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In this paper we present an oscillatory neural network composed of two coupled neural 
oscillators of the Wilson-Cowan type. Each of the oscillators describes the dynamics of average 
activities of excitatory and inhibitory populations of neurons. The network serves as a model for 
several possible network architectures. We study how the type and the strength of the 
connections between the oscillators affect the dynamics of the neural network. We investigate, 
separately from each other, four possible connection types (excitatory ~excitatory, excitatory---, 
inhibitory, inhibitory~excitatory, and inhibitory~inhibitory) and compute the corresponding 
bifurcation diagrams. In case of weak connections (small strength), the connection of 
populations of different types lead to periodic in-phase oscillations, while the connection of 
populations of the same type lead to periodic anti-phase oscillations. For intermediate 
connection strengths, the networks can enter quasiperiodic or chaotic regimes, and can also 
exhibit multistability. More generally, our analysis highlights the great diversity of the response 
of neural networks to a change of the connection strength, for different connection architectures. 
In the discussion, we address in particular the problem of information coding in the brain using 
quasiperiodic and chaotic oscillations. In modeling low levels of information processing, we 
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propose that feature binding should be sought as a temporally coherent phase-locking of neural 
activity. This phase-locking is provided by one or more interacting convergent zones and does 
not require a central "top level" subcortical circuit (e.g. the septo-hippocampal system). We build 
a two layer model to show that although the application of a complex stimulus usually leads to 
different convergent zones with high frequency oscillations, it is nevertheless possible to 
synchronize these oscillations at a lower frequency level using envelope oscillations. This is 
interpreted as a feature binding of a complex stimulus. 

1. Introduction. Recent neurophysiological experiments provide evidence 
that the primary processing of sensory stimuli can be connected to the 
appearance of oscillatory activity, both at the level of individual neurons and at 
the level of populations of neurons. Oscillations have been detected in 
experiments on the olfactory bulb (Freeman, 1991) and in primary areas of 
visual cortex (Eckhorn et al., 1988; Gray and Singer, 1989; Gray et al., 1989). 
Such periodic behavior suggests that synchronization of oscillations plays an 
essential role in neural information processing (see the discussion in Gray et al., 
1990). Investigations of motor activity demonstrate that certain patterns of 
oscillations correspond to different types of movements (Kelso et al., 1986). 
Experimental data on the theta-rhythmic activity in the septo-hippocampal 
region correlate with memory and attention (Miller, 1991; Vinogradova et al., 
1991). 

These experimental results have stimulated the development of mathemati- 
cal models of oscillatory neural networks in which oscillations are the major 
feature (Borisyuk et al., 1992a). For example, oscillatory neural networks may 
be used to model 

�9 stimuli recognition in the olfactory system (Baird, 1986; Freeman et al., 
1988; Li and Hopfield, 1989; Wilson and Bower, 1988); 

�9 response to simple visual stimuli in visual cortex (Borisyuk et al., 1990; 
Eckhorn et al., 1988; Fincel and Edelman, 1989; Sporns et al., 1991; K6nig 
and Shillen, 1991; Shillen and K6nig, 1991; Shuster and Wagner, 1990a,b; 
Sompolinsky et al., 1990a,b, 1991); 

�9 control of locomotion (Kelso et al., 1986; Kopell, 1988; Sch6ner et al., 
1990); 

�9 data memorization (Abbott, 1990; Kazanovich et al., 1991; Wang et al., 
1990); and 

�9 integration of stimulus features in a total image and realization of the 
attention function (Borisyuk, 1991; Kryukov, 1991; yon der Malsburg 
and Schneider, 1986). 

In this paper we present an oscillatory neural network composed of two 
coupled identical neural ocillators with a symmetric coupling. This network 
serves as a model for several possible architectures and can be used to study 
how the connection type and the connection strength affect the dynamics of a 
neural network. We analyse the dynamical behavior of the system for 
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connection strengths varying over a large range of parameters. Our tools come 
from bifurcation analysis of dynamical systems. 

There are many papers devoted to the investigation of the dynamical 
behavior of two coupled neural oscillators (e.g. Aronson et al., 1990; 
Ermentrout and Kopell, 1991, etc.). Some neural oscillator models consider 
oscillations as an endogenous property of a pacemaker neuron: 

�9 Van der Pol model (Kawato et al., 1979); 
�9 Hindmarsh-Rose model (1982); and 
�9 Hodgkin-Huxley model (Hansel et al., 1993); etc. 
Another approach suggests that oscillations arise as a result of the 

interactions between neural populations, for example, between excitatory and 
inhibitory populations: 

�9 Wilson-Cowan model (Wilson and Cowan, 1972; Borisyuk et al., 1992b); 
�9 "integrate and fire" model (Kryukov et al., 1990; Borisyuk et al., 1990); 

and 
�9 McGregor model (1987), etc. 
For most of these models, weak connections were emphasized and analysed 

using perturbation and phase reduction methods. The synchronization of two 
identical oscillators was studied and the following oscillatory modes, under 
different parameter values, were observed: 

�9 in-phase oscillations (zero phase shift); 
�9 anti-phase oscillations (half-period phase shift); 
�9 out-of-phase oscillations (stationary phase shift which is different from 

zero and half-period); and 
�9 multistability, for example, both in-phase and anti-phase oscillations. 
In particular, it was shown by computer simulation (Kawato et al., 1979) 

that for two Van der Pol oscillators with electrical coupling, both in-phase and 
anti-phase oscillations exist for the same parameter values. Hansel et al. (1993) 
considered the Hodgkin-Huxley neuron model with weak excitatory inter- 
action using a phase reduction technique. He found out-of-phase oscillations 
with reduced firing rate in comparison with a single neuron. Wang and Rinzel 
(1992) obtained for inhibitory connections of two Hodgkin-Huxley neurons 
both anti-phase oscillations for instantaneous coupling and in-phase oscil- 
lations for a slowly decaying postsynaptic current. Cymbalyuk et al. (1994) 
showed that for the Hindmarsh-Rose neuron model with weak electrical 
coupling, all oscillatory modes mentioned above are possible under variation 
of the external current. 

