1985; Kaufman and Thomas, 1987; Farmer et al., 1986; De Boer, 1988; 
Segel and Perelson, 1988; Perelson, 1988). 

Jerne (1974) visualized the immune response as the "escape from 
suppression": in the absence of antigen (i.e. in the virgin state) network 
interactions are suppressive. According to Jerne (1974) this would guarantee 
the existence of a stable virgin state; see however De Boer and Hogeweg (in 
press). Antigens, e.g. viruses, perturb the suppressed state of the network, 
which results in proliferation and antibody production. For T cells similar 
"escape from suppression" models were proposed (based on the analyses of 
limiting dilution curves) (Cooper et al., 1984; Fey et al., 1984; Fey and 
Eichmann, 1985). 

Hoffmann (1975; 1978; 1980) developed a 2-D model (the "plus-minus" 
model) of the idiotypic network. This model incorporates the very important 
assumption that idiotypic interactions are symmetric, i.e. if clone X i recognizes 
Xj,  Xj  should also recognize X i. If recognition corresponds to complementary 
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matching, an idiotypic interaction should indeed be symmetric. Moreover, 
cells are activated by receptor crosslinking (Hoffmann, 1980), which is a 
process that cannot descriminate between paratope and idiotype. Additionally 
a considerable amount of experimental evidence favours the idea that idiotypic 
interactions are symmetric (Hoffmann, 1980; Jerne, 1984). However, although 
Hoffmann's (1975) original suggestion that idiotypic interactions are sym- 
metric is very attractive, it has been followed by only few authors (Fey et al., 
1984; Fey and Eichmann, 1985; Jerne, 1984). Note that symmetric network 
theory disposes of the distinction between paratope and idiotype; instead it 
regards V-regions as "sticky ends" (Hoffmann, 1980). 

Here we adopt the symmetric network theory. However we abandon the 
"escape from suppression" hypothesis: in our model we assume that the virgin 
state is devoid of (suppressive) network interactions. Such a model accounts for 
a (stable) virgin state maintained solely by the influx and turnover of newborn 
calls. Furthermore, we think that the most important role that suppression 
could play in regulating immune reactions is the control of excessive 
proliferation. This requires strong suppressive interactions when lymphocyte 
populations are large, and not, as '"escape from suppression" implies, in the 
virgin state. We therefore assume that it is the large anti-idiotypic populations 
that are suppressive. 

Here we investigate the effect that idiotypic interactions can have on the 
(normal) proliferative immune response to external (i.e. non-idiotypic) 
antigens. The effect of idiotypic interactions is studied as a function of (1) the 
affinity of the idiotypic interaction and (2) the number of idiotypic interactions 
(i.e. the size and connectance of the network). We thus require a model that 
incorporates: (1) influx and efflux of newborn cells; (2) symmetric stimulatory 
and suppressive idiotypic interactions; (3) affinity; (4) interaction with external 
antigens. None of the previous models described in the literature adequately 
incorporates these requirements; we therefore develop a new model. 

2. Previous Models. Hoffmann (1982; 1987) reviewing the previous idiotypic 
network models concluded that most of the models were inadequate because 
they: (1) were asymmetric; (2) lacked influx or efflux; (3) ignore clonal selection; 
(4) could not fulfil the Unpredictability Axiom. The Unpredictability Axiom 
states that the strength (i.e. affinity) of the idiotypic interactions must vary 
considerably, and that results obtained with network models should be robust 
to small variations in the interaction strength. In this review, Hoffmann 
however does not engage in a critical discussion of the symmetric network 
models put forward by him (1975; 1979; 1980) and by Gunther and Hoffmann 
(1982). These models nevertheless have a number of inadequacies. 

The Hoffmann models consists of two complementary clones, X+ and X_; 
idiotypic interactions induce proliferation (kl) and suppression by IgM (k2) 
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and by IgG (k3). The cells have a turnover rate k 4 and appear at a rate S from 
thymus or bone marrow: 

dX+/dt=X+.(k 1.X_.E 1-k  2.X_.E 2 -k  a.X 2 .E 3-k4)+S. 

The "effectivity" (Ei) of the idiotypic interactions is determined by the 
concentration of antigen specific (T cell) factors of either the " + "  and the " - "  
specificity: 

Ei = 1/(1 + (X+. X/C,)N,), i= 1, 2, 3, 

for which (Hoffmann, 1979): 

Nl=1, N2=2, N3=2. 

The saturation or effectivity terms of these models incorporate the product of 
the idiotypic and anti-idiotypic ( X + . X )  population as a "whole". This 
product is large, i.e. the terms saturize, if (1) both populations are large, and (2) 
one of the two populations (X+ or X ) is sufficiently large. If this product is 
large, the X+ population proliferates at a rate k 1 �9 C~ whatever the actual size of 
the X+ population. Similarly, IgM suppression approximates zero in all 
circumstances in which this product is large. Only IgG suppression depends on 
the X+/X_ ratio. Per individual cell, these terms thus allow for infinite 
proliferation or suppression rates. By contrast, the saturation or efficiency of an 
idiotypic interaction between populations should remain interpretable at the 
level of the individual cells that comprise these populations. Indeed, the 
physiological constraints of individual cells (e.g. a minimum time span required 
for cell division) suffice for defining more realistic saturation effects. Moreover, 
the "global" effectivity terms of the Hoffmann models severely hamper the 
extension of these models with external antigen and/or additional lymphocyte 
clones. 

The Hoffmann models omit affinity and external antigen. Incorporation of 
affinity is relatively easy and enables us to investigate whether these models 
fulfil the Unpredictability Axiom. It appears that the existence of four stable 
states, as described by Hoffmann (1979) and Gunther and Hoffmann (1982), 
requires a high affinity interaction. If affinity is lowered the Hoffmann (1979) 
model loses the two immune states, whereas the model of Gunther and 
Hoffmann (1982) loses the suppressed state and has only one immune state. 
The extension of the Hoffmann models with antigen is, by contrast, very 
complex because of the global nature of the efficiency terms. Stimulation with 
antigen should increase the production of T cell factors, and should therefore 
block the idiotypic interaction between the plus and minus clone. 

