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It is widely believed, following the work of Connor and Stevens (1971, J. Physiol. Lond. 214, 
31-53) that the ability to fire action potentials over a wide frequency range, especially down 
to very low rates, is due to the transient, potassium A-current (IA). Using a reduction of the 
classical Hodgkin-Huxley model, we study the effects of 1 A on steady firing rate, especially 
in the near-threshold regime for the onset of firing. A minimum firing rate of zero 
corresponds to a homoclinic bifurcation of periodic solutions at a critical level of stimulating 
current. It requires that the membrane's steady-state current-voltage relation be N-shaped 
rather than monotonic. For experimentally based generic I A parameters, the model does not 
fire at arbitrarily low rates, although it can for the more atypical I A parameters given by 
Connor and Stevens for the crab axon. When the I n inactivation rate is slow, we find that 
the transient potassium current can mediate more complex firing patterns, such as periodic 
bursting in some parameter regimes. The number of spikes per burst increases as gA 
decreases and as inactivation rate decreases. We also study how I A affects properties of 
transient voltage responses, such as threshold and firing latency for anodal break excitation. 
We provide mathematical explanations for several of these dynamic behaviors using bifurca- 
tion theory and averaging methods. 

1. Introduction. The Hodgkin-Huxley (1952) equations have been used 
to describe action potential generation in many excitable cells. In their 
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original form, they predict repetitive firing for constant applied current over 
an interval of values. Moreover, the minimum firing frequency is rather 
high ( > 50 Hz). The emergence of stable oscillations with finite amplitude 
and non-zero frequency is a consequence of the subcritical Hopf bifurca- 
tion structure of periodic solutions to the equations (Rinzel, 1978). For 
neurons which tend to fire at very low rates and which rely on a broad 
range of frequencies for encoding information, this model does not provide 
a satisfactory description. Various adjustments to the Hodgkin-Huxley 
(HH) equations have been made in order to increase the frequency range 
and to better describe low-frequency firing. These include decreasing the 
rate of potassium activation in the subthreshold voltage range (Shapiro and 
Lenherr, 1972; Dodge, 1972) or adding a very slow potassium conductance 
to a system of equations qualitatively similar to the HH model (Kernell and 
Sjoholm, 1973). In their study of molluscan nerve somata, Connor and 
Stevens (1971) attributed low firing rates to the presence of a second 
potassium current, the transient A-current (IA)- This current, which typi- 
cally activates rapidly and inactivates more slowly, was subsequently incor- 
porated in an HH-like model (Connor, Walter and McKown, 1977) that 
fired at rates as low as 2 Hz. It is significant that in their model none of the 
conductances is particularly slow. Their A-current plays a role at subthresh- 
old voltages to lengthen the interspike interval by working against excita- 
tory input that tends to destabilize the rest state. We show that a necessary 
condition to obtain arbitrarily low rates of firing is that the membrane's 
steady-state current-voltage relation be non-monotonic, and that this leads 
to a different (non-Hopf-like) bifurcation structure for the emergence of 
periodic behavior. 

Transient potassium currents are present in many excitable cells (Rogaw- 
ski, 1985). This prevalence motivated our comparison of A-current data to 
determine if and how parameter values for I A lead to low firing rates in 
HH-like systems. We have compared these data for I A while retaining the 
relationship of their voltage ranges for activation/inactivation to those of 
the HH-like spike generating currents to arrive at a few representation I A 
parameter sets. We study low-frequency firing by using techniques of 
numerical bifurcation theory, focusing on the onset of stable periodic orbits 
(a homoclinic bifurcation, in the case of zero minimum frequency), and the 
dependence of this bifurcation on A-current parameters. We have explored 
the effects of the maximal conductance for IA, of the time constant for I A 
inactivation and for the voltage range for activating I A. For the data set we 
consider most typical, we find that I A does not lower the firing frequency 
arbitrarily close to zero. However, the A-current shifts the frequency- 
current curve to a more depolarized interval of applied current, and so 
effectively reduces the frequency of firing. In a later section we show by 
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example how, in contrast to biophysical folklore, low rates can be accom- 
plished with a modified HH model without an A-current. We have also 
found new firing patterns due to I A. If the inactivation rate of the A-cur- 
rent is slow, additional bifurcations (period-doubling) emerge along the 
branch of periodic solutions. Also, periodic bursting occurs, where the 
number of sodium spikes in a burst depends on the maximal conductance 
of the A-current. We use the method of averaging to analyze the bursting 
behavior. 

Many cell types that fire repetitively under constant depolarizing stimula- 
tion also show the phenomenon of anodal break excitation, as do the 
Hodgkin-Huxley equations (FitzHugh, 1976). This is a cell's response of 
one or more action potentials after the end of a sustained hyperpolarizing 
stimulus. The A-current opposes such rebound behavior since I A recovers 
from inactivation during hyperpolarization. Indeed, it can suppress excita- 
tion after deep hyperpolarization. In this case, we find that there may be a 
finite window of hyperpolarization levels from which the cell can fire upon 
release; the classical HH model has an infinite window. Associated with the 
rebound response, I A can cause a prolonged latency, or time to peak, of the 
action potential. We show that this latency can be foreshortened by 
appropriately timed stimuli, and this may have consequences for integration 
of specifically timed synaptic inputs. 

For those readers who may have secondary interest in the mathematical 
details of our findings, in section 3 we briefly summarize our work in 
biophysical terms with less mathematical depth. The bifurcation structures 
associated with steady-state, repetitive firing and bursting solutions are 
described in section 4, while sections 5 and 6 deal with the transient 
behavior. 

2. Hodgkin-Huxley Models and Data for I A. 
2.1. Models of Connor et al. The role of the A-current in repetitive 

firing was first described by Connor and Stevens (1971) for a molluscan 
neuron. A quantitative description of the A-current was later incorporated 
by Connor, Walter and McKown (CWM) (1977) in a Hodgkin-Huxley 
based model for the type-I crab axon. The model's current-balance equa- 
tion is 

= - - l N a  - -  I K - I g - l L Jr lapp ,  

w h e r e  INa = INa (V, m, h) = ~,Nam3h(V-- VNa) , l K = I K ( V  , n) = g K n 4 ( V  --  V K) 

and IA=IA(V,a,b)=~,Aa3b(V--VI,:). A constant leakage current I L =  
gL(V--V L) is also included. The equilibrium potentials VNa, VI,: and V L 
supply a driving force for the specific conductance. Throughout this paper 
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we use the units milliseconds for time, millivolts for voltage and microam- 
peres per square centimeter for current, and the values VNa = 55 mV, 
V K = - 7 2  mV and V L = - 1 7  mV. The CWM model consists of the five 
ordinary differential equations 

1)= - g N a m 3 ( V ) h ( V  - VNa ) -- [gK n4 +gAa3b](V - VK) -- IL(V) +lapp, 

where the gating variables satisfy equations of the form 

.ic= (x~(V) - x ) / z x ( V )  , x = h , m , n , a , b .  (1) 

Since sodium activation is very rapid, we consider it instantaneous and set 
m = m=(V). Each of the steady-state functions x=(V) (x = m, h, n, a, b) 
satisfies the propert ies 0 < x~(V) < 1 and limv_~_= x=(V) = O, 
limv_~= x~(V)= 1 for activation (m, n, a), while the same limits hold for 
1 -x=(V)  in the case of inactivation (h, b). Notice that there is no inactiva- 
tion of I K. In the Appendix we list the Hodgkin-Huxley steady-state gating 
x=(V) and rate 'r,,(V) functions along with other parameter values. In the 
CWM model these functions were slightly modified to account for the 
voltage-clamp data of Connor and Stevens (1971): x~(V) and ~-x(V) are 
shifted along the voltage axis by an amount O-x, x = m,h,  n (see the 
Appendix). The steady-state activation and inactivation functions for the 
A-current are complicated but satisfy the above properties: 

0.0761exp[(V+ 94.22)/31.84] 1/3 

a=(V) = 1 + exp[(V+ 1.17)/28.93] 

1 )4. 

b=(V) = 1 + exp[0.069(V+ 53.3)] 

The rate functions are 

"r,,(V) = 0.3632 + 
1.158 

1 + exp[(V+ 55.96)/20.12] 

%(V) = 0.124 + 
2.678 

1 + exp[(V+ 50.)/16.027] " 

We briefly describe the dynamic properties of the CWM model. How the 
firing frequency is lowered in the CWM model can be explained by 
considering the steady-state properties of I A (Fig. 1). The steady-state 
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Figure 1. Steady-state gating curves for the ionic currents in the Connor, Walter 
and McKown (1977) model. The inactivation b=(V) and activation aM(V) curves 
(solid) for the Connor and Steven's (1971) A-current data show a significant 
overlap near rest potential ( -  68 mV). Superimposed steady-state current for I A 
(scale on right ordinate). Also shown (dotted) are the steady-state activation 

curves for I K and INa as well as the INa inactivation curve. 

functions a=(V) and bo~(V) overlap in a voltage range just below the rest 
state of the cell ( - 6 8  mV). By "overlap" we mean that in some voltage 
range both gating functions exceed some arbitrary modest value, say 0.1. 
During the recovery from post-spike hyperpolarization, the two currents I A 
and I L govern V's rate of change. As the voltage depolarizes, I A activates 
transiently and slows the voltage increase. This is due to the hyperpolariz- 
ing effect of I A as an outward, potassium current. The total conductance of 
I A is then reduced through inactivation, and the membrane voltage slowly 
approaches threshold for action potential initiation. The A-current contin- 
ues to inactivate during an action potential, but partially recovers from 
inactivation during the undershoot (V below rest). This allows for an 
appreciable amount of I A in the following interspike interval. An adequate 
overlap in the ao~(V) and bo~(V) curves is clearly important. By increasing 
the maximal conductance gA, one could totally suppress the rising phase of 
V and only a steady voltage response would result. So in addition to 
lowering the frequency, the A-current can shift the lap p threshold for onset 
of repetitive firing. A more detailed analysis of this is given in section 4. 