The main functional unit of oscillatory neural networks is a neural oscillator. 
In the present paper, we use the Wilson-Cowan model for a neural oscillator 
(Wilson and Cowan, 1972), that describes the dynamics of average activities of 
two neural populations, one excitatory and the other inhibitory. This model is 
based on mean field theory and allows a drastic reduction in the number of 
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variables in large scale models of neural activity. The dynamic behavior of 
average activity of the populations of the neural model can be compared with 
local field potentials and EEG's recorded with a macroelectrode. The 
Wilson-Cowan neural oscillator or similar models are used by many authors, 
for example, Freeman (1987), Yao and Freeman (1990)--to simulate chaotic 
EEG patterns of the olfactory system; Shuster and Wagner (1990), Borisyuk et 
al. (1990), Schillen and Konig (1991)---to simulate stimulus dependent 
oscillatory response of visual cortex; Shinomoto (1987), Wang et al. (1990)---to 
model associative memory. 

Having chosen a simple architecture of the network in the form of two 
coupled oscillators, the design of the detailed structure of the (inter) 
connections between neuronal populations of both oscillators is still required. 
Our goal is to analyse each possible connection type individually. 

To discuss the phenomena occurring in the network when the connection 
strength varies, we use ideas and terminology from bifurcation theory of 
dynamical systems. The bulk of our analysis is based on numerical simulations: 
we use the interactive software package LOCBIF (Khibnik et al., 1993a,b) to 
detect and to analyse bifurcations of equilibria and limit cycles numerically, 
and we use the program TraX (Levitin, 1989; Khibnik, 1990) to explore 
dynamics, including Poincar6 mappings and quasiperiodic motions. 

The outline of the paper is as follows. In section 2 we introduce the model and 
we describe the connections we use to construct the network. In section 3 we 
present the classification of periodic solutions and discuss the case of weak 
connections. Sections 4-7 are devoted to the examination of bifurcation 
diagrams for each connection type. Section 8 contains conclusions and 
discusses the significance of chaotic and quasiperiodic regimes for neural 
information processing. 

2. Model. 
2.1. A single-oscillator model. We consider the Wilson-Cowan model 

(Wilson and Cowan, 1972) as a single neural oscillator. This model is 
represented by a system of two autonomous differential equations describing 
the dynamics of average activities of the excitatory and the inhibitory 
populations (measured as a portion of firing neurons in each population). 
Denoting these activities by E and / ,  respectively, the model reads: 

dE/d t  = - E +  (k e -  E)" S e ( c , E -  c2I+ P) 

d//dt = - I +  (k i - I) .  S i ( c 3 E -  c J +  Q) . (1) 

Here Se(x ) = S(x,  be, Oe) and Si (x )= S(x ,  b i, Oi) are monotonically increasing 
sigmoid-type functions given by the formula 
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S(x, b, 0)= 1/(1 + e x p ( - b ( x - O ) ) ) -  1/(1 + exp(bO)), 

k e a n d  k i a r e  c o n s t a n t s ,  k e = S e ( +  00), k i=  S i ( +  ~ ) ,  P a n d  Q a r e  t h e  e x t e r n a l  

inputs to the excitatory and the inhibitory populations, and c I , c 2, c 3, c 4 are the 
strengths of connections between the populations. Notice that the values E and 
I may be negative, which means that the activity of the network is lower than 
that of the background activity. 

A two-parameter bifurcation analysis of equation (1) with P and c 3 as 
control parameters (Borisyuk and Kirillov, 1992) showed a variety of non- 
trivial phase portraits and bifurcations. These bifurcations include, in 
particular, fold, Andronov-Hopf, fold points for limit cycles and homoclinic 
bifurcation (Ermentrout and Cowan, 1979). Moreover, several higher 
codimension singularities have been demonstrated as well, such as Bogdanov- 
Takens and cusp singularities. From the variety of phase portraits we shall 
employ here only those where an unstable equilibrium is surrounded by a 
stable limit cycle (see Fig. 3.7 in Borisyuk and Kirillov (1992)). For the 
remainder of the paper we fix parameters of the single oscillator at the following 
values: 0e=4 , be= 1.3, 0i= 3.7, bi--2.0 , c1=16 , c2 = 12, c3= 15, c4=3,  P = l . 5  
and Q =0.  Notice that the amplitude and period of oscillations may vary 
significantly in the corresponding region of the bifurcation diagram. However, 
for the parameter values given above, we remain far away from the critical 
boundaries where these significant changes can occur. Therefore, we can now 
build a network based on a neural oscillator with reliable oscillatory 
properties. 

2.2. A model o f  two interactino neural oscillators. Consider two identical 
neural oscillators given by (1) and coupled using terms that may be interpreted 
as an additional external input. This system of coupled oscillators has the form 
(Borisyuk et al., 1992b; Khibnik et al., 1992): 

dE1/dt  = -- E1 + ( k e -  El )"  Se(CIE1 -- c211 + P + P12), 

d l l / d t  = - 1 1  + (k i - 1  I )" S,(c3E 1 - c 4 I  1 -I-- Q + Q IE), 

dE2/dt  = -- E2 + (ke - E2)" Se(ClE2 -- c212 + P + P21), 

dI2/dt = - 12 + ( k , -  12)" S~(c 3E2 -- c4I 2 + Q + 021), (2) 

where 

PI 2 = C t l E 2  - -  ~ 2 1 2 ,  P21 = ~ 1E1 - 6211, 

Q12 = ct3E2 - -  (~4/2 , 0 2 1  = ~3E1 - ct4ll-  

Here E 1, 11 and E 2, I 2 describe activities of the first and the second oscillators, 
respectively. The terms P12, Pc1, Q12, Q21 describe connections between the 
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oscillators, and coefficients ~1, a2, a3, a4 represent the strength of the 
connections between subpopulations related to different oscillators. Since we 
have symmetric coupling of identical oscillators, equation (2) has the reflection 
symmetry of interchange of two oscillators. 