We have tested a variety of implementations of external antigens in the 
Hoffmann (1979) model. These antigens grow exponentially and are eliminated 
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by the IgM and IgG terms. This however failed to generate the classical picture 
of an immune response: proliferation followed by antigen regression, and 
finally settlement in an immune state. Depending on its initial size and/or its 
growth rate, antigen is either immediately eliminated or expands infinitely. 
Importantly, in our experiments with these models, the system never ended up 
in the suppressed state if we started with "physiological" initial conditions (i.e. 
in the virgin or immune state with or without antigen). Thus Hoffmann's 
suppressed state is "unattainable". We conclude that although the Hoffmann 
models define "escape from suppression" systems that account for switching to 
immune states and from IgM to IgG, the models are inadequate for 
investigating the role of idiotypic interactions in proliferative immune 
reactions to antigens. 

3. A New Network  Model.  In our model we make two important choices: (1) 
idiotypic interactions are symmetric; (2) all populations are identical except for 
the antigen receptor (i.e. the idiotype). We choose for symmetry because it 
seems the most minimal (and, in our opinion, most likely) implementation of a 
recognition interaction based on complementary matching and receptor 
crosslinking. Secondly, we only consider one type of lymphocyte, i.e. we do not 
differentiate between "helper" and "suppressor" interactions, because: (1) 
idiotypic network theory was originally (Jerne, 1974) defined for identical 
clones of B-lymphocytes; (2) symmetric network theory (Hoffmann, 1979; 
1980; Gunther and Hoffmann, 1982) has demonstrated that identical 
populations adopt "helper" or "suppressor" functions (i.e. phenotypes) 
depending on the idiotypic circumstances. 

Although these two choices enable us to define a simple and attractive model 
of the (possibly) very complex idiotypic network, they necessitate another 
(third) choice: the  distribution of stimulatory and inhibitory interactions. 
Idiotypic interactions are empirically known to be both positive and negative. 
During an immune reaction the responding idiotype can evoke the production 
of anti-idiotypic antibodies (Cosenza, 1976; Cerny, 1982). This is a positive 
interaction similar to a proliferative response to antigen. Administration of 
anti-idiotypic antibodies can both enhance (Eichmann and Rajewsky, 1975; 
Vakil and Kearny, 1986; Bernabe et al., 1981) and suppress (Hardt et al., 1972; 
Eichmann, 1974; Vakil and Kearny, 1986) the idiotypic immune response. 
Because all populations are identical in our model, and because idiotypic are 
symmetric, we have no a priori basis to discriminate between stimutatory and 
inhibitory interactions. The effect of an idiotypic interaction can therefore only 
depend on the (temporal) idiotypic circumstances, i.e. on the concentration of 
idiotype and anti-idiotype, and on the affinity of the interaction. 

In contrast to what "escape from suppression" (Jerne, 1974) implies, we 
assume that idiotypic interactions are suppressive when the concentrations of 
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anti-idiotype are large. In accordance with our previous work on proliferative 
immune reactions (De Boer and Hogeweg, 1986; 1987a,b) we thus assume that 
populations have to enlarge (by proliferation) before they can have a significant 
(here suppressive)effect. Idiotypic interactions are therefore absent or low if the 
anti-idiotypic populations are small, e.g. in the virgin state. In between, i.e. for 
intermediate-sized anti-idiotypic populations, interactions are stimulatory. In 
fact, this "proliferation before suppression" assumption corresponds to the 
widely accepted idea that the immune response is most vigorous at 
intermediate antigen concentrations. We, nevertheless, test the robustness of 
our results for our "proliferation before suppression" assumption by analysing 
an "escape from suppression" version of our model. 

Clones have a constant influx (S~) of cells from the bone marrow. Cells have a 
constant turnover rate (D). Differences between long-lived memory cells and 
short-lived effectors are thus deliberately ignored. Affinity is a parameter 
ranging between zero (no interaction) and one (maximum interaction). We 
ignore the possibility of an affinity threshold, i.e. a minimum affinity required 
for possible interaction. A clone interacting with a number of clones, interacts 
with the sum of the anti-idiotypic interactions (ald=anti-Idiotype). One 
specific immune network can now be defined completely by an affinity matrix 
A. Aij specifies the affinity between X~ and Xj. Symmetry in our model simply 
means A~j = Aji. Clones never recognize themselves (all A,  = 0). 

For external antigens we consider viruses (Vr~) that grow exponentially. We 
assume, for simplicity, that virus elimination is identical to anti-idiotypic 
suppression. The interactions among idiotypes are thus equivalent to the 
interactions with external antigens, which is the basic assumption of idiotypic 
network theory. The interaction with antigen is however asymmetric because a 
virus usually activates lymphocytes but cannot suppress them (the AIDS virus 
is an exception to this rule). For reasons of simplicity we assume that each clone 
can see only one virus, and that viruses are seen by only one clone; viruses are 
always seen with maximum affinity. A virus is numbered according to the 
number of the clone that recognizes it. (If viruses are seen by more clones 
similar results can be obtained.) 