2.2. A-current data. The A-current has been quantified for a wide 
variety of neuronal and non-neuronal cells (Awiszus, 1992; Bargas et al., 
1989; Buchholtz et al., 1992; Byme, 1980; Connor and Stevens, 1971; 
Connor et al., 1977; Dekin and Getting, 1987; Getting, 1983; Golowasch 
and Marder, 1992; Graubard and Hartline, 1991; Guckenheimer et al., 
1992; Huguenard and McCormick, 1992; Kaczmarek and Strumwasser, 
1984; Neher, 1971; McCormick, 1991; Surmeier et al., 1988, 1989; Thomp- 
son, 1977, 1982; Williams et al., 1984; also see Rogawski, 1985). A common 
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f e a tu r e  o f  these  A-cu r r en t s  is tha t  they  are  inac t iva ted  at rest ,  so no  
A - c u r r e n t  can  be  el ici ted unless  V is p r e - h y p e r p o l a r i z e d  fo r  a sufficient  
t ime  to  al low recove ry  f r o m  inact iva t ion  (i.e. de- inact ivat ion) .  T h e  mos t  
str iking variabil i ty in the  da t a  is the  t h r e sho ld  va lue  for  act ivation.  In  Tab le  
1 we list the  g a t h e r e d  da ta  and  the  s teady-s ta te  p a r a m e t e r s  based  o n  the  
s igmoidal  f o r m  

a = ( V )  = 1 / ( 1  + e x p [ ( V -  O,, ) /k , , ] )  

b = ( V )  = 1 / ( 1  + e x p [ ( V -  O b ) l k b ] ) ,  (2) 

w h e r e  0 a and  0 b r e p r e s e n t  vol tages  at which  hal f -ac t iva t ion  o r  half- in-  
ac t ivat ion occurs ,  and  1 / ( 4 k  a) and  1 / ( 4 k  b) are  the  m a x i m u m  slopes o f  
s teady-s ta te  ac t iva t ion  and  inact ivat ion.  Tab le  1 is no t  exhaus t ive  bu t  
ref lects  the  diversi ty  o f  A-cu r r en t s  in the  l i te ra ture .  T h e  table ' s  first co lu m n  
gives the  e x p o n e n t  q fo r  ac t iva t ion  w h e r e  I g is m o d e l e d  as g a a q b ( V  - ILK). 
W e  set q = 3 to  ref lec t  the  da ta  in Tab l e  1. F o r  the  p u r p o s e s  o f  compar i son ,  
we re la te  these  da ta  fo r  I g to a cell 's res t  s ta te  and  to  the  vol tage  ranges  o f  
o t h e r  active cu r ren t s  (no rma l i za t ion  p r o c e d u r e  desc r ibed  below).  W e  con-  
s ider  only  those  da ta  fo r  which  Ih  is (a) a t t r i bu ted  to  slowing the  f r e q u e n c y  
o f  repe t i t ive  firing, (b) necessar i ly  c o n t a i n e d  in a cell with spike gene ra t ing  
cur ren ts ,  par t icu lar ly  INa and  I K, and  (c) fully quan t i f i ed  in the  l i te ra ture .  
T h e s e  cr i ter ia  cer ta in ly  r e d u c e  the  n u m b e r  o f  candida tes .  None the le s s ,  
var ia t ions  in the  da t a  r e m a i n  and  suggest  possible  func t iona l  roles  fo r  I A. 

Table 1. Parameter values for I a 

Activation, a q Inactivation, b 

q 0 a k a 0 b k b References 

4 - 5 5  - 13.8 - 7 7  
3 - 12 -26  - 6 2  

2 - 14 - 23 - 54 
3 - 75 - 40 - 78 
1 - 40 - 5.5 - 68 
3 - 19.5 - 20 - 61.5 
3 - 35 - 10.8 - 75 
3 - 38 - 9.8 - 63 
4 - 60  - 8  - 7 8  
4 -36  -20  -78  
3 - 42 - 65 

- 33  - 9  - 8 0  
- 33 - 7.5 - 70.5 

- 1 . 8 9  - 1 0 . 8  - 47 

7.8 Awiszus (1992) 
16 Buchholtz et al. (1992) 

Guckenheimer et al. (1992) 
6.5 Byrne (1980) 

10 Connor et al. (1977) 
6.7 Getting (1980) 
6 Golowasch and Marder (1992) 
6.5 Guckenheimer et al. (1992) 
6.2 Guckenheimer et al. (1992) 
6 Huguenard and McCormick (1992) 
6.5 Huguenard and McCormick (1992) 
4 Neher (1971) 
8 Surmeier et al. (1988) 
7.5 Surmeier et al. (1989) 
7 Surmeier et al. (1989) 
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A common feature of I A is extremely fast activation, so in our analysis 
we consider it instantaneous by setting a = ao~(V) ( throughout the paper). 
In this way, I A is similiar in time course to the fast sodium current INa. 
(Even though z a is not as small as z m in the CWM model, assuming 
instantaneous I A activation has little effect on the results.) On the other 
hand, the rate of IA'S inactivation varies considerably from cell to cell. For 
example, z b is at least 20 ms according to the data of Huguenard and 
McCormick (1992) for thalamic neurons (at 36~ while the rate is as fast 
as 4 ms in the CWM data at 18.5~ The rate can be as slow as 1 sec at 
10~ (Thompson, 1977); even with an increase in temperature,  this is still 
considered slow. With few exceptions, most of the data indicate that z b is 
independent  of voltage. Therefore, we fix "r b constant and, in our initial 
analysis, consider z b comparable to z,, (under 2 ms at 18.5~ Note that 
although % in the CWM model  is voltage-dependent,  z b is comparable to 
"r,,. In section 6, we examine the case for ~'b large (above 10 ms). 

Our goal is to define a "generic" A-current with properties that represent 
more of the reported A-currents than the I A of CWM, which stands apart 
from the others. We incorporate this current into a reduced version of the 
standard Hodgkin-Huxley equations (HHA model) and, in the first part of 
this paper, ascertain whether or not it modulates the firing frequency in the 
same manner  as in the CWM model. To compare the different data sets, we 
shift the steady-state, half-activation Om of INa to --35 mW, the standard 
HH value. All other gating functions (for II,: and IA) are shifted by the 
same amount,  thus maintaining the relative voltage ranges and, certainly, 
maintaining the overlap in steady-state activation and inactivation for I A. 
Aside from the parameter  gA, we specify the parameter  vector (0  a, ka, Ob, kb) 
for each IA. The CWM data are represented by ( - 80, - 40, - 83,10). From 
the normalized gating data in Table 2 we see that the crab-axon data differ 
considerably, with a much shallower and left-shifted activation function. 
We define as a "generic" parameter  set A~ = ( - 5 5 , -  2 0 , -  70, 6)where in  
the choice of Oa = --55 reflects a best case, steady-state analysis. 

In the previous section, we described how the considerable overlap in 
a=(V) and b=(V) contributed to IA'S ability to lower the frequency of firing. 
Yet most of these data sets show a negligible amount  of overlap, thereby 
questioning the contribution of I A during interspike intervals of steady-fir- 
ing. As representative of the CWM data we use A c = ( - 7 5 ,  - 5 0 ,  - 7 0 , 6 )  
in our analysis of frequency modulat ion and show which dynamical features 
persist as 0 a is increased. In an effort to reduce the number  of parameters 
in the analysis, we fix 0 b -~- - - 7 0  and k b = 6. 