We consider four types of (oriented) connections between oscillators in our 
neural network model (2). 
(1) Connections between the excitatory populations: 

P12 :~ P21 = ~ Q12=Q21:0,  (3) 

where 0q is the control parameter. 
(2) Connections from the inhibitory population of one oscillator to the 

excitatory population of the other oscillator: 

P12 = -~ P21-- -~ Q12=Q21 --0, (4) 

where 0~ 2 is the control parameter. 
(3) Connections from the excitatory population of one oscillator to the 

inhibitory population of the other oscillator: 

PI2=P21--0, Q12 =0~3E2, Q21 =~ (5) 

where ~3 is the control parameter. 
(4) Connections between the inhibitory populations: 

P12=P21 =0,  Q12 = - ~ J 2 ,  Qzl = -e411, (6) 

where ct 4 is the control parameter. 
In principle, all these connections may be active simultaneously. However, in 

this paper we consider these connections individually and analyse how the 
dynamics of a neural network is affected by each of the connections separately. 
In particular, we assume that only one of the parameters as, j =  1, 2, 3, 4, is 
non-zero at any instance. 

For each case, we analyse how the different types of oscillatory regimes 
evolve under variation of the strength of the corresponding connections, and in 
particular, how their stability properties change. In sections 4-7 we present the 
detailed bifurcation diagram for each connection type and emphasize the 
evolution of the observable oscillatory regimes in the neural network. 

3. Oscillatory Regimes and Their Bifurcations. In this section we focus on 
dynamical regimes of the neural network that show periodic activity of each 
neural population. These regimes are associated with limit cycles, or periodic 
orbits, in the phase space of equation (2). We suggest a classification of limit 
cycles that take into account the symmetry of the equation. We give particular 
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attention to the case of weak coupling. A brief review of possible limit cycle 
bifurcations that may be encountered under variation of the strength of 
connections is given in the Appendix. We refer the reader to the Appendix for 
the terminology used in the discussion of bifurcation diagrams. 

3.1. Classification of oscillatory regimes. The symmetry of system (2) 
implies that any periodic solution can be classified as Symmetric limit cycle 
(SC), Antisymmetric limit cycle (AC), and Nonsymmetric limit cycle (NC). 
They are defined as follows. 

Let (El(t), Ii(t), /~2(t), I2(t)) be a periodic solution: /~l( t)- /~l( t+T),  
T 1 ( t ) -  I(t + T), E2 (t) - E2 (t + T), I2 (t) - T 2 (t + T), where Tis a (minimal) period. 
A symmetric limit cycle is such that/~l(t) -/~2 (t), T l(t) - ~72 (t). It corresponds to 
in-phase, or synchronous, oscillations of populations of the excitatory and of 
the inhibitory neurons, respectively (Fig. la). 

The antisymmetric limit cycle is such that El(t + T/2) ==- E2 (t), 71 (t Jv T/2) - 
I2(t ). This corresponds to anti-phase oscillations as the phase shift between the 
oscillators is equal to T/2 (Fig. lb). 

A limit cycle which is neither symmetric nor antisymmetric is called 
nonsymmetric. Due to the symmetry of system (2) the nonsymmetric limit 
cycles always exist in pairs: (El, 11, E 2, 12)= (/T'l(t), Ii(t),/~2(t), I2(t)) and (El, 
11 , E 2, 12)= (/~2(t), I2(/~ 1 (t), T 1 (t)) (Fig. lc). For a nonsymmetric limit cycle, the 
phase shift is generally a nonconstant function of parameters. This type of 
oscillations is called out-of-phase oscillations. 

We shall extend the usage of the terminology "symmetric", "antisymmetric", 
and "nonsymmetric" to any invariant set of system (2) (equilibrium, limit cycle, 
invariant torus, chaotic attractor). Let H be the reflection actin, as II(E 1 , 11 , E 2, 
12) = ( E 2 , / 2 ,  E l ,  I1)" Consider a symmetry plane L defined as  E 1 = E2 ,  11 = 12. 

Note that it is invariant both under the flow of (2) and under reflection H. An 
invariant set M of system (2) is called symmetric if M c L ,  antisymmetric if 
Mc~L = 0 and H(M) = M, and nonsymmetric if H(M) # M. 

Obviously, in a four-dimensional phase space of system (2) one can fit the 
following objects: symmetric and nonsymmetric equilibria; symmetric, anti- 
symmetric and nonsymmetric limit cycles; antisymmetric and nonsymmetric 2- 
tori; nonsymmetric 3-torus; antisymmetric and nonsymmetric chaotic attrac- 
tors. We shall see in the next sections that all these objects really appear in 
model (2), with the exception of a 3-torus which was not observed in our 
simulations. Obviously, non-symmetric objects should appear in symmetric 
pairs (M1, M E )  , where M 2 = H(M1). 