We propose the following model: 
l l  

~Idi= ~ Aij 'Xj ,  (1) 
j = l  

B. Xi" ( Vri + M C.  Xi " 
F(X i, Vri, ctIdi) = K~  + (F. X~) M + (Vr, + ctldi) M Kc M + (F" X~) M + eld~ (2) 

dX, 
= Si--D'XI+X~'F(XI,  Vr,, aid,), (3) 

dt 
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and for the antigens, 

d Vr i 

dt 
C. V r i ' Y  M 

- n" V r , -  KcM+ (F" Vri)M-q-Xi M" (4) 

The interaction function F(X i, Vr i, eldi) seems rather baroque. However, for 
F =  0 and M =  1 it simply specifies the difference between two conventional 
saturation functions (one for proliferation and one for suppresssion). Because 
we choose K B,~ K c the proliferation term (B) outweighs the suppression term 
(C) at low population (Xj) densities. By choosing C > B  (i.e. the maximum 
suppression rate >> maximum proliferation rate), we assume that the suppres- 
sion term over-rules the proliferation term at high population densities. 
Suppression is thus dominant (cf. Richter, 1978). For minimalization reasons it 
is important to know that most of the results described in this paper can also be 
accounted for by simpler models, i.e. F =  0 and/or M = 1 (see Fig. 1). 

The model incorporates a "buffering" term (F), see e.g. Richter (1978), in 
order to avoid that the interaction with X i cells can become independent of the 
size of X~. This would lead to unrealistic model behaviour (especially in high 
dimensional networks). By choosing F <  1 we make these functions follow 
conventional saturation kinetics whenever X i populations are small. At the 
level of individual cells F <  1 means that one Zj cell can stimulate or suppress 
several X i cells. 

Parameters. We exclude long-lived memory cells from our model: all cells 
live about 5 days (D = 0.2 days - 1). If life-long memory occurs it can thus only 
be caused by a state switch of the network. An influx of about S i ~ 20 cells per 
day per clone thus generates a virgin clone size of Si/D = 100 cells. This is a 
reasonable estimate, De Boer and Hogeweg (1987a). A normal proliferation 
cycle takes about 16 hr: a continuous increase of about 0.5 cells per cell fits this 
estimate. The maximum per cell increase is B - D ;  B should therefore equal 
0.7 days-1. Suppression is dominant (i.e. C>> B); we take C =  25 days-1. The 
suppression threshold is higher than the proliferation threshold (i.e. K B >> Kc): 
KB= 10 3 and Kc= 10 6. At low population densities, the effect of buffering 
should be negligible: F=0.01. The virus has a doubling time similar to the 
lymphocyte clones: R=0.5  days-1. Unless explicitly stated otherwise, we use 
M =  2 throughout. 

In Fig. 1 we analyse the interaction between X~ (i= 1) and Xj ( j=2)  for 
various interaction functions (F(X~, Vr~, odds), i.e. for M =  1, F =  0; for F =  0.01 
and/or M = 2). The shaded regions depict the respective X' 1 > 0 zones, i.e. the 
regions in which proliferation dominates suppression. The line at the boundary 
of such a region is the O-isocline. The figure also shows several other 
Xl-isoclines (i.e. 10, 1 0 0 , . . . ,  106). Figure la (i.e. F = 0 ,  M = I )  has an 
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extremely high ( > 10 6) proliferation region: about 108 X 1 cells proliferate in 
response to only I O ' * X  z cells (i.e. 10 -4 stimulator cells per X1). This is 
unrealistic. If we include buffering (F=  0.01, Fig. lb) this artefact is eliminated: 
the O-isocline closes. The maximum (net) proliferation rate is now about 104 
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Figure 1. The 0, 10,. . . ,  10 7 isoclines of the X i (i = 1) clone in an  ~i/1-X2 state space, 
for three different versions of equation (2). (a) F=0 and M= 1 (no buffering); (b) 
F= 0.01 and M = 1 (buffering); (c) F= 0.01 and M = 2 (buffering and a sigmoid dose 
response curve). The regions where proliferation dominates suppression (X i > 0) 

are shaded. 

cells per day (for an X 1 population of about 105 cells). If M >  1 the saturation 
functions in equation (2) become S-shaped (Hill functions). The isoclines for 
M =  2, are shown in Fig. lc: the shape of the O-isocline is somewhat different 
from that of Fig. lb  ( M =  1). The proliferation region is wider: proliferation 
thus occurs for a larger range of X 2 values. In addition the maximum 
proliferation rate is higher. The switch between proliferation and suppression is 
thus more pronounced.  The O-isoclines for even larger M values (e.g. M =  5) 
are very similar to those of Fig. lc. The maximum proliferation rate is however 
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ten times higher. We take M =  2 and F =  0.01 (Fig. lc), because we do not  want  
our  results to depend on too extreme a saturat ion function. 

The models  are analysed by means of G R I N D  (De Boer, 1983); G R I N D  
numerically searches for isoclines and performs numerical  integration by 
means of R O W4A (Gottwald and Wanner ,  1981). 

4. Results 
A 2-D network. Addit ion of the X~ = 0 isocline to Fig. lc yields Fig. 2a. The 

O-isoclines of the two interacting idiotypes (A t 2 = 1) intersect in five equilibria. 
The phase plot  in Fig. 2b shows that  three of these are stable (the stable states 
are encircled in Fig. 2a). The steady-states are (1) V: the virgin state, both 
clones are at their respective S/D values, a value too low for initiating an 
idiotypic interaction; (2) 11 and 12: the immune  states for X 1 and X 2 
respectively. The immune  states are asymmetric:  in 11 , X 1 is immune,  thus 
suppressing X 2, and in 12 the si tuation is reversed. X 2 is suppressed in the 11 
immune  state: it is far smaller than X 1 and cannot  respond to its antigen (Vr 2) 
any further (see below). X 2 is nevertheless enlarged in the suppressed state; it is 
this enlargement  of X 2 that  sustains the immune  state of X 1 , Note  that  the 
enlargement o f X  2 means that  X 2 is still s t imulated by X 1 (i.e. the interaction is 
not  negative): we can however call X 2 suppressed because it can never 
proliferate again (e.g. to Vr2). 
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Figure 2. The X 1 and X~ = 0 isoclines of a 2-D system (A12 = 1). (a) The X'  1 > 0 
region is shaded, and the stable equilibria are encircled. (b) The same O-isoclines in 
combinat ion with trajectories starting at various points in the state space. The 

picture shows the oscillatory behaviour around the immune states. 