2.3. H H A  Model .  The CWM model  is often used as a paradigm for 
/A-mediated low-frequency firing, yet the characteristics of its A-current 
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Table 2. Selected parameter values for I A from Table 1, normalized with respect to 
0m = -- 35 mV, in sodium half-activation value. The last two rows contain 

the parameter sets in our study 

Activation, a q Inactivation, b Isa I K 

q O. k a Ob kb 0 m Oh On Reference 

4 - 45 - 13.8 - 67 7.8 - 35 - 62 8.3 Awiszus (1992) 
3 - 39 - 26 - 89 6 - 35 - 74 - 52 Buchholtz et al. (1992) 
2 - 41 - 23 - 81 6.5 - 35 - 44 - 21 Byrne (1980) 
3 - 80 - 40 - 83 10 - 35 - 51 - 49 Conner et al. (1977) 
3 - 25 - 26 - 75 16 - 35 - 54 - 31 Guckenheimer et al. (1992) 
4 - 55 - 8 - 73 6 - 35 - 63 - 30 Huguenard and 

McCormick (1992) 
4 - 31 - 20 - 73 6.5 - 35 - 63 - 30 Huguenard and 

McCormick (1992) 

Representative parameter sets 

3 - 7 5  - 5 0  - 7 0  - 6  - 3 5  - 5 5  - 5 0  A c 
3 - 5 5  - 2 0  - 7 0  - 6  - 3 5  - 5 5  - 5 0  A ~  

a c t i v a t i o n  d a t a  a r e  o u t l y i n g .  W e  c o n s i d e r  w h e t h e r  o r  n o t  a m o r e  " g e n e r i c "  

A - c u r r e n t  c a n  f u n c t i o n  in  t h e  s a m e  r o l e .  T h e  d y n a m i c a l  p r o p e r t i e s  o f  t h e  

f o u r - v a r i a b l e  H o d g k i n - H u x l e y  m o d e l  a r e  w e l l  k n o w n .  W e  c o n s i d e r  a r e -  

d u c e d  s y s t e m  o f  e q u a t i o n s  w i t h  a l i n e a r  r e l a t i o n s h i p  b e t w e e n  I N a  i n a c t i v a -  

t i o n  a n d  I K a c t i v a t i o n ,  h + 1 .2n  = 0.9  (e .g . ,  R i n z e l ,  1985).  T h i s  r e t a i n s  t h e  

b i f u r c a t i o n  s t r u c t u r e  o f  t h e  fu l l  s y s t e m  a n d  r e d u c e s  i t  t o  t w o  d i m e n s i o n s .  I t  

a l s o  e x h i b i t s  t h e  p r o p e r t y  o f  r e b o u n d  e x c i t a t i o n ;  t h a t  is, r e l e a s e  f r o m  

h y p e r p o l a r i z a t i o n  c a n  r e s u l t  in  a s ing l e ,  t r a n s i e n t  a c t i o n  p o t e n t i a l .  T h i s  

b e h a v i o r  is c o n s i d e r e d  in  s e c t i o n  5 a n d  6. I n c o r p o r a t i o n  o f  I A a d d s  a t h i r d  

e q u a t i o n  f o r  i n a c t i v a t i o n  b.  T h e  H H A  m o d e l  is t h e n  c o m p o s e d  o f  t h e  

f o l l o w i n g  e q u a t i o n s :  

V =  - - g N a m ~ ( V ) [ 0 . 9  -- 1 . 2 n ] ( V -  VNa) 

--  [ g K  n4 + g A a 3 ( V ) b ]  ( V -  V K) --  I L ( V )  + lap p 

h = q~ (n=(Y)  - n)/Tn(V ) 

b = - ( 3 )  

w h e r e  g h ,  rb, lapp a n d  4) a r e  p a r a m e t e r s  t h a t  w e  v a r y  (~b is a t e m p e r a t u r e  

f e a t u r e  f a c t o r  a n d  is d i s c u s s e d  l a t e r  in  t h e  p a p e r ) .  T h e  f u n c t i o n s  a=(V)  a n d  

b=(V) a r e  g i v e n  b y  e q u a t i o n s  (2).  W e  a n a l y z e  b o t h  s t e a d y  a n d  t r a n s i e n t  

r e s p o n s e  p r o p e r t i e s  o f  t h e  H H A  m o d e l .  I n  b o t h  s i t u a t i o n s  w e  c o n s i d e r  

s e p a r a t e l y  t h e  c a s e s  o f  f a s t  a n d  s l o w  i n a c t i v a t i o n .  W e  fix 0 b = - 7 0  a n d  

k b = 6 a n d  o n l y  in  t h e  c a s e  o f  r e p e t i t i v e  f i r i ng  d o  w e  e x a m i n e  t h e  C W M - l i k e  
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parameters A c. All other analyses are based on the generic parameter set 
A G. The results that follow also hold for the full HH system; however, in 
some cases the analysis is more tractable in the reduced system. 

3. Summary of Results. In this section we provide a brief overview of our 
findings on the modulatory effects of the A-current on the HHA model's 
dynamic behavior. We begin by considering the steady firing properties in 
response to steady current. For the A c parameter set, our model's fre- 
quency range is extended to low rates as gA increases (see Fig. 4B, but 
disregard the dashed portions of curves; they correspond to unstable 
behavior.) The frequency-current relation also shifts rightward with gg, 
reflecting the additional depolarizing current needed to overcome the 
hyperpolarizing effect of I A. This model thus behaves similarly to the CWM 
model. The low-frequency behavior develops as the membrane's steady-state 
current-voltage relation Iss(V) becomes sufficiently N-shaped (seen as the 
curves in Fig. 3, left). The mathematical limit for very low-frequency firing 
is an oscillation with infinite period (zero frequency) that appears precisely 
at the critical current level where Iss(V) has zero slope. Here, the depolar- 
ized resting voltage coalesces with a saddle-point threshold voltage. Mathe- 
matically, for lap p just above criticality, the oscillating system's trajectory in 
phase space passes through a "subthreshold" region where the velocity is 
very low. Just a moderate change in gA can create in this region a stable 
rest point and a saddle point and cause the system to cease firing repeti- 
tively. Thus, as Connor and Stevens (1971) noted, even though no currents 
have slow gating kinetics, this membrane model can fire at very low rates. 
In section 4.2 we show that this zero-frequency criticality separates steady- 
state behavior from low-frequency firing in the (lapp, gA) parameter space. 

Figure 6 illustrates the repetitive firing behavior of the HHA model with 
the A~ parameter set. In this case also, the current-frequency curve shifts 
rightward as gA increases (disregard dashed curves). The shift is on the 
order of the steady-state A-current near the resting voltage regime (about 
10 /~A/cm 2 with gA = 50.0 mS/cm2). However, arbitrarily low firing fre- 
quency is not found for the A G parameter settings. With lap p fixed, the 
frequency is reduced as gA increases, but this reduction is attributed to the 
rightward shift in current threshold only (see time courses). The dynamics 
are qualitatively similar to the standard HH model: stable periodic behavior 
emerges with non-zero minimum frequency and large amplitude. Thus, 
while an A-current is not sufficient to give low-frequency firing, neither is it 
necessary. Indeed, one can adjust the parameters of the standard HH 
equations, without adding I A or other currents, to achieve low-frequency 
firing. In section 4.4 we reduce g~: so that the sodium current IN~ domi- 
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nates in the voltage region just above rest and forms the necessary voltage 
extrema in the Iss(V) curve. As a result, the frequency response is lowered 
and zero-frequency firing emerges (Fig. 10, left). 

Although our generic A-current, with z b comparable to IK'S activation 
time constant, does not enlarge the HHA model's frequency range to 
include arbitrarily low rates, other interesting behavior emerges with z b 
larger. With slower I A inactivation (say, ~'b = 10 ms), complex periodic 
spiking patterns emerge; high-frequency tonic firing gives way to repetitive 
bursting of action potentials (Fig. 7, lower). As gA increases, the number of 
spikes in a burst decreases, leading eventually to a single-spike burst with a 
very low spike rate (Fig. 7d). As r b is further increased, burst duration and 
interburst interval both increase; I A inactivation becomes the slow variable 
that determines the burst's time scale (Fig. 8, upper left, where z b = 30 ms). 

We also consider the transient properties of the HHA model (A G 
parameter set) in response to a step lap p from a hyperpolarized level (Fig. 
11). The A-current de-inactivates (b increases) during a hyperpolarized 
conditioning phase, and then activates transiently when a depolarizing 
current step is applied. The I A conductance during activation might be 
approximated by either g A a 3 ( V ) b  or gAa3(V)b~(V) ,  depending on the rate 
of inactivation rb 1. If lap p exceeds rheobase (the threshold current for 
repetitive firing) then, in the case of fast inactivation, the initial latency is 
comparable to the interspike interval of repetitive firing. For slow inactiva- 
tion, the latency is prolonged, even for relatively small gA- This delay 
phenomenon may provide a mechanism to ensure that a neuron fires only 
in response to a sustained depolarizing input, or to a long enough train of 
brief stimuli. Moreover, we find that a single brief excitatory pulse after a 
minimal time into the latent period can advance the onset of firing. 