Quasiperiodic motions on a 2-torus are called anti-phase envelope or out-of- 
phase envelope oscillations, if the torus is antisymmetric or nonsymmetric, 
respectively. We can draw some similarity between anti-phase periodic 
oscillations and anti-phase envelope oscillations based on the following 
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characteristic property.  Let q~=~b(x), x=(E1, 11, E2, 12) , be a function 
symmetric with respect to reflection H, II  o q~(x)= q~ o H(x) (e.g. ~b = E 1 + E2). 
Compar ing  the frequencies of q~(t) and x(t) in case of periodic oscillations, or 
corresponding envelope frequencies in case of quasiperiodic oscillations, we 
note that  the first frequency is twice the second. 

Remark that  if oscillators are engaged in a symmetric  or ant isymmetric  
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Figure l. Examples of different types of periodic solutions (limit cycles). (a) 
Symmetric limit cycle SC (excitatory-~inhibitory connections, ~3--1). (b) Anti- 
symmetric limit cycle AC (excitatory~excitatory connections, el=0.1). (c) 
Nonsymmetric limit cycle NC (excitatory~excitatory connections, el = 1.4). (d) 
Antisymmetric limit cycle near its birth at period doubling bifurcation (inhibitory ~ 

excitatory connections, a2 = 1.4). 

/) 
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regime, they canno t  be dis t inguished f rom each o ther  while in a nonsymmet r i c  
regime they can. 

A nice feature of  any  symmetr ic  equi l ibr ium or limit cycle is that  its stabil i ty 
can be character ized separate ly  with respect  to symmetr ic  and nonsymmet r i c  
per turba t ions .  Fo r  this we use the no ta t ion  (q, r), where  q show the stabil i ty in 
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L, r shows the stability with respect to perturbations transversal to L, and q, r is 
either " - "  meaning stable, or " + ' ,  meaning unstable. 

3.2. Weak coupling. We start with the case e j = 0 ,  for which system (2) 
describes two identical and uncoupled oscillators. The two-dimensional phase 
space of each oscillator contains an unstable equilibrium O and a stable limit 
cycle C. The phase space of system (2) appears as a product of these phase 
spaces of the uncoupled oscillators. This "product" structure implies the 
existence of the following invariant sets: 

�9 symmetric equilibrium SE = O x O(SE~L); 
�9 two nonsymmetric limit cycles NC 1 = C  x O and NC 2 = O  x C, forming a 

symmetric pair; and 
�9 antisymmetric invariant 2-torus T = C x C. 
The equilibrium SE is absolutely unstable (all four eigenvalues lie in the 

positive halfplane). The limit cycles NC1 and NC z are of saddle type (one 
multipler lies inside and two others lie outside the unit circle). The 2-torus T is 
stable. The above stability properties follow from the stability of C and the 
instability of O. The 2-torus T consists of a continuum of periodic orbits as we 
can choose an arbitrary phase shift (o, 0 ~< (o < T, between the oscillators. Note 
that the 2-torus contains the symmetric periodic orbit SC, with zero phase shift 
q) =0 ,  and the antisymmetric periodic orbit AC, with q~ = T/2. Other priodic 
orbits on T are nonsymmetric (NC-type). They are different, however, from 
periodic orbits NC 1 and NCz; the latter are obtained as a product of an 
equilibrium and a period orbit and obviously are planar, which means that one 
oscillator stays in a quiescent mode. 

We now perturb ei assuming 0 < e~ ~ 1. Structural stability of the equilibrium 
SE and the limit cycles NC1, NC 2 implies that they persist under perturbations 
and preserve their stability type. The 2-torus T also persists due to its normal 
hyperbolicity (Fenichel, 1971), although the dynamics on it changes (i.e. it is 
structurally unstable). Typically, on the perturbed 2-torus T, only a finite (and 
even) number of periodic orbits "surive'. In particular, the symmetric and 
antisymmetric periodic orbits SC and AC survive and remain on the torus due 
to their symmetric properties; note that SC has ( - ,  ") stability type. We have 
shown, using perturbation techniques (Malkin, 1956; Cymbalyuk et al., 1994; 
Ermentrout and Kopell, 1991) that no nonsymmetric periodic orbits survive 
on T, for connections of any type (1)-(4). To do that, we computed numerically 
a certain integral H(q)) over the original periodic orbit C, where q) is a phase 
shift, 0 ~< q~ < T, and verified that it has only two zeros, at (o = 0 and (o = T/2, 
corresponding to orbits SC and AC, respectively. The stability of these orbits 
on the torus is defined by the sign of ~?H/O~o at the corresponding roots. For 
different connection types we computed the following stability of SC and AC: 

(1) Excitatory to excitatory: AC is stable, SC is unstable. 
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(2) Inhibitory to excitatory: SC is stable, AC is unstable. 
(3) Excitatory to inhibitory: SC is stable, AC is unstable. 
(4) Inhibitory to inhibitory: AC is stable, SC is unstable. 
Note that instability of SC means that it has ( - ,  + ) type. We summarize 

that for inhibitory to excitatory and for excitatory to inhibitory connections the 
in-phase mode is stable. For the remaining two connection types this mode 
appears unstable but then the anti-phase mode is stable. Note that these results 
are limited to the case of weak coupling. In the next four sections we shall 
describe, for each connection type, what happens when the coupling becomes 
stronger. We find a change of stability for in-phase and the anti-phase modes, 
the emergence of new oscillatory modes, even more complicated dynamics or 
oscillatory death meaning that no stable oscillatory mode exists. 

4. Two Oscillators with Connections between Excitatory Neuronal 
Populations. For the case of connections between the excitatory neuronal 
populations, a schematic bifurcation diagram for system (2) with connection 
terms (3) and e~ as a control parameter is presented in Fig. 2. 