Our  V, 11 and I 2 are equivalent to virgin, immune  and ant i - immune states of 
the Hoffmann (1979; 1982) models.  The present states are however  generated 
with far simpler, and in our  opinion better, saturat ion functions (note that  even 
F = 0 ,  M = I  (equation (2)) yields these three states). The present model  
however lacks the stable suppressed states of the Hoffmann models.  In the same 
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region (i.e. both X 1 and X 2 large) however, the clones do suppress each other. 
In this model, concomitant  suppression is not a stable situation. Other 
differences are the absence of interactions in our virgin state (Hoffmann virgin 
states are maintained by suppression) and the fact that our immune states are 
situated above the source/decay (S/D,  i.e. no interaction) equilibrium, whereas 
those of the Hoffmann models are situated below it. In the Hoffmann models 
idiotypic interactions can only decrease population levels. 

Affinity. The form of the O-isoclines and hence the existence of the steady 
states depend on the affinity of the X 1 - X  2 idiotypic interaction (A12). This is 
analysed in Fig. 3, which includes an affinity axis. The front of this cube is 
identical to Fig. 2 (A12 = 1); the V, I~ and I 2 state are again indicated. At the 
back (A12 = 10-3) the system only has a virgin state. Note that the position of 
the virgin state is hardly affected by the affinity. In the Hoffmann (1979) model, 
by contrast, the X~ and X 2 population size in the virgin state decreases if the 
affinity increases (not shown). 

~, i0-~ 
iO -~ ~ fO s 

fOO 

O3 

OA 

fO a 

Figure 3. The X 1 and X;=0 isoclines as a function of the affinity (A12) of the 
idiotypic interaction. The front plane of this 3-D space is identical to Fig. 2. The 
X' 1 = 0 isocline plane is shaded, and the stable equilibria for A 12 = 1 and A 12 = 10 - 3 

are encircled. 

We conclude from Fig. 3 that for immune states to exist the affinity must be 
sufficiently large. Clones with a low affinity interaction (e.g. 10-3), can never 
switch to an immune state, whatever their respective population densities. 
Thus although we omitted an affinity threshold from our model, i.e. a 
minimum affinity below which idiotypic interaction is impossible, the model 
nevertheless generates one. This emergent threshold is caused by the double 
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saturation terms (i.e. by buffering): if F =  0 (Fig. la) the O-isoclines run straight 
into infinity and hence always intersect. Dynamically, i.e. by numerical 
integration, these systems (F=0) however never reach such high immune 
states. 

Any specific 2-D network corresponds to a slice through the cube of Fig. 3. 
We concluded above that, depending on this affinity, the model yields different 
results: (1) if affinity is low (A 12 ~ 0.006) the 2-D system only has a virgin state 
(i.e. it cannot switch); (2) if affinity is sufficiently high (Aa2 > 0.006) the system 
has virgin and immune states (i.e. it might be capable of switching). For low 
affinities, results are again qualitatively different. For instance, for A~2 = 0.01, 
the system has one virgin and one immune state. 

Antigen. First consider the interaction of one clone (X1) with its virus 
(Vrl). This is the no network situation: all A-matrix elements equal zero. The 
O-isoclines of this (l-D) system are shown in Fig. 4a. The Vr' 1 =0  isocline is 
straight: the virus decreases whenever "its" lymphocyte clone exceeds a size of 
about l0 s cells. The X'I = 0 isocline is more complex: at low Vr 1 densities X~ 
remains in its virgin state (S/D). Higher Vq densities induce X~ proliferation: 
the O-isocline bends to the right. At high X 1 densities, however, proliferation 
requires higher Vr, densities (due to buffering): the O-isocline bends upwards. 
Every virus infection (trajectory) should start at the virgin state of X1: we start 
at )(1 = 100 and Vr~ = 10. The virus expands to about 10 6 infected cells (Fig. 4), 
and meanwhile induces X 1 proliferation. As a result of this immune reaction, 
the virus regresses (i.e. dips to about 0.01 infected cells). Thus X1 is no longer 
stimulated and declines: as a consequence the virus regrows. After a number of 
oscillations the system settles in a stable equilibrium with about 103 infected 
cells (Vr 0 and 105 immune cells (X 0. We call this "virus dormancy": the virus 
remains present at a (harmless) low density, kept under control by a stimulated 
(enlarged) clone. This is a simple form of immunity: reintroduction of the same 
virus never leads to virus expansion because the system quickly returns to the 
dormancy equilibrium with hardly any clone proliferation. Note that many 
biotic viruses remain present in a similar dormant state (Bellanti, 1985). We 
conclude that virus dormancy can account for the "memory" phenomenon. 
Such an immune state does not require either long-lived memory cells or 
idiotypic interactions. 

Note however that at various stages of the immune response the virus density 
was less than one infected cell. Although in a stochastic model this might 
correspond to a low but finite probability, we prefer to eliminate such 
(improbable) circumstances. Virus densities of less than one cell are therefore 
set to zero: this is virus elimination. If we do this in Fig. 4, the virus is rejected in 
the first cycle and the clone returns to its virgin state due to a lack of immune 
stimulation. Thus dormancy, and hence immunity, is lost. 
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Figure 4. The interaction with X 1 and Vr 1 without any network interaction. (a) 
Shows the X'  1 = 0 and the Vr' 1 = 0 isocline (the X'  1 > 0 region is again shaded). The 
trajectory depicts the immune response following the introduction of Vr~ = 10 in the 
virgin state ofX~ (X1 = 100); the latter is marked by the circle. The response is highly 
oscillatory and settles in the stable intersect between the two isoclines. (b) The time 

plot of the same reaction. 