In section 6 we consider the special case of rebound firing upon release 
from hyperpolarization to lap p = 0 (anodal break excitation). We find, for 
fast inactivation, that increasing gA shifts the anodal rheobase (threshold 
holding potential for generating a single rebound action potential) in the 
hyperpolarizing direction (Fig. 13A). That is, the larger is IA, the more one 
must de-inactivate INa and deactivate I K by pre-hyperpolarization in order 
to generate an action potential. The effect is similar to that caused by 
increasing temperature in the standard HH model (FitzHugh, 1976). The 
rheobase is also lowered in the case of z b large. Moreover, a second 
rheobase (a lower one) is found below which no rebound response occurs 
(Fig. 13B). These two thresholds create a window for rebound excitation 
which is then modulated by increases in gn: the /K-associated (upper) 
threshold is lowered, as mentioned above, while the lower threshold (di- 
rectly associated with I n) is raised (Fig. 13C). This leads to a critical gA 
above which no anodal break excitation is possible. 
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4. Bifurcation Analysis. In this section we analyze the bifurcations that 
arise in the steady response properties of the CWM and the H H A  models. 
In particular, for the HHA model we indicate the dependence of the 
steady-state I - V  relation on 0 a and k a. If gA is sufficiently large, the 
N-shape of the I - V  relation leads to zero-frequency firing in the HHA 
model. This critical gA level exceeds biophysically reasonable values in the 
case of generic parameters. We also consider bifurcations along the peri- 
odic branch for r b large. We project the voltage trajectory into a phase 
plane and show how bursts of action potentials arise. For fixed lap p the 
frequency of periodic bursting decreases as gA increases, and bursting 
behavior terminates with non-zero burst frequency at a Hopf-bifurcation. 
We also indicate how other bifurcations occur along the periodic branch by 
analyzing a one-dimensional averaged system for the dynamics of b. 

4.1. C W M  model. A family of periodic solutions of this model can be 
represented by a bifurcation diagram in which each periodic solution is 
associated with a given current stimulus. We use the software package 
AUTO (Doedel, 1981) to compute the bifurcation diagrams and to produce 
frequency curves as a function of lap p. The fixed points of system (1) are 
resolved by setting x = x~(V) for all conductances and by letting V =  0. This 
defines a steady-state, current-voltage ( l - V )  relation for the cell 

lapp = ISS ( V )  

INa(V, m ~ ( V ) ,  0.9 - 1 . 2 n ~ ( V ) )  

+ IK(v, + lAW, + IL(v) .  

The CWM bifurcation diagram of Fig. 2 is computed for a temperature of 
18.5~ and with a maximal conductance gA = 33 m S / c m  2 for I A. The 
standard value (used by Connor et al., 1977) for gn is 47.7 m S / c m  2, but we 
choose a lower value for initial comparison to the Hodgkin-Huxley voltage 
characteristics. As for the standard HH model, there is an lap p interval in 
which the fixed point is unstable, and this interval is bounded by two Hopf 
bifurcation points. From the left bifurcation point emerges a branch of 
unstable periodic solution (open circles). These solutions stabilize at a 
saddle-node bifurcation on the periodic branch and represent stable repeti- 
tive firing (filled circles) until they shrink to zero amplitude at the right 
Hopf bifurcation point. Since we are interested in the onset of stable 
periodic behavior as lap p is increased from zero, we focus on a region near 
the left bifurcation only. The inset of Fig. 2 shows firing frequency versus 
lapp; minimum frequency is 9 Hz for this value of gA. We note that the 
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Figure 2. Bifurcation diagram (V v s  I a . n )  for the CWM model with gA = 

33 mS/cm z shows two Hopf bifurcation'~points (solid squares) on the curve 
Iss(V) from which periodic solutions emerge (maximum and minimum voltage 
are plotted as circles: open circles, unstable; filled circles, stable). Top graph 

shows the firing frequency vs lap p for lap p ~ 70 tzA/cm z. 

m in imum firing frequency in the C W M  model  (1) wi thout  I A is approxi- 
mately 25 Hz. 

The  bifurcation structure for the C W M  model  differs f rom the H H  
system in the shape of its Iss(V) curve. It was originally observed by 
Connor  et al. (1977) that  the I - V  relat ion was "flat" in a voltage region 
near  the threshold for repetit ive firing. Figure 3 (upper  left) compared  the 
Iss(V) curve of C W M  for gA = 0 with that  of the s tandard HH.  While the 
Iss(V) curve for both  cases is mono tone ,  the curve of the C W M  model  is 
close to degenerate .  As gA is increased (left panels of Fig. 3), a pair of 
saddle-node points  emerges  and, for gA approximately 47.82 m S / c m  2, the 
left saddle-node contacts the branch of periodic solutions. At  this point  of 
contact  an unstable homoclinic  orbit  is formed.  Voltage t ime courses in the 
right panel  of Fig. 3 are measured  at lap p = 10 ~ A / c m  2. The  lowered firing 
frequency (gA = 50 m S / c m  2) is a t t r ibuted to the close proximity in lap p of 
stable periodic solutions to the homoclinic  orbit. In fact, with fur ther  
increases in gn  (gA = 60 m S / c m 2 ) ,  the homoclinic  orbit  becomes  stable 
and large ampli tude,  zero-frequency firing is possible. 

4.2. Zero-frequency onset in HHA. We consider the H H A  model  (3) 
with the associated steady-state I - V  relat ion given by 

Iss (V)  = I N a ( V  , O.m=(V), 9 - 1.2n:c(V)) 

+ IK(V, n~(V)) + IA(V, ao~(V), bo~(V)) + IL(V)  
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Figure 3. Steady behavior of the CWM model as a function of I a for four 
�9 P 

values of gA (Zb = 1 ms). Left panels: BifurcaUon diagrams for s tea~-s ta te  and 
periodic solutions; same plotting symbols as in Fig. 2, except maximum V for 
oscillations is off-scale (not shown). Right panels: Voltage time courses for 
Ia = 10 /xA/cm 2 For gA = 0 ,  the steady-state Iss(V) curve is monotonic p p  

(upper) as in the standard H H  model (lower). Both models have onset of 
repetitive firing via subcritical Hopf bifurcation (not shown). For gA = 
43 m S / c m  2 emergence of periodic behavior remains via subcritical Hopf  
bifurcation (as in Fig. 2), but the Iss(V) curve has developed extrema; two 
saddle-node fixed points are found. For  gA = 50 m S / c m  z the branch of unstable 
periodic solutions terminates on the middle (saddle) branch of Iss(V) in a 
homoclinic orbit. This periodic branch disappears as gA increases and the 
extrema move further apart. For gA = 60 m S / c m  2 the stable periodic solutions 
to the right terminate in a homoclinic orbit at the saddle-node fixed point. Note 
that time courses show considerable reduction in firing frequency as gA is 

increased. 

o r  

Iss(V; gA ) = I . . (  v ) + In(V; gn). (4) 

For A C parameters,  the bifurcations which arise as gA is increased are 
those described previously for the CWM model. Saddle-node bifurcations 
are found by setting the derivative of (4) equal to zero. The steady-state 
curve IHH(V) is monotone  increasing, so existence of saddle-node points 
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depends on the voltage range in which I A decreases. For V > VK define the 
functions 

3 
F+(V) = ~ [1 - a=(V)]b=(V)(V- VK) + b=(V) 

F - ( V )  = b ' ( V ) ( V -  VK). (5) 

Then I~(V; gA) = gAa3(V){F+(V) + F-(V)},  where F+(V) >__ 0 and 
F- (V)  < O. For fixed gA > 0, if V* is the point at which I~, = 0, then we 
have IF-(V)I > F+(V) for V >  V*. Notice that the term F+(V) is reduced 
for Ikal large or if a=(V) -~ 1; depending on the parameters k a and 0a, I~, 
can equal zero at a lower voltage. In particular, I~(V*; gA) = 0 for gA > 0 
and V* in a voltage region where I~Ij(V) is small. Given the A c data 
Oa ---- --75 and k a = -50 ,  one can show that I;s(V; gA) = 0 for V near V* 
and gA > 0. Since I A is an outward current, the lap p value at which the 
saddle-node bifurcation occurs increases with gA. 