Symmetric equilibrium SE. For e l = 0 ,  SE has stability type (+ ,  +).  
Increasing c~2, the equilibrium undergoes Andronov-Hopf bifurcation twice, at 
point B(cq = 0.50) and point H(~I = 5.573) and become stable; the correspond- 
ing transition is ( + ,  + ) ~  ( - ,  + ) ~  ( - ,  - )  with branches of antisymmetric 
and symmetric limit cycles emerging at points B and H. Note that both 
bifurcations are backward and supercritical (see the Appendix for definitions). 
Two fold bifurcations occur inside the symmetry plant at points I(cq = 5.574) 
and J(e~=5.333). In the interval (J , /)  three symmetric equilibria exist 
simultaneously: two of them are stable, and the third one is a saddle with one 
positive eigenvalue (it has type (+ ,  - )  ). 

Symmetric limit cycle SC. For small cq the limit cycle SC is unstable, of type 
( - ,  + ). It becomes stable at a (subcritical) symmetry-breaking bifurcation 
point D(e~ = 1.72), giving rise to two saddle nonsymmetric limit cycles NC 3 
and NC4, for el >D.  The limit cycle SC remains stable until cq reaches point 
F(cq =5.34) when it disappears on a homoclinic orbit associated with the 
symmetric saddle mentioned above. Approaching point F (not shown in the 
picture), the period of the stable in-phase oscillations grows logarithmically 
fast to infinity. Another small branch of symmetric limit cycles exists between 
points K(e 1 = 5.5711) and H; at point K (not shown in the picture) we have 
another homoclinic orbit, similar to the previous one. It is worth noting that 
under a perturbation of the model two such close homoclinic points can easily 
merge and annihilate; to simplify the picture, it is natural to assume that the 
branch SC continues until it terminates at point H. 
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Figure 2. Schematic bifurcation diagram for excitatory-*excitatory connections. 
Note that the system displays quasiperiodic (envelope) oscillations in a large 
parameter range. Stable regimes are drawn by bold and unstable by thin curves. 
SE-symmetric equilibrium, NE-nonsymmetric equilibrium, SC-symmetric limit 
cycle, AC-antisymmetric limit cycle, NC-nonsymmetric limit cycle, AT-antisym- 

metric torus, NT-nonsymmetric torus. 

Antisymmetric limit cycle AC. The limit cycle AC is stable for small ~ and 
moreover it appears to be the only attractor in the system. At point A(~  = 0.25) 
this limit cycle loses stability via a torus bifurcation and a stable antisymmetric 
torus, denoted AT, emerges for ~ > A (see Fig. 3b). The unstable limit cycle 
AC, merges with equilibrium SE at point B when the latter undergoes the 
Andronov-Hopf  bifurcation described above. 

Nonsymmetric limit cycles NC 1 and N C  2. The limit cycles NC x and N C  2 a r e  

of saddle type, for small e~. They gain stability at point C(e x = 1.02) via a 
(backward) torus bifurcation, by merging with a pair of stable nonsymmetric 
tori NT 1 and NT 2 (see Fig. 3a), respectively. Increasing ~1 further, the stable 
nonsymmetric limit cycles NC~ and N C  2 (pairwise) collide with the saddle 
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nonsymmetric limit cycles NC~ and NC~ at point E (~x=1.76), a fold 
bifurcation of limit cycles. 

Antismmetric torus A T  and nonsymmetric tori N T  1 and N T  2 (Figs 3 and 
4). In the interval (A, C) no stable limit cycles exist, only the tori are stable, In 
numerical simulations we observe two subintervals, (A, G) and (G, C), such 
that the first one carries one antisymmetric torus AT, linked to AC, and the 
second one carries two nonsymmetric tori NT 1 and NT 2, linked to NC t and 
NC2, respectively. At point G(~I = 0 .6910 . . . )  AT "transforms" into NT~ and 
NT2; we call this phenomenon a torus symmetry breaking. Numerical 
experiments provide quite strong evidence that this transition involves 
homoclinicity associated with the symmetric limit cycle SC. This suggests that 
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Figure 4. Torus-symmetry-breaking bifurcation in the case of excitatory--, 
excitatory connections. (a) Poincare sections for c~1=0.5, c~1=0.691, ~1=0.85. 
Secant plane: E 1 +E 2 =0.44. (b) Anti-phase envelope oscillations for c~ = 0.691. 
Note the substantial growth of the envelope period compared to that in Fig. 3. 

0.4 

the phenomenon can also be called a torus gluing bifurcation, as the underlying 
mechanism is similar to a gluing bifurcation for periodic orbits (Gambaudo et 
al., 1988). 

Figure 4 illustrates the torus symmetry breaking bifurcation using the 
Poincar6 map and the related time series. In Fig. 4a we plot the Poincar6 map 
on plane E l + E 2 = c o n s t .  The left graph, computed for a j < G ,  shows one 
closed invariant curve which is apparently symmetric with respect to the origin; 
the symmetry implies that the corresponding torus is antisymmetric. Note that 
the origin is a saddle fixed point corresponding to the symmetric limit cycle SC. 
The right graph, computed for ~1 > G, displays one of two symmetrically 



TWO COUPLED NEURAL OSCILLATORS 823 

located invariant curves; each of them represents one nonsymmetric torus. 
Approaching point G from the left, the symmetric invariant curve gets closer to 
the origin, as shown in the middle picture, and eventually blows up forming two 
separated closed curves. We conjecture that the torus symmetry breaking 
bifurcation is closely related to the appearance of a homoclinic orbit to the 
saddle symmetric limit cycle SC. Apparently, due to the symmetry of the 
system, two homoclinic orbits should arise simultaneously. We also note that 
probably the torus symmetry breaking appears not to be a single bifurcation 
but a complicated transition sequence involving a homoclinic invariant set and 
associated chaotic dynamics; the fact that we have not observed these 
phenomena in the model means only that the corresponding parameter 
interval may be extremely small (see also discussion in Khibnik et al., 1992). 