Swi tch ing .  We next study this virus in a 2-D network, e.g. that of Fig. 2 
(A12 = 1). Following the immune reaction to Vr I this 2-D system switches from 
virgin to immune (i.e. to 11 , Fig. 5a). This is a "correct" switch: X 1 attains an 
immune state following an X 1 primary response to Vrl;  X 2 becomes 
suppressed. Experimental data also describe stable state switches that are 
based on differences in population sizes (Bernabe et  al., 1981). Figure 5b shows 
the time plot of this reaction: during the normal immune response the 
responding idiotype stimulates the production of the anti-idiotype. This is also 
described experimentally (Cosenza, 1976; Cerny, 1982; M611er and Fernandez, 
1986). Around day 25, the virus is rejected and X 1 remains immune. 
Reintroduction of the same virus immediately leads to virus regression. 
Introduction of Vr 2 in the V state would of course lead to the I z state: the 
system is symmetric. Introduction of Vr 2 in the 11 state, i.e. after Vr 1 rejection, 
leads to infinite growth of Vr 2 in the absence of X 2 proliferation. X 2 really is 
suppressed. 

This type of switching behaviour only occurs if A12>~0.02 (analysed 
dynamically by introducing viruses for a variety of different affinity values). 
Thus if affinities are distributed uniformly between one and zero, we expect 
98% of all 2-D systems to switch to immunity after a primary immune 
response. 

S ta t i c  analysis .  We analyse the X1, -"~2, Wrl system statically in Fig. 6. At 
the back (Vr  1 = 1) Fig. 2a (A12 = 1), and at the bot tom (X 2 = 0.1) Fig. 4a can be 
recognized. In the cube, the Vr'~ --0 isocline is straight: it depends on X 1 only. 
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Figure 5. The interactions between )(1, ,V~ and Vrl, i.e. a 2-D network with antigen. 
We again depict the 2-D state of Fig. 2a (Atz = 1), but we additionally project the 
immune responses to Vr~ in the figure (the fat line). This settles in the immunity 

equilibrium. The immune response is also shown in a time plot (b). 
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The X~---0 isocline is independent of Vr~, i.e. it remains identical to that in 
Fig. 2. The upper part of the X 1 isocline is also independent of Vr x; the lower 
part, by contrast, bends to higher X~ values at high Vrl values. X~ can thus be 
further stimulated by Vr 1 . At the upper part of the isocline X t is suppressed: an 
increase of Vr~ cannot influence the position of the X 1 steady-state. By contrast 
in the immune state (It), X 1 is enlarged and it is still capable of further 
expansion. Infinite V r  1 values allow for infinite Xa populations. An Xt 
population in the 12 state however remains constant whatever the Vr~ density. 
Moreover the X t population in the 12 state is too small to cause Vr~ regression: 
it is situated left of the Vr'~ = 0 isocline. We conclude that X~ is "immune" in the 
11 state and "suppressed" in the 12 state. 

From the results presented hitherto we conclude that in 98 % of all the cases 
(if affinity is distributed uniformly) a 2-D network accounts for immunity/  
memory due to a "correct state switch" following a primary response. 
Moreover, the switching behaviour of this model is robust: even simpler 
models (i.e. those based on equation (2) for F = 0  and/or  M =  1) perform the 
same switches (albeit for a somewhat smaller range of affinity values). The 
present results are thus not the mere consequence of the choice of the form of 
the saturation function. 

Suppression. Data like that in Fig. 5b, i.e. oscillations in the network 
response to Vr t , are usually interpreted in the form of idiotypic suppression 
(Cosenza, 1976; Bona, 1982). It indeed seems as if the enlargement of the anti- 
idiotypic clone (X2) is responsible for the decline of the idiotypic (Xt) 
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Figure 6. A static representation of the interaction between X1, I" 2 and V r l .  The 
i'; = 0, X; = 0 and Vr' 1 = 0 isoclines in a X 1 , X 2, V r l  state space. The X; = 0 isocline 
plane is shaded. The Vr' 1 =0 isocline is straight and situated at about X 1 = 105; the 
1"; = 0 isocline is identical to that of Fig. 2 (A 12 = 1). The proliferation region of X1 

expands if Vr~ increases. 

popula t ion.  In the model  however  this is not  the case: X 1 declines because the 
virus regresses, X 2 declines because X 1 declines. Experimentally,  it was also 
shown that  the decline of the responding idiotype (X I) is not  caused by the 
anti-idiotype produced  during the response (Mrller  and Fernandez,  1986). In 
the model  an anti-idiotypic clone (here X2) can never suppress the idiotypic 
clone (X1) that  responds to antigen because X 2 is necessarily smaller than X1. 
X~ is always ahead because it responds first (to antigen). Thus  it is never the 
anti-idiotype that  (down) regulates the proliferation of the idiotypic clone (X 1) 
but  it is the proliferating idiotype that  suppresses its anti-idiotypic "suppres- 
sors'. Proliferating clones "free" themselves of idiotypic interactions. 

Conversely, suppression (proliferation regulation) does arise in these models  
if the system is (experimentally) manipula ted  by the in t roduct ion of anti- 
idiotype (X 2) prior  to the in t roduct ion of the antigen (Vr~). Such a procedure 
gives the anti-idiotype an advantage over the idiotype, and the system moves 
toward  the 12 state (in which X~ is suppressed). In the absence of such 
experimental  manipulat ions,  i.e. in normal  networks,  this cannot  happen.  