Figure 4A shows two curves of saddle-node (SN) bifurcation points 
originating from a cusp point in (lap p, gA) parameter space. For fixed gA 
below this cusp point, the vector field of H H A  is qualitatively similar to the 
standard HH system: there is a Hopf bifurcation point (HB) and, to the left, 
a saddle-node bifurcation on the periodic branch (SNP), the point at which 
a stable and an unstable periodic solution coalesce. The region of stable 
periodic firing is then to the right of the SNP curve. This curve is continued 
numerically in (lapp, gA) space using AUTO and terminates generically at a 
codimension 2, global bifurcation with a homoclinic (saddle-loop) orbit 
(beginning of thick solid curve in Fig. 4A). Recall in the CWM model (Fig. 
3; gA = 50 m S / c m  2) that a homoclinic orbit is present between the saddle- 
node points. The situation is similar here. To see this, fix gA = 135 m S / c m  2 
in Fig. 4A and consider the bifurcation structure a s  lap p is increased 
(horizontal line). Between the saddle-node bifurcation points, the system 
has three fixed points. The subcritical branch of periodic orbits from HB 
terminates at a saddle fixed point and forms an unstable homoclinic orbit 
(dotted curve HC1) to the left of the HB point. Moreover, a second, stable 
homoclinic orbit is coincident with the right saddle-node fixed point (thick 
curve HC2). It is this curve of homoclinic orbits on which the SNP curve 
terminates. It follows that the region of stable periodic solutions (shaded) is 
bounded on the left by the curves SNP and HC2, and as gA increases from 
zero, the minimum frequency can go to zero. 

The stable homoclinic orbit persists for lalger values of gA, although the 
unstable homoclinic orbit (HC1) disappears in a Takens-Bogdanov bifurca- 
tion (TB point; Takens, 1974; Bogdanov, 1975). In Fig. 4B we plot the 
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Figure 4. (A) Two-parameter (lapp, ga)  response diagram for the H H A  model 
with A c parameter set and" r b = 1 ms. The region of stable periodic solutions is 
shaded. For ga = 75 m S / c m  2 the bifurcation structure as a function of lap p is 
as in Fig. 2: stable periodic solutions emerge from a saddle-node bifurcation on 
the periodic solution branch SNP (dashed). The system is bistable between SNP 
and HB (mixed dashes), the left Hopf bifurcation point in HHA. As gA 
increases, two saddle-node fixed point curves SN (solid) emerge from a cusp 
point; inside this cusp, the H H A  system has three fixed points (node, saddle, 
unstable spiral). For  ga  = 135 m S / c m  2 (horizontal line) the HB point is inside 
the cusp region, and the unstable periodic solutions which emerge from it 
terminate with infinite period at HC1 (dotted). HC1 and HB curves intersect at 
TB, a Takens-Bogdanov bifurcation. The stable periodic solutions (for gA > 
125 m S / c m  2) terminate in a homoclinic orbit HC2 single curve. (B) Firing 
frequency versus current curves for the H H A  model with A c parameter set and 
z b = 1 ms. Without I A the minimum frequency is approximately 100 Hz. As gA 
increases, the threshold current for repetitive firing increases. With A c param- 
eters, the frequency range is increased as both the unstable and stable periodic 
solutions approach zero-frequency onset as gA is increased. Notice that the 
region of bistability shrinks as HB (endpoint of unstable frequencies) and SNP 
(the turning point for stable frequencies) converge and the continuous solution 

branch splits into two distinct branches. 

frequency-current ( f - I )  curves as a function of gA for the parameter set 
A c = ( - 7 5 , - 5 0 , - 7 0 , 6 ) .  If we measure the frequency for a fixed lap p 
level, say lap v ----40 / x A / c m  2, then increases in ga reduce the frequency 
arbitrarily close to zero. With an understanding of the above two-parameter 
bifurcation schemes, we can now consider easily what happens in the H H A  
model when 0 a is increased from - 7 5  to - 5 5 .  This information is 
presented in the (lapp, Oa) parameter space in Fig. 5 computed for gn = 
125 m S / c m  2. The bifurcation scheme reverses itself: As 0 a increases, both 
homoclinic orbits disappear, and the only remaining periodic solutions are 
those to the right of the SNP curve. Moreover, the overlap of a=(V) with 
b=(V) is not sufficient for a non-monotone Iss(V) curve. For 0 a = - 5 5  the 
minimum frequency occurs at SNP and equals 61.8 Hz, closer to the 
standard HH level. However, the Hopf  bifurcation point is still affected by 
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Figure 5. Two parameter (lapp, Oa) response diagram for gA = 125 m S / c m  2 in 
the H H A  model with A c parameter set and % = 1 ms shows the effect of 
shifting a~o(V) upward along the voltage axis. Symbol convention as in Fig. 4A. 
The emergence of zero-frequency firing (HC2) requires low voltage activation, 
0 a below the A c value. For high voltage activation, periodic solutions emerge 
with non-zero frequency from SNP, the saddle-node bifurcation on the periodic 

branch. 

the presence of I A, even with k a adjusted to -20 .  This in itself has 
consequences for the firing frequency. As shown by the voltage time 
courses in Fig. 6, if we fix lap p = 40 /zA/cm 2 with parameters A~ = 
( -  55, -20 ,  -70 ,  6) and increase gA, the frequency is indeed lowered. Yet, 
for the generic parameters, the range of frequencies for steady firing is 
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Figure 6. Frequency-current  for the H H A  model with A G parameter  set and 
z b = 1 ms. Increasing gA increases the rheobase, but the minimum firing 
frequency is not reduced to zero. V time courses for I a = 4 0 / x A / c m  2 indicate 

�9 . P P  

a reduction in frequency as gA ~s increased. 
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hardly affected. Increasing gA shifts the HB point to larger lap p values and 
lowers only slightly the range of frequencies for steady firing. Our analysis 
suggests that the I A we identify as generic has a more quantitative than 
qualitative role in modulating the frequency of repetitive firing. Based on 
this, we conjecture that the A-current may reduce the frequency to zero if 
the spike generating system (e.g. HH-like model with I a = 0) has the 
propensity toward low-frequency firing. In section 4.3 we give an example of 
a modified H H  system in which zero-frequency firing without an A-current 
is possible. 

4.3. Periodic branch bifurcations and bursting. We have shown that 
generic I A data shift the frequency-current curve to a more depolarized 
lap p interval. This is also the case for % large, although this shift is not 
uniform. For example, compare the frequency curves for gn = 0 and gn = 
50 m S / c m  2 in Fig. 7. For gn = 0 there is an lap p interval between SNP and 
the Hopf bifurcation in which both the fixed point and the periodic 
solutions are stable. For gn = 50 m S / c m  2 there is no longer this region of 
bistability. Moreover, there is a n  lap p interval in which both the fixed point 

IIPD 
~" 400 o S N P ~ ~ ,  _ 

I 
~" 200 o~ 

~/ L ' s  = - '  

0 
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(a) lapp (P-A/cm2) 
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Figure 7. Frequency-current curves (upper panel) for HHA model with A G 
parameter set and ~'b = 10 ms. Increased gA shifts the curves rightward in Iapp 
and the slower rate of inactivation rb 1 creates additional bifurcations (PD- -  
period doubling) along the branch of periodic solutions. Time courses to 
repetitive behavior for Ia~p = 20 /xA/cm 2 are shown in the lower panel. As gA 
increases, the frequency l~s reduced slightly until the behavior changes qualita- 
tively at the PD (subcritical) point. Periodic bursting of action potential emerges 
with low frequency (gA = 50 mS/cm2). As gA increases, the number of action 

potential in a burst decreases (i spike per burst for gA = 60 mS/cm2). 

0 30 60 
(ms) 

30 40 
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and periodic branch are unstable. This interval is bounded on the left by 
the Hopf bifurcation and on the right by a period-doubling bifurcation 
(rightmost PD). In this interval, stable complex firing patterns are found. 
Awiszus (1992) has recently reported action potential "doublets" during a 
constant excitatory input to a HH-like model with an A-current. In our case 
the period-doubled solutions are unstable. Here, we find that stable repeti- 
tive firing is replaced by periodic bursts of action potentials. This transition 
is illustrated by the time courses in Fig. 7 for l a p  p = 20 /~A/cm 2 as gA is 
increased. Intuitively, a burst occurs because I A slowly de-inactivates (b 
increases) during repetitive firing to eventually inhibit firing. The voltage is 
then quiescent with I A contributing to the stability of a temporary resting 
state. During this phase, I A slowly inactivates (b decreases) and firing 
resumes as the rest point destabilizes. The cycle then repeats, resulting in 
periodic bursts of action potentials. 