Near the torus symmetry breaking bifurcation point the coupled oscillators 
look synchronized most of the time (Fig. 4b). Indeed, the related orbit comes 
very close to the symmetric limit cycle and traces it for a rather long time. Due 
to the phase instability of SC, however, this cannot last forever, and the orbit 
necessarily leaves neighborhood of SC, developing a substantial phase shift. 
Soon, it "flies back" to SC meaning that the phase shift decays to zero again. 
This demonstrates the alternation of (approximately) in-phase and out-of- 
phase oscillations. Clearly, the in-phase oscillations occur most of the time. 

Remark.  The torus gluing bifurcation of the type described above (we shall 
see still another type in section 6) appears in the context of the loss of stability of 
limit cycles near a 1:2 resonance, codimension two bifurcation phenomenon if 
no symmetry is imposed (Arnold, 1983). We are not aware of any mathematical 
literature studying torus gluing, neither in this nor in a different context. For 
other examples of torus gluing, of essentially the same type, we refer to Aronson 
et al. (1990) and Skeldon (1994). 

We now summarize the observed picture of bifurcations, emphasizing only 
the stable oscillatory regimes and how they evolve when cq grows. 
(0, A): Anti-phase periodic oscillations. 
(A, G): Anti-phase envelope oscillations. 
(G, C): Out-of-phase envelope oscillations. 
(C, D): Out-of-phase periodic oscillations. 
(D, E): In-phase and out-of-phase periodic oscillations. 
(E, H): In-phase periodic oscillations. 
el > H: Oscillatory death. 

5. Two Osillators with Connections from the Inhibitory Population to the 
Excitatory One. Consider connections from the inhibitory to the excitatory 
neuronal populations described by the connection terms (4) with ~2 as a 
control parameter. The related bifurcation diagram is presented in Fig. 5. Note 
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Figure 5. Schematic bifurcation diagram for inhibitory~excitatory connections. 
Increasing e2, chaos arises via a cascade of period doublings and disappears via an 

intermittency phenomenon. 

that this type of connections shows the most complicated picture of 
bifurcations, particularly involving the development of chaotic behavior. 

Symmetric equilibrium SE. Recall that SE is completely unstable for 52 = 0. 
When 52 increases, the stability type changes from ( + ,  + ) to ( + ,  - )  at the 
symmetry breaking bifurcation point K(a 2 = 5.35). Two nonsymmetric saddle 
equilibria, merging with SE at K, collide with another pair of nonsymmetric 
equilibria at the fold bifurcation point M (52 = 2.87). These latter equilibria 
exist for 52 > m.  

Symmetric limit cycle SC, For zero and small 52, limit cycle SC is stable. At 
p o i n t  A(~ 2 = 1.16) it loses stability, changing from ( - ,  - ) to ( - ,  + ). A period 
doubling bifurcation at point A leads to the birth, for o~2>A, of a stable 
antisymmetric limit cycle, denoted AC', the period of which is approximately 
twice the period of SC (Fig. ld). Notice that antisymmetric limit cycles AC' and 
AC form different branches; as we shall see further, AC' gives birth to a cascade 
of bifurcations leading to chaos. 
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At point F(a2=5.46), the limit cycle SC becomes stable again, via the 
(backward) period doubling bifurcations. The emerging limit cycle with 
doubled period exists for a2 < Fand  appears to be stable and antisymmetric; in 
fact that is AC. The limit cycle SC is stable between points F a n d  G(a z = 5.98); 
at the latter point it undergoes the (subcritical) symmetry breaking bifurcation, 
tranforming again into ( - ,  + )  type and giving birth to two saddle 
nonsymmetric limit cycles N C  3 and NC 4 for ~2 < G. 

Antisymmetric limit cycle AC. For small values of ~2, the limit cycle AC is 
unstable. It becomes stable at point E(0~2=5.03 ) when the (backward) 
symmetry breaking bifurcation occurs that gives rise to a pair of stable 
nonsymmetric limit cycles for ~2 < E (actually these are NC 1 and NC2).  Then 
AC approaches the symmetric limit cycle SC and merges with it at point F. 

Nonsymmetric limit cycles NC~ and NC z. The limit cycles NC~ and NC 2 
are unstable for small e2- Each of them becomes stable at point O(~ 2 = 4.99) via 
the (backward) period doubling bifurcation, by merging with a nonsymmetric 
limit cycle with the doubled period. Both limit cycles NCa and NC 2 approach 
each other and merge with the antisymmetric limit cycle AC at point E (see 
above). 

Other limit cycles. Consider the stable antisymmetric limit cycle AC x which 
has appeared at point A. When a2 increases, it loses stability at point 
B(e 2 = 1.90) via the (supercritical) symmetry breaking bifurcation which gives 
birth to a pair of stable nonsymmetric limit cycles. These cycles in turn become 
unstable at ~2 ~ 1.94 via a (first) period doubling bifurcation. A cascade of 
period doubling bifurcations than follows culminating in the appearance of 
two nonsymmetric chaotic attractors (Fig. 6a). 

When 0~ 2 increases, the symmetric pair of unstable nonsymmetric limit cycles 
NC 3 and N C  4 appears at point C(a 2 = 3.27), together with the other symmetric 
pair of stable limit cycles NC 5 and NC6,  when the system undergoes a fold 
bifurcation for limit cycles. At point C, we have two nonsymmetric saddle-node 
limit cycles created by collision ofNC 3 and NC 5 (NC 4 and NC6,  respectively). 
The stable limit cycles NC 5 and N C  6 persist for all ~2 > C ,  while the unstable 
limit cycles NC 3 and NC 4 merge with limit cycle SC at point G. The fold 
bifurcation at point C has, however, some additional global features playing a 
crucial role in the death of chaos, which will be discussed below. 