Suppression, i.e. down regulation of the proliferating idiotype, is also absent 
from the models based on simpler interaction functions (i.e. F = 0  and/or  
M =  1). The absence of proliferation regulation is therefore a robust  proper ty  of 
symmetric  networks.  Moreover ,  wi thout  experimental manipula t ion,  the 
suppressed state of the (symmetric) Hoffmann models is also "unattainable".  
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Furthermore, asymmetric versions of our model can (sometimes) account for 
suppression (i.e. if A2~ >>At2). We conclude that symmetric networks fail to 
account for the control of proliferation (i.e. for suppression). This is a 
counterintuitive result because: (1) the model incorporates strong negative 
(suppressive) interactions (C>>B); (2) suppression is most intense at high 
population densities (i.e. after proliferation). 

Escape from suppression. In order to test whether the absence of 
suppression hinges upon our "proliferation before suppression" assumption, 
we define an "escape from suppression" model (Jerne, 1974). According to this 
model idiotypic interactions are basically suppressive; antigen perturbs this 
suppressed state, thus allowing the clone to proliferate. This means that we 
have to replace equation (2). In equation (2') anti-idiotype (~Idl) no longer 
induces proliferation (i.e. ~Idi is absent from the proliferation term); 
anti-idiotypic suppression, by contrast, has remained identical. Antigen 
induces proliferation (as it does in equation (2)), and, additionally, reduces the 
rate of anti-idiotypic suppression (if Vr~ ~ Kc)" 

8. xi. c .  x,. Ia  
F(X,, Vr,,  Ia,) + (F- X,) M + + (F. X,) + Vr, +  ,Ia, (2') 

In the "virgin" state (X i ~ 100) idiotypic interactions have to be suppressive; we 
therefore set Kc= 100 in equation (2'). Virus elimination (equation (4)) is 
however kept identical between the two models (i.e. for internal equivalence 
reasons (Irvine and Savageau, 1985); K c in equation (4) is kept at 106). All 
other parameters can remain the same. Note that in this escape from 
suppression model Kc~KB; we thus first have suppression and then 
proliferation. 

The X t - X  2 state space of this model (for A12 = 1) has three equilibria 
(Fig. 7a); two of them (V t and V2) are stable. Both correspond to some sort of 
virgin state, i.e. they are reached in the absence of antigen. Which of the two is 
reached depends on the respective influx parameters (Si). We thus have to 
consider two different initial states for the introduction of antigen. For a wide 
range of affinity values (Fig. 7b) the system either has one virgin state, with 
hardly any idiotypic interactions, or the two virgin states described above. 
Immune states (situated at elevated population sizes) are absent. 

Introduction of a virus (here Vrl) in the two virgin states indeed leads to 
escape from suppression (Fig. 8). If Vr~ is introduced in the V~ state (Fig. 8a), 
X~ starts to proliferate when the virus is sufficiently large, i.e. after about 10 
days. This increase of the idiotype further suppresses the anti-idiotype (X 2 
further decreases). Thus, again, the proliferating idiotype suppresses its anti- 
idiotypic suppressors and "escapes" from further regulation. Following virus 
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Figure 7. An "escape from suppression" model. The X '  1 = 0 and X~ = 0 isoclines are 
displayed in the X1, X 2 state space for the affinity A12 = 1 (a), and as a function of 
affinity (b). Stable equilibria are encircled; the X' 1 > 0 region is shaded. The system 

has one or two virgin states but no immune states. 

rejection the system returns to the V 1 state. We conclude that  both  immuni ty  
and proliferation regulation are absent from this system. Similar behaviour is 
obtained when Vrl is in t roduced in the V 2 state (Fig. 8b). Because the idiotype 
starts at a smaller popula t ion  level the immune  reaction is somewhat  (but 
minimally) delayed. Fol lowing idiotypic (X~) proliferation the anti-idiotype 
again becomes (further) suppressed. Thus again proliferation regulation by the 
anti-idiotype is impossible. Fol lowing virus rejection the system does however 
switch from V 2 to V~; this gives the idiotype a small advantage (compare 
Fig. 8a with 8b). 

This switch from V 2 to V~ is a form of immunological  memory.  However,  it is 
rather peculiar because: (1) it only develops erratically, i.e. i fS  I < $2; (2) ifX~ is 
called immune  in the V 1 state, X 2 should be called immune  in the (virgin!) V 2 
state. Hence, immuni ty  occurs in escape from suppression models,  but  only 
erratically and/or  in the absence of the corresponding antigen. Moreover ,  note  
that  this escape from suppression network fails to account  for the produc t ion  of 
anti-idiotypes during an immune  response (Cosenza, 1976; Cerny, 1982; 
M611er and Fernandez,  1986). During the immune  reaction the idiotype 
escapes but  the anti-idiotype becomes further suppressed. The anti-idiotype is 
thus eliminated and the system no longer behaves as a network.  

We conclude that  in a symmetric system, escape from suppression has two 
meanings:  (1) s t imulat ion by antigen cancels the suppressive anti-idiotypic 
interaction; (2) the anti-idiotypic clones are suppressed to a level near 
elimination. Secondly, we conclude that  our  "proliferation before suppression" 
model  behaves in a superior way, and, most  important ly ,  that  the absence of 
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suppression in such a model does not hinge upon the order of proliferation and 
suppression. 

3-D system. We therefore proceed with the analysis of our original 
[equations (1)--(4), KB<Kc)  model. Expanding that 2-D model into three 
dimensions is technically easy. The analysis of a 3-D model is however much 
more complex because we now have to consider a number of affinity 
parameters, each of which is expected to vary widely. Consider the 
conventional scheme of the immune networks (i.e. X x sees antigen, X 2 sees X 1 , 
X 3 sees )(2, and so on). Thus in our symmetric A-matrix: A12 =A21 >0  and 
A23 = A32 > 0, and all other A elements equal zero. Qualitatively we thus have 
to consider two affinity parameters. Additionally however, a 3-D network 
allows two qualitatively different antigens: (1) Vr 1 an antigen seen by a clone 
with one connection to the network; (2) Vr 2 an antigen seen by X 2 with two 
connections (i.e. to X a and )(3). Vr 3 is qualitatively identical to Vra : the system 
is symmetric in ;(2). 