In order to examine the emergent dynamics, particularly the frequency of 
bursting and its dependence on gA, we define the variable b A = gab, which, 
for large %, changes slowly compared to V and n. The HHA system is then 
written as 

V =  --INa(V , m=(V) ,  n) - I K ( V  , n) -- IA(V , a~(V) ,  bA) -- IL(V) + lap p 

= - 

(6) 

This is a convenient formulation since modulations in gA affect only the 
slow dynamics. If we fix l a p  p = 20 /zA/cm 2, then for gA = 0, the repetitive 
firing behavior of the model converges to a stable periodic solution on the 
periodic branch; this is a solution of the fast subsystem of (6) given by the 
equations for V and n. To illustrate the dependence of the fast subsystem 
on b A (in the limit as ~'b ~ ~), we plot in Fig. 8B the bifurcation structure 
of the (V ,n )  subsystem with respect to the parameter b A. There is a 
subcritical Hopf bifurcation at b A = bHa and stable periodic solutions are 
found for 0 _< b A < bp, where bp is the turning point in the periodic branch. 
The nature of the Hopf bifurcation provides a classical situation in which 
periodic bursting is found: hysteresis, or bistability, in the fast subsystem 
(Rinzel, 1987). A bursting solution is viewed as an orbit which alternates 
between the branch of stable periodic solutions (firing phase) and the 
steady-state branch (silent phase). The flow is determined by the time, on 
.average, that the orbit is either above or below the surface defined by 
b A = 0. In Fig. 8B we show the projection of the bursting solution of Fig. 8A 
(gA= 50 m S / c m  2 and ~'b = 30 ms) into the (V,b A) phase plane. Due 
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Figure 8. Analysis of periodic bursting mediated by a slowly inactivating I A. 
(A) Voltage time course of a bursting solution (with bA'S time course shown 
below) for lap p = 20 /xA/cm 2 with gn = 50 mS/cm 2 and r b ---30 ms. (B) The 
fast subsystem's bifurcation diagram with b A as control parameter; here, b A = 
gA b (see equation (6)) and lap p = 20 /zA/cm 2. Unstable periodic solutions 
(open circles) emerge via Hopf bifurcation at b A = bHB and connect continu- 
ously at .bA = bp with stable periodic solutions (filled circles). The slow null 
surface b A = 0 intersects the steady-state curve of the fast subsystem at an 
unstable fixed point (open square). It also intersects the branch of periodic 
solutions at b A = 0 (stable branch) and for b A inside the bistable region 
(bHB , bp) (unstable branch). Trajectory of bursting solution from (A) is pro- 
jected (below) here as V versus b A. (C) Fixed points of the averaged equation 
(8) occur when the line with slope 1/g  A intersects the curve b= versus bA; four 
cases, a-d,  shown here correspond to those in Fig. 7. A fixed point that lies on 
the filled circle curve corresponds to stable repetitive firing (cases a and b). For 
cases c and d, repetitive firing is unstable; periodic bursting is the stable 
response. Each fixed point on the dotted curve corresponds to an unstable fixed 

point of the full system. 
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primarily to the hyperpolarizing por t ion  of each action potential ,  there  is an 
average increase in inactivation bA, and firing terminates  when  the orbit 
falls f rom the periodic  branch near  b A = bp. Dur ing  the silent phase, b A 
inactivates along the steady-state branch for the fast subsystem. Moreover ,  
there is " r a m p "  effect (Baer et al., 1989): the orbit  flows leftward past  the 
bifurcation point  at bHB, remaining for a finite t ime in a ne ighborhood  of 
the unstable branch of the fast subsystem. U n d e r  the assumpt ion that  the 
rate of b A is uni form in the silent phase, the orbit  travels an approximately 
equal  distance on ei ther side of the H o p f  bifurcation. The  active phase is 
then  initiated at approximately b A = 2 b H B -  bp. The  flow is once again 
rightward, and the cycle repeats.  

The  fast subsystem of the H H A  system is i ndependen t  of gA, and so for 
modula t ions  in gA the same bifurcation diagram holds, but  the slow 
null-surface changes: half-inactivation is at V = - 7 0  m V  and b A = gA/2. It 
follows that  the unstable fixed point  of the full system approaches  bnB as 
gA increases. The  active phase is init iated for higher  values of b A and, as a 
consequence,  the n u m b e r  of action potentials  in a burst  is fewer. The  active 
phase is shorter,  but  surprisingly, the silent phase is not. What  is interesting 
to note  here  is that, a l though there  is less distance to traverse in bA, the 
orbit  slows down considerably as it approaches  the fixed point  of the full 
system. As a result, the n u m b e r  of spikes in a burst  is decreased,  and the 
burst  f requency is decreased (see Fig. 9). The  assumpt ion  here  is that  gA 
does not  affect the rate of flow in the active phase, while it is clear that  the 
rate at which b A decreases is control led by gA. 

We conclude this section by discussing the bifurcations that  we found 
using A U T O .  For  ~'b = 10 ms the f requency curve (Fig. 7) indicates period- 
doubling bifurcations (filled circles) and a saddle-node bifurcat ion on the  
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Figure 9. Duration in the silent phase (open bars) and active phase (filled bars) 
for the type of bursting solution shown in Fig. 8A, as a function of gA with 
r b = 30 ms. Burst frequency decreases as the trajectory spends more time in the 
silent phase. The reduced time in the active phase necessarily decreases the 

number of action potentials in a burst. 
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periodic branch (open circle). To understand which bifurcations are ex- 
pected to appear in the limit of large % we consider the averaged dynamics 
of b A. In equation (6) we can replace b=(V) by its average over the voltage 
activity V(t; hA) given by the fast subsystem of (6) with b A treated as a 
parameter. For a periodic solution V(t; b n) of the fast subsystem this 
average is defined as 

1 T 
b~ = -T fo b=(V(t; hA) ) dt, (7) 

where T is the oscillation period. If V=  Vss(b A) is a steady-state (time- 
independent) solution, then b=(b A) = b~(Vss(bA)). This averaging procedure 
reduces our three-variable system to a one-variable description: 

= (8) 

This equation describes the average inactivation bA of I A. While numeri- 
cally computing V(t; bA) for the bifurcation diagram of Fig. 8B, we evaluate 
b=(b n) from (7). In Fig. 8C we plot the resultant curve b=(bn), where we 
indicate the stability inherited from the fast subsystem. A fixed point of (8) 
satisfies b~(b A) = (1/gA)bn and corresponds, under certain conditions, to 
periodic solutions of the full system. For example, for gn = 0 (vertical axis 
in Fig. 8C) there are two fixed points p and q. The point q corresponds to 
the unstable fixed point of the full system, while p corresponds to the 
periodic orbit of the full system. This periodic orbit is stable if p is a stable 
fixed point of (8). Note that the lines a -d  in Fig. 8C correspond to the time 
courses a -d  in Fig. 7. As gA increases, p remains stable as long as it 
intersects the "stable" portion of b~(bg); this is not obvious from the figure 
since the slope of b=(bA) is so severe. However, as the line (1/gA)b a passes 
over the limit point of the fast subsystem, the stability of the fixed point p 
changes. When the full system is analyzed, we find numerically that two 
complex-valued Floquet multipliers cross the unit circle simultaneously for 
gA = 45.19 mS/cm 2 and ~'b = 100 ms. This corresponds to a Hopf bifurca- 
tion on the periodic branch rather than the period-doubling bifurcations 
that were found for r b = 10 ms. For further increases ing A, the fixed point 
q stabilizes by undergoing a Hopf bifurcation (at gn = 66.97 mS/cm2), and 
the periodic bursting solutions terminate. Beyond the Hopf bifurcation, 
there are three fixed points to the averaged system: the stable fixed point q 
and two unstable points, each corresponding to unstable periodic solutions 
of the full system. For gA = 79.24 mS/cm 2 the two unstable fixed points 
disappear in a saddle-node bifurcation. This corresponds to the saddle-node 
bifurcation on the periodic branch of the full system. 
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4.4. H H  example for zero-frequencyfiring. We conclude this section with 
an example of an HH system in which zero-frequency firing is possible 
without an A-current. There are many adjustments to the standard HH 
equations which can change its bifurcation structure (Hassard and Shiau, 
1991; Labouriau, 1989; Rinzel, 1979). Here we shift IN, inactivation right- 
ward by 7 mV to create a greater window current for INa" Together  with a 
shift leftward by 1 mV in I K activation, reductions in gK allow for a greater 
contribution of Iya" AS a result, the I - V  relation has a negative slope 
region (N-shaped). (We note that the CWM model without I A also gives 
zero-frequency firing for gI,: reduced to 10 mS/cm2.)  The I - f  curves in 
Fig. 10 indicate the onset of zero-frequency firing as gK is decreased. We 
also plot the nullclines for the two-dimensional reduction 

I ~= --gNam3(V)(1.1 -- 1 . 5 n ) ( V -  VNa) --gKn4(V - V K) - IL(V) + I a p p  

h = (n~(V) - n ) / T n ( V )  

for gK = 20 and Iapp= 1.5 / zA/cm 2, just above rheobase. The orbit shown 
has 4 Hz frequency. 