Chaotic attractors (Fig. 6). A pair of chaotic attractors arise via a period 
doubling cascade of nonsymmetric limit cycles, which makes these attractors 
nonsymmetric also. Shortly after they arise, these two attractors "merge" into a 
single antisymmetric chaotic attractor. This attractor exists until a2 reaches 
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point C where a pair of saddle-node nonsymmetric limit cycles arise, and then it 
dies. This observation reveals global consequences of the fold bifurcation 
occurring at point C. Indeed, as parameter ~2 approaches C, an orbit on the 
chaotic attractor tends to remain longer and longer near the two locations in 
the phase space where the saddle-node limit cycles will appear. As the orbit 
arrives at either of these locations, the oscillations become nearly periodic. 
Therefore, we observe near point C an intermittency phenomenon: both 
oscillators run almost periodically in time, switching rarely but randomly 
between regimes where either the first or the second oscillators dominates (Fig. 
6b). 
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Figure 7. Schematic bifurcation diagram for excitatory~inhibitory connections. 
Double Hopf bifurcation at point C leads to the appearance of two stable regimes: 
symmetric and antisymmetric limit cycles. Their basins of attraction are separated 

by an invariant torus of saddle type, also born at C. 

We conclude our analysis of inhibitory~excitatory connections with the 
following bifurcation picture for stable regimes. 
(0, A): In-phase periodic oscillations. 
(A, B): Anti-phase periodic oscillations. 
(B, C): Transition to chaos via the period doubling cascade and chaotic 
oscillations. 
(C, D): Out-of-phase periodic oscillations. 
(D, E): Out-of-phase periodic oscillations (two different profiles). 
(E, F): Anti-phase and out-of-phase periodic oscillations. 
(F, G): In-phase and out-of-phase periodic oscillations. 
~2 > G: Out-of-phase periodic oscillations. 

6. Two Oscillators with Connections from the Excitatory Population to the 
Inhibitory One. Consider now connections from the excitatory to the 
inhibitory neuronal populations, i.e. system (2) with the connection terms (5) 
and with ~3 as a control parameter. We obtain the bifurcation diagram shown 
in Fig. 7. 

Symmetric equilibrium SE. When e3 increases, the stability type of SE 
changes from (+ ,  + )  to ( - , - )  at point C(ct 3 =2.49), i.e. the completely 
unstable equilibrium becomes immediately stable. At this point we have 
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simultaneously two Hopf pairs of eigenvalues. Note that this usually happens 
at a codimension two phenomenon, but for this connection type (more 
generally, for any connections with ~1 = ~4 =0) it becomes a one-parameter 
bifurcation. Using normal form computations (see Guckenheimer and 
Holmes, 1983) we show that three invariant sets bifurcate from SE 
simultaneously for ~3 < C: two stable limit cycles--symmetric and antisym- 
metric (SC and AC)--and a saddle antisymmetric torus AT'. The torus is 
difficult to compute by direct integration, since it is unstable both in forward 
and in backward time. Nonetheless, in simulations one can easily visualize the 
torus as a long-term transient pattern and observe the envelope oscillations of 
anti-phase type. At point E(~ 3 = 7.43) of symmetry breaking bifurcation, SE 
changes stability to ( - ,  + ) type, giving rise to two stable nonsymmetric 
equilibria (they, in turn, undergo Andronov-Hopf bifurcation at F(~ 3 = 13.15) 
where two nonsymmetric limit cycles appear). 

Symmetric limit cycle SC. The limit cycle SC is stable on the whole interval 
(0, C). At point C it merges with equilibrium SE, as described above. 

Antisymmetric limit cycle AC. Being unstable for small values of ~3, limit 
cycle AC gains stability at point the (backward) symmetry breaking bifurcation 
B(~ 3 = 1.67). Two stable nonsymmetric limit cycles NC~ and N C  2 appear at 
this point for ct 3 < B. At point C limit cycle AC merges with equilibrium SE. 

Nonsymmetrie limit cycles N C  1 and N C  2. Limit cycles NC~ and NC 2 are 
unstable for small %. They become stable at the (backward) torus bifurcation 
point A(~3= 1.59), where the stable tori NT~ and NT 2, existing for ~3 <A,  
shrink to NC~ and NC2, respectively. At point B these limit cycles merge with 
limit cycle AC, as described above. 

Antisymmetric torus A T  and nonsymmetric tori N T  x and N T  2. Tori NT 1 
and NT 2 bifurcate from NC1 and NC/respectively, and almost immediately 
glue into the antisymmetric torus AT. This appears to be similar to the gluing 
bifurcation described in section 4, but there are some differences. The similarity 
is that an envelope pattern corresponding to a torus contains a nearly periodic 
pattern, which gets longer and longer, with the envelope period going to 
infinity, when the parameters approach the gluing point. The difference is that 
we have here a periodic pattern resembling an antisymmetric limit cycle, as 
opposed to a symmetric limit cycle in the previous case. In other words, here 
the nonsymmetric tori approach and glue together on the antisymmetric limit 
cycle, while for the case of mutual excitatory connections a symmetric limit 
cycle is involved. 

At point D(~ 3 = 1.38) the antisymmetric torus AT collides with another 
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Figure 8. Schematic bifurcation diagram for inhibitory~excitatory connections. 
Antisymmetric limit cycle is the only stable regime in the whole parameter range. 

antisymmetric torus AT' of saddle type. There is numerical evidence that this is 
the same torus as that bifurcated from SE at point C; we use this conjecture to 
complete the picture (Fig. 7). 