We have analysed this 3-D system by the introduction of these two antigens 
for all different combinations of the two affinity parameters (A12 and A23 ). We 
thus attained nine qualitatively different stable states. In the absence of antigen 
the systems always remains in the 3-D virgin state. Antigenic stimulation yields 
2-D immune states (as described above) if one of the affinities is sufficiently low. 
The weakly connected clone remains virgin, the other two switch to imune or 
suppressed. If both affinities are sufficiently high, the system switches to states 
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where either two clones are immune and one is suppressed, or to states where 
two clones are suppressed by one immune clone. 

Most of these switches correspond to "correct" immunity phenomena.  In 
fact, depending on the circumstances, the additional idiotypic interaction in the 
3-D system can both facilitate or inhibit the correct switching behaviour. 
Inhibition is more common however. If X 1 is stimulated by antigen, and the 
interaction between X 2 and X 3 is much stronger than that between Xa and X 2 , 
the correct switching behaviour is disrupted; X 1 then generally returns to 
virgin. Proliferation regulation does not occur in 3-D systems: even clones with 
two idiotypic connections suppress both anti-idiotypic clones before these can 
become suppressive. We conclude that the results obtained with the 2-D 
network can largely be repeated with 3-D systems. 

5-D network. The most straightforward extension of the above 3-D 
network is one in which X 1 is seen by two clones of level 2, which each in turn 
are seen by one clone of level 3. Thus X1 is doubly connected (as X 2 was) to 2-D 
systems identical to those analysed above. The affinity matrix now has 4 
symmetric connections, i.e. 8 non-zero elements. We distribute these values 
uniformly between one and zero (by a pseudo random number generator). We 
want to find out whether an idiotypic interaction between X~ and X 2 (which 
accounts for correct switching in 98% of the cases), can be disturbed by the 
three additional idiotypic interactions of a 5-D network. We have tested 40 
such systems. Because all randomly drawn A a 2 values exceeded 0.01, we expect 
all 40 networks to switch to an 11 state after the introduction of Vra. Such a 
switch was indeed found for all 40 networks. The immune states of )(1 are 
somewhat lower because X 1 can now be suppressed by two clones of level 2; X 1 
immunity is thus less vigorous (i.e. may lead to virus dormancy instead of virus 
rejection). 

However, if we connect this system randomly instead of according to the 
above scheme, results become different. We assign to A~2 a random value 
between zero and one; additionally such values are assigned to three other 
randomly chosen connections. We again analysed 40 networks; again a switch 
to immunity of Xa was expected for each of them. However we find only 32 such 
switches: in 8 cases (20%) X 1 returns to its virgin state. Thus the general 
occurrence of correct switching behaviour (i.e. immunity/memory) seems to 
require a specific structure of the network. It is not at all clear whether biotic 
immune networks fulfil these conditions. Switching can for instance be 
disturbed if )(1 is only connected to X 2, and if X 2 is suppressed due to other 
network interactions. Such "disturbance" already occurred in 3-D systems. We 
conclude that the expansion of the present model to a random high-D network 
may reduce the model's capacity to switch, i.e. to generate immunity. We are 
currently working on this question. 
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5. Discussion. 
Thresholds. The most important decision that has to be made during the 

development of an idiotypic network model is how to distribute the positive 
and negative interactions (i.e. Jerne's, 1974, third dualism). In asymmetric 
models the (asymmetric) affinity matrix may define non-overlapping sets of 
positive and negative interactions (i.e. it defines a different distribution of 
affinities on each side of the diagonal). Thus each individual idiotypic anti- 
idiotypic interaction has either a positive or negative sign. Farmer et al. (1986) 
represent paratopes and idiotypes by bit-patterns which yields such an 
asymmetric affinity matrix. The Richter (1978), the Hoffmann models (1979; 
1982), and the present model instead define a switch in sign depending on the 
size of the anti-idiotypic clone. 

Jerne's (1974) "escape from suppression" idea was followed by Richter 
(1978): his suppression threshold is lower than the proliferation threshold (his 
B > D). In the Richter "virgin state" however, network interactions are absent, 
i.e. the population densities are far below the suppression threshold (Hiernaux, 
1977). In the Hoffmann models (1979; 1982) the virgin state is maintained by 
suppression; the suppression terms switch off at high population densities 
(even in the "suppressed state"). Thus, the Hoffmann models are "escape from 
suppression" systems. 

In this paper we chose the opposite (our K~ < Kc), i.e. idiotypic interactions 
are absent in the virgin state and only large clones evoke suppression. We think 
this makes most sense if the stimulation and suppression processes are 
considered at the level of individual cells. Stimulation, and hence proliferation, 
of a cell requires crosslinking of its receptors by anti-idiotypic antibody. An 
increase in anti-idiotypic antibody is thus expected to increase proliferation. 
Suppression can occur by various mechanisms: (1) the crosslinking process 
may become less efficient if anti-idiotypic antibody concentrations become too 
high (Goldstein, 1988); (2) massive release of antibodies by idiotypic plasma 
cells will neutralize anti-idiotypic antibodies by complex formation; (3) coating 
of cells with anti-idiotypic antibodies may initiate the complement cascade, 
and lead to cell lysis (Eichmann, 1974; Hoffmann, 1979). All these mechanisms 
probably require higher antibody concentrations than does the initial 
crosslinking process that leads to proliferation. 