T h e  (V, n) phase plane of Fig. 10 illustrates the fact that low-frequency 
firing is obtained because the nullclines are in close proximity in the 
"ghost" region where the rest state had been for Iapp just below rheobase. 
This small regime of close proximity is in contrast to the long "narrow 
channel" in the model  of Rose and Hindmarsh (1985). In that model, the 
recovery nullcline (q -- 0) has a positive quadratic shape; qo~(V) is defined as 
the sum of n4(V) and bo~(V). This combination of potassium conductances 
is based on the CWM axon data and approximates ao~(V) as constant. The 

-10 0 10 20 30 
lap p (P.A/cm 2) 

n 

0 
-80 -~0 80 

V (mV) 
Figure 10. A modified HH system without I A admits zero-frequency firing for 
certain values of gK (left). Phase plane (right) for lap p = 1.5 /xA/cm 2 and 
gK = 20 mS/cm 2 shows stable periodic orbit close to homoclinicity. For slightly 
larger Iapp, nullclines intersect at three locations corresponding to non-mono- 

tonic Iss(V) for these parameter values. 
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left branches of the V and q nullclines are nearby each other  in the 
low-voltage region, and over a considerable range of q values, creating a 
narrow channel through which the solution flows. The nullclines in our 
example show geometrically that the delayed-rect i f ier  conductance is suf- 
ficient for low-frequency firing. 

5. Rebound Excitation.  So far we have considered steady repetitive firing 
described by system (3) in response to a maintained and depolarized lap p 
value. Here  we focus on the transient aspects of  firing. In particular, the 
rebound spike or spike train that is often elicited when a depolarizing 
stimulus is applied to a membrane  pre-condit ioned at a hyperpolarized 
level. This is an idealization of how timing of excitation-induced spiking 
might be affected by a long, but finite duration, inhibition. During long-last- 
ing hyperpolarization, I A may de-inactivate significantly and then be avail- 
able when the system is released or when a depolarizing input is delivered. 
Here  we assume that the hyperpolarization is long enough for the system to 
reach a new steady-state (Vh, nh, bh). If we step lap p to a level above which 
repetitive firing takes place, I A is transiently activated but less inactivated 
than at r e s t  (b h > bo). This greater  I A conductance slows the initial voltage 
increase, and thus increases the latency to repetitive firing. For  the A G 
data set and % small ( =  1 ms), the latency preceding the first action 
potential is little affected; it is approximately equal to the interspike 
interval during steady firing, as shown in Fig. 11A. For the case of  % large 
( =  10 ms), however, the latency is prolonged considerably, due to both the 
increase in % and the ramp effects described in the previous section. For 
example, suppose we release to lap p = 20 /~A/cm 2 from a hyperpolarized 
level of  F h = - 9 0  mV (b h = 0.923) as shown in Fig. l lB .  We can view this 
trajectory as an orbit in the diagram of  Fig. 8B. In this case, b A = 9.23 

50 

-2o i l i i  i I '" V..~.:.,~ ~..~..~.~:~ 
-90 i 

0 10 20 0 30 60 
(ms) (ms) 

A B 
Figure 11. Voltage time course showing latency to firing after depolarizing step 
of lap p = 20 /xA/cm 2 from pre-hyperpolarization (V= -90 mV). These re- 
sponses of the HHA model (A G parameter set) show the effects of fast and 
slow /A-inactivation: (A) with T b = 1 mS and gA = 50 mS/cm 2 and (B) with 
% = 10 ms and gA = 10 mS/cm 2, with I A present (solid) and blocked (dotted). 

Note different time scales in (A) and (B). 
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initially and, upon release, the orbit travels a considerable distance along 
the steady-state branch of the fast subsystem. If repetitive firing is initiated 
when bA = bi > bss, then the latency, or time it takes b A to decrease from 
b h t o  b i ,  is given by 

gAb~(Vss) -- bh I 
t = r b In gAb~(Vss)---~t i" (9) 

Here we assume that V = Vss is constant along the steady-state branch. For 
the trajectory in Fig. l l B  the latency computed numerically is 40 ms with 
b I = 0.983. We have no analytical expression for the value of bi, but the 
equation (9) does predict that the latency is considerable if -r b is very large 
or if gAb~o(Vss) -- b I = bss - b I is small. 

As illustrated in Fig. l l B  when the dynamics of b are slow, a depolarizing 
lap p must last long enough for the model neuron to fire from a pre-hyper- 
polarized state. An experimental example of this has been described for 
motoneurons that control the inking response of Aptysia (Byrne, 1980). The 
release of ink occurs selectively in response to long-lasting excitatory input, 
and I A is the ionic mechanism attributed to the shift in spiking threshold. 
Based on our analysis of the underlying bifurcation structure of the HHA 
model, we predict that a properly timed brief excitatory pulse during the 
latency phase after application of lap p can advance the onset of repetitive 
firing. In Fig. 12 we plot the latency, or time of first firing, versus the time 
of the excitatory pulse. Notice that there is a minimum waiting time, below 

60 

50 
r 

E 40 

~" 3o 
C 
0 _~ 2o 

l o  11 
0 5 10 15 20 25 30 35 40 

stimulus time (ms) 
Figure 12. A brief excitatory stimulus can reduce latency to repetitive firing in 
the H H A  model with slowly inactivating generic I A. Latency (time of first firing) 
is measured from time zero. Plot shows latency versus time of brief stimulus 
that is superimposed onto steady current (lap p = 20 / zA/cm 2) initiated at time 
zero. Brief stimulus: lap p = 1 / zA/cm 2, 0.5 ms duration, initial state: V =  
- 9 0  mV with gA = 10 ms and "r b = 15 ms. The unperturbed firing time or 
latency is 55 ms. A minimum latency of 30 ms occurs for a stimulus time of 25 
ms. If the stimulus occurs later, the perturbed cell fires instantaneously, i.e. 
latency equals stimulus time. The amount of latency reduction depends on 

amplitude and duration of brief pulse. 
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which the latency cannot be reduced. Given r b and bh, this minimum time 
is predictable from the bistability in the bifurcation diagram in Fig. 8B. The 
unstable, periodic solution branch serves as a separatrix to excitation; 
repetitive firing is initiated if an excitatory pulse of sufficient strength is 
delivered when b A < bp. The strength requirement for the pulse is reduced 
as b A decreases below bp; this is obvious since inhibition to excitation is 
being removed. The minimum time is the time required for b h to decrease 
to bp. Depending on the degree of holding hyperpolarization, b h may or 
may not be greater than bp. If the pre-hyperpolarization is just below rest 
with b h <bp,  then repetitive firing is initiated as soon as a sufficiently 
strong pulse is delivered. If r b is large, the effect of excitation can be quite 
significant in advancing activity. 

6. Anodal Break Excitation. Anodal break excitation is a special case of 
rebound excitation when the pre-hyperpolarized system is released to rest. 
The phenomenon exhibits a threshold which can be defined by viewing a 
plot of peak voltage, Vpk, versus the holding current Ihola (Fig. 13A). The 
stimulus value at which the slope of maximal absolute value occurs is one 
way the anodal threshold has been defined. 

FitzHugh (1976) computed such stimulus-response (I--Vpk) curves for 
the standard HH system without an I A. He showed that excitation fails 
given any value for /hold if the temperature is above a critical value of 
17.13~ This is because the (temperature-dependent) rate of I K activation 
is increased, allowing n to respond rapidly enough to preclude rebound 
firing. For temperatures below 17.13~ if a sufficient amount of n is 
removed through pre-hyperpolarization, then a full action potential is 
initiated before n increases significantly. 

If I A is added to the system, the rise of n is influenced by how much I A 
slows the approach of V to firing threshold. As a result, for a fixed 
temperature we also find that rebound excitation is suppressed for large 
enough gA, in a manner similar to increases in temperature; that is, the 
threshold shifts leftward (Fig. 13A). FitzHugh found that the anodal thresh- 
old recedes to -0~ as temperature increases. One reason for this is that the 
stimulus-response curve changes qualitatively; the I-Vpk curve becomes 
more graded. Using the maximal slope definition, there is no temperature 
at which the threshold disappears; consequently, it goes to - ~  at a critical 
temperature. This is also the case with the parameter gA if a slope 
definition is used. However, we have developed an alternate definition, for 
which the anodal threshold does not go to - o0. Our definition is in terms of 
latency rather than Vpk, and seems to distinguish better the transitions 
between sharp and graded responses. Using the fact that the latency (time 
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Figure 13. Stimulus-response curves for anodal break excitation. Plots of peak 
voltage, Vpk, after release from pre-hyperpolarization versus holding current 
/hold show dependence on gA and r b. (A) As gA increases, the threshold (steep 
transition in curve; see text for definition) shifts leftward; deeper hyperpolariza- 
tion is needed to compensate for larger gA. Here, % = 1 ms; gA increases from 
0 to 50 m S / c m  2, steps of 10. (B) Stimulus regime for rebound response shrinks 
as inactivation time constant increases. For  large enough ~'b, a second threshold, 
at lower /hold, appears. For /hold very negative, I A is fully deinactivated, and 
therefore, if inactivation is very slow, I A precludes rebound firing. The two 
thresholds bound a finite window of /hold values release results in rebound 
excitation. Here, gA = 10 m S / c m  2 and '/'b increases from 1 to 10 ms. (C) The 
stimulus window for rebound excitation shrinks and disappears as gA increases 

(% = 10 ms). Here, P b = 10 ms and gA increases from 10 to 35 m S / c m  2. 

to peak) increases monotonically as a critical /'hold is approached from 
either above or below, we search for the maximum latency. For curves as 
computed in Fig. 13A the sharp threshold behavior disappears for gA = 
23.8927 m S / c m  2 at lap p -- -36 .83  / z A / c m  2. For gA above this level, the 
response is considered graded. 