Parameter constraints. We choose the proliferation saturation constant 
(K~) larger (10 x ) than the virgin population size in order to keep network 
interactions low in the virgin state. The choice of M--2,  i.e. an S-shaped dose 
response curve, also facilitates the preservation of the virgin state: if M--- 1 the 
2-D virgin state only exists if AlE ~ 0.88. Thus in a model with linear (M--1) 
saturation function the switching range is somewhat smaller (0.04~A12~ 
0.88). Because the virus grows relatively fast (R = 0.5), the immune reaction has 
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to be quite vigorous (i.e. to bring about much proliferation). This facilitates the 
establishment of network interactions because clones easily grow above the 
threshold required for inducing the proliferation of an anti-idiotypic clone 
(KB). In addition, virus rejection is more severe following a vigorous immune 
reaction; this prevents dormancy development (De Boer and Hogeweg, 1986). 
High lymphocyte turnover rates (D) increase the instability (i.e. the 
oscillations) and lead to increased virus dormancy development. The abundant 
switching behaviour of this model occurs however for various parameter 
settings (not shown). 

Immunological memory. The fact that an immune network can account for 
immunological memory does not mean that the memory phenomena displayed 
by biotic immune systems are indeed generated by network state switches. The 
existence of long-lived memory cells (Jerne, 1984; Levy and Couthino, 1987) 
provides a very simple alternative explanation. An alternative memory cell that 
would account for immunity is a cell which by proliferation and differentiation 
becomes insensitive to network suppression (Cooper et al., 1984). Thus by 
adding this assumption, one can account for memory in an "escape from 
suppression" model. Immunity generated by memory cells is not stable; 
although these cells are long-lived, they decline slowly. The main difference 
between network immunity and the two forms of memory cell immunity is that 
the former is (actively) maintained by proliferation whereas the latter 
corresponds to a resting state. Thus experimental data describing the existence 
of small, resting, long-lived cells (Jerne, 1984; Levy and Couthino, 1987) 
support the memory cell alternative. Moreover the dynamics of (long-lived) 
memory cells can account for self-non-self discrimination (De Boer and 
Hogeweg, 1987a, 1987b). Nevertheless, immunity generated by state switching 
remains an intriguing possibility; the present results prove that if proliferation 
precedes suppression it is a feasible possibility. 

Suppression. The fact that our symmetric model fails to account for the 
suppression of proliferating clones violates the most important role of the 
immune networks. If anti-idiotypic interactions were indeed able to control 
excessive responses this would be very important (e.g. in self-non-self 
discrimination). In our model however this is impossible. Note that 
suppression can be generated by "experimental" manipulation, e.g. by the 
introduction of large anti-idiotypic clones, but never evolves during a 
"physiological" immune reaction. Experimental data that thus demonstrate 
the existence of suppression therefore provide no evidence for a role for 
suppression in the regulation of immune reactions. We think that suppression 
will be absent from most, if not all, symmetric networks because a proliferating 
clone is always ahead and hence should always be able to suppress its anti- 
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idiotypic suppressors long before these can become suppressive. Our present 
parameter setting, i.e. proliferation before suppression (K B < Kc) and dominant 
suppression (C>> B), should facilitate the suppression of large proliferating 
clones because the suppression interaction is most intense in this region. 
Moreover, if we make our model asymmetric (by defining an asymmetric 
affinity matrix) suppression sometimes occurs. We thus conclude that 
symmetric network theory seriously violates the role of anti-idiotypic 
suppression in the control of (excessive) proliferation. In our extensions of the 
Hoffmann models we reach the same conclusion because proliferating clones 
moving in the direction of the immune state (thus suppressing the anti- 
idiotypic partners) never end up in the suppressed state. The absence of 
suppression in our model suggests that the model can be further simplified by 
the removal of the negative iteractions (C> B). Indeed, an alternative model 
would be one in which suppression only reduces stimulation. This can easily be 
incorporated by setting C = B :  such a (2-D) model generates a very similar 
result (submitted). 

Network dimensions. The results obtained with our 2-D network also 
occurred in our 3-D networks and in 5-D networks of a specific structure. 
Randomly connected 5-D networks however showed different results. This 
suggests that the present (low-D) results may depend strictly on the form and 
dimension of the network. Recent work (submitted) confirms this: the low-D 
results described here can hardly be repeated in high-D networks. 

The Hoffmann models (1975; 1979; 1980; 1982) assume that the 107-D 
immune network comprises separate pairs of interacting clones (plus minus 
clones). Wikler et al. (1979) showed that antibodies of the third level (Ab3) are 
idiotypically related to the Abl level; Ab4 in turn is related to Ab2. These data 
suggest that the network is "flat" instead of "open-ended". Similarly, Jerne 
(1984) concludes that "one characteristic of the idiotypic network is the 
occurrence of pairs of antibodies, of preferred partners". If these interpretations 
are correct, the idiotypic network is a (l-D) stack of independent (2-D) systems. 
We think that such a flat system should not be called a network (at least all 
comparisons with e.g. neural networks break down). In addition, as Jerne 
(1984) also argues, it implies that anti-idiotypic interactions have to be totally 
different from immune reactions to non-network antigens (epitopes) because 
the latter involve several hundreds, instead of one, antibody molecules. 
Moreover, idiotypes can have as many as 40 antigenic determinants (idiotopes) 
(Novotny et al., 1987), and, secondly, anti-idiotypic clones obtained from 
immature immune systems do show a high connectance to other clones 
(Holmberg et al. 1984; 1986; Vakil and Kearny, 1986). 

If the idiotypic network would indeed be nothing more than a collection of 
independent pair-wise complementary interactions, the conclusions of the 
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present paper should be valid for the complete 107-D immune network. 
However, we recently (submitted) found that if the high-D idiotypic network is 
open-ended, i.e. is not organized in such monogamous pair-wise interactions, 
the sytem behaviour becomes non-sensical because of extensive percolation of 
idiotypic signals. Therefore, it is an interesting question to analyse which 
cellular interactions in large (possibly randomly connected) idiotypic networks 
might cause the functional reduction to the pair-wise idiotypic interactions 
described above. 

The authors would like to thank Miss S. M. McNab for linguistic advice. 
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