Figure 13B shows, as % is increased, the emergence of a second 
threshold which is lower. In the H H A  model  whether or not an action 
potential occurs depends on how V, n and b interact upon release. The 
total current that inhibits depolarization is [gK n4 + gAa3(V)b](V-  VK), but 
II,: and I A turn on in different voltage regimes. For small hyperpolarization, 
b h = b| h) is negligible because b=(V) is steep with its half-amplitude at 
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- 7 0  mV. Therefore, there is little increase in I A conductance upon 
release, and thus only a slight leftward shift in anodal threshold as T o 
increases. For deep hyperpolarization, the maximal amount of I A is avail- 
able to activate upon release (b h = 1 ) .  However, b decreases upon release, 
a process which favors excitation. If this decrease is rapid (~'b small), then V 
can escape the inhibition of IA, and an action potential results. If b 
decreases slowly (~b large), then I A does not inactivate as V increases. As a 
result, the action potential is suppressed. If % is not too large, an /hold 
interval remains in which anodal break excitation occurs (Fig. 13B). The 
size of this interval depends of gA. With increasing gA, the interval 
decreases to zero, and all anodal excitation is suppressed (Fig. 13C). 

7. Discussion. Ever since the work of Connor and Stevens (1971), the 
presence of potassium A-current has been associated with extending a 
neuron's range of firing frequencies, especially at the lower end to arbitrar- 
ily slow rates. Numerous other transient potassium currents have been 
found subsequently, and their describing parameter values span a large 
range. These currents inactivate at depolarized levels and so their primary 
effects are on behavior in the subthreshold voltage range, to increase 
interspike intervals during repetitive firing and to increase the latency 
before firing when stimulated from hyperpolarized holding states. During 
firing, if there is substantial post-spike hyperpolarization, then I A may 
recover adequately to delay the next spike. In some cases, I A may even play 
a role to help repolarize the membrane. The size of these effects depends 
on several I A parameters, notably on the inactivation time constant ~'b" 

In order to systematically explore how I A effects input-output  properties 
we have defined two A-current parameter sets: A~,  for a "generic" A-cur- 
rent that typifies much of the voltage-clamp data in the literature, and Ac,  
for 1 A from Conner et al. (1977) whose activation parameter values differ 
considerably from those of most /A s . With the intent of avoiding extraneous 
details, we incorporated IA into a minimal action potential model, a 
two-variable reduction of the standard Hodgkin-Huxley (HH) equations. 
Our analysis for the case of Connor-like parameters elucidated the mecha- 
nism underlying low-frequency firing: the emergence of periodic behavior 
via bifurcation of a homoclinic solution (infinite period) at a saddle-node of 
steady states. As the maximal conductance gA of I A is decreased, the 
minimum firing rate increases from zero. The onset of repetitive firing 
changes from a homoclinic to a subcritical Hopf bifurcation, and thus when 
gA = 0 the onset is as that in the classical HH model. In contrast, for our 
generic A-current (A c parameter set), we did not find very low firing rates; 
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instead, the onset of firing occurs with non-zero frequency over a large 
range of gn- 

Gerber and Jakobsson (1993) have also explored the effects of Connor's 
A-current on firing behavior. They confirmed the frequency reductions and 
noted that they were limited to a narrow interval of stimulus values near 
threshold. Our work provides the mathematical explanation in terms of 
bifurcation theory for the frequency reduction. We also clarified that an 
important biophysical correlate for arbitrarily low firing rates is the neces- 
sity that the membrane have an N-shaped steady-state, current-voltage 
relation. The N-shape condition can be realized, of course, by numerous 
combinations of ionic currents, but it does not require an A-current. 
Indeed, we have verified that our reduced HH model with gA = 0 and with 
slightly modified parameters for INa and I K can produce low firing rates 
(see also Rinzel and Ermentrout, 1989). 

We also found new behaviors mediated by I n when its inactivation rate is 
slow. Periodic bursting arises in certain stimulus regimes for our generic I n. 
During a burst's spiking phase, I A slowly de-inactivates, recovering a little 
during the hyperpolarization that follows each spike. When sufficiently 
de-inactivated, I A terminates the burst. Then during the interburst phase, 
inactivation proceeds slowly until the membrane can begin spiking again. 
Modulating the A-current parameters, particularly the rate of inactivation, 
can significantly change burst duration, and thus can play role in regulating 
synaptic transmission. Recently, Wang (1993) reported that clusters of Na § 
spikes could provide a possible means for transient synchrony in a network 
of neurons. Likewise in his model, a slowly inactivating transient potassium 
current underlies spike bursting (with interburst behavior distinguished by 
subthreshold oscillations). Viewing our generic A-current as representation 
of a family of such potassium currents, we offer a qualitative explanation 
for this burst behavior. Mathematically, the mechanism depends on a 
subcritical Hopf bifurcation for the fast spike-generating subsystem as 
described by Rinzel (1987) for a FitzHugh-Nagumo-like model. 

The A-current has been implicated in reducing the excitability in neurons 
not only by shifting the stimulus threshold for repetitive firing, but also by 
delaying its onset after initiation of a sustained depolarizing input. If a cell 
is pre-conditioned in a hyperpolarized voltage regime where I n inactivation 
is removed, repetitive firing evoked by a depolarizing stimulus is delayed 
until I A inactivates. The delay is quite considerable for slow I A inactivation. 
Gerber and Jakobsson (1993) emphasize this functional role of I A by 
showing the relationship between the inactivation time constant and the 
initial delay. What we found is that the onset of repetitive firing can be 
advanced by a brief excitatory pulse. Beyond a critical time during the 
latency phase, repetitive firing can be evoked prematurely and immediately. 
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Thus while the neuron's overall responsiveness to excitation may be re- 
duced by I a, it may remain responsive to more selective (i.e. well timed) 
brief synaptic events. 

Storm (1988) has reported remarkably long delays (10 sec) to firing in rat 
hippocampal neurons where the transient K § current elicited by a step 
from hyperpolarization consisted of two components: a fast I A and a slowly 
inactivating current called I D. Apparently, I A is too fast to account for 
most of the delay, yet ID, or "delay current," is characteristic of our generic 
IA: rapid, subthreshold activation and slow inactivation. Storm suggests that 
these properties may mediate slow temporal integration of repeated depo- 
larizing inputs. We have shown that a single depolarizing pulse failed to 
depolarize the cell to spike threshold unless properly timed; that is, unless 
inactivation has decreased sufficiently. Based on this, we would predict that 
given sufficient pre-hyperpolarization, repeated inputs (with slow recovery 
of inactivation between pulses) could result in a slow voltage buildup 
toward threshold. This delay of excitation in the presence of depolarizing 
events is an important mechanism in certain neurons, and those elements 
characteristic of our slow generic I A seem to play an important role. 

APPENDIX 

Parameters and Functions for the Hodgkin-Huxley Equations. 

Olrn(V) = 0 . 1 ( V +  35 - o ' , , , ) / (1 .0  - exp[ - O . I ( V +  35 - O r e ) l )  

/3re(V) = 4 e x p [ - O . O 5 ( V +  60 - ore)] 

ah(V) = 0.07 e x p [ -  ( V +  60 - Oh)] 

~h(V) = 1 / ( e x p [ - 0 . 1 ( V +  30 - % ) ]  + 1) 

an(V) = O.OI(V + 50 - % ) / ( 1 . 0  - exp[ - 0 . 1 ( V +  50 - o n ) l )  

/3,,(V) = 0.125 e x p [ -  0 . 0 1 2 5 ( V +  60 - o'n)] 

m=(V) = Olm(V) //[ Olm(V ) -t- ~m(V)]; 

h=(V) = '~h(V)/[ '~h(V) +/3h(V)]; 

noo(V) = OLn(lZ)//[ oln(V) "b ~.(V)];  

q~ = 3frerap- 6.3)/lo and 

"tin(V) = tm / (  Otm(V) + t im(V))  

Th(V ) ~- t h / (  Oth(V ) + [~h(V)) 

-rn(V ) = tn / (  C~n(V ) + ~n(V)  ) 

ti= I / 4 ) ,  i=m,h ,n .  

A d j u s t m e n t s  to  t h e  H o d g k i n - H u x l e y  e q u a t i o n s  by  C o n n o r  et al. are  given by o,~ = 5.3, 
o h = 12 a n d  o n = 4.3, as well  as t n = 2 / 4 , ,  w h e r e  4) is t h e  t e m p e r a t u r e  a d j u s t m e n t  fac tor .  
gNa = 120 and  gK is r e d u c e d  f r o m  36 to  20. 
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