The analysis of the excitatory~inhibitory connections is summarized in the 
following bifurcation scheme. 
(0, D): In-phase periodic oscillations. 
(D, G): In-phase periodic and anti-phase envelope oscillations. 
(G, A): In-phase periodic and out-of-phase envelope oscillations. 
(A, B): In-phase and out-of-phase periodic oscillations. 
(B, C): In-phase and anti-phase periodic oscillations. 
(C, F): Oscillatory death. 
~a > F: Out-of-phase periodic oscillations. 

7. Two Oscillators with Connections between Inhibitory Populations. In case 
the inhibitory populations are connected, the simplest bifurcation diagram 
appears (Fig. 8). Here the connection terms in system (2) are given by the 
expressions (6) and ~4 is treated as a control parameter. 

Symmetric equilibrium SE. Being completely unstable for small ~4, SE 
changes to saddle type, ( - ,  + ), at the (backward) Andronov-Hopf bifurca- 
tion point D(e 4 = 0.61). This bifurcation gives rise to a saddle symmetric limit 
cycle SC for ~4 < D. 
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Symmetric limit cycle SC. For all values of e4 the symmetric limit cycle SC 
appears to be unstable, of ( - ,  + )  type. At point A(ct4=0.49 ) it undergoes a 
symmetry breaking bifurcation leading to the appearance of a pair of saddle 
limit cycles NC 3 and NC 4 for e4>A.  At point D (e=0.61) this limit cycle 
merges with the symmetric equilibrium SE. 

Antisymmetric limit cycle AC. For all values of e4 the antisymmetric limit 
cycle is stable. 

Nonsymmetric limit cycles NCI and N C  2. The limit cycles NC 1 and N C  2 a re  

of saddle type for small ~4. At point C(~ = 0.55) they pairwise collide with two 
other nonsymmetric, completely unstable limit cycles N C  3 and NC4, in a fold 
bifurcation of limit cycles. Between points A and C, at point B(~ 4 --0.54), limit 
cycles N C  3 and NC 4 undergo a torus bifurcation which gives rise, for ~4 < B, to 
two completely unstable nonsymmetric tori NT 1 and NT 2. They can easily be 
visualized in backward time. 

Nonsymmetric tori N T  1 and N T  2. When ~4 decreases, the tori NT 1 and 
NT z are involved in quite complicated transitions (torus doubling, chaotic 
repeller). Ultimately, they die approaching a point where both NC 1 and N C  2 

have a homoclinic orbit. 
In the case of mutual inhibitory connections the picture of stable oscillatory 

regimes is trivial: 
for all c~4: anti-phase periodic oscillations. 

8. Summary and Discussion. In this paper, we considered an oscillatory 
neural network built upon coupled Wilson-Cowan neural oscillators, each 
describing the average activities of excitatory and inhibitory populations of 
neurons. We explored the capabilities of a rather simple neural network, 
consisting of neural oscillators, to exhibit different dynamical behavior. We 
focused primarily on the dependence of the dynamics of the entire network on 
the type and the strength of the connections between the neural oscillators. 

We considered particular forms of coupling which, for a given oscillator, just 
add (weighted) output from one or more other oscillators to the external input 
of this oscillator. This is a direct coupling (Aronson et al., 1990), which differs in 
many cases from diffusive coupling. 

This choice has led to the model (2), which generally takes into account four 
connection types: excitatory to excitatory, inhibitory to excitatory, excitatory 
to inhibitory and inhibitory to inhibitory. In order the achieve a better 
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understanding of the role of each connection type in the dynamics of the 
network, we investigated each connection type separately. We believe that this 
approach forms a basis for further experiments with "mixed" connections. 

Our study of model (2) revealed a great variety of dynamical regime, despite 
the simplicity of the two-oscillator neural network. Furthermore, by choosing 
different connection types and by varying the strength of the connections, we 
found qualitatively different network dynamics. This shows that the type and 
the strength of the connections play a crucial role. In this paper, we were in the 
first place concerned with the analysis of the influence of the connection type on 
the dynamics of the network. 

We now summarize the most interesting features of the model. Afterwards 
we shall discuss how some particular oscillatory modes can be used for 
information processing. 

Weak coupling. In case of a weak coupling, the model manifests either in- 
phase or anti-phase stable periodic oscillations. The anti-phase oscillations 
arise if we take purely excitatory or purely inhibitory connections. For two 
other types of connections, i.e. from excitatory to inhibitory to excitatory, we 
have synchronous (in-phase) oscillations. These observations allow us to 
suggest the following hypothesis: a weak coupling between "differently named" 
populations leads to a synchronizing effect (after a transient, oscillations 
become synchronous), while the coupling between "similarly named" popula- 
tions leads to a desynchronizing effect (after a transient, the oscillators oscillate 
in an anti-phase fashion)--see also (Schillen and K6nig, 1991; K6nig and 
Schillen 1991; Ermentrout and Kopell, 1991). 

"Intermediate" coupling. As the strength of the connection becomes larger, 
the dynamics of the network may change. Consider for example the case of 
excitatory to excitatory connections. First, the changes develop gradually: 
anti-phase periodic oscillations turn into envelope oscillations, whose envelope 
profile inherits the characteristic anti-phase pattern. Afterwards this pattern is 
destroyed which leads to out-of-phase envelope oscillations, and ultimately we 
arrive at out-of-phase periodic oscillations. Then an abrupt change occur: the 
system "jumps" from out-of-phase periodic oscillations to in-phase oscil- 
lations. The last transition is again smooth: the amplitude of the in-phase 
oscillations decays to zero, which results in a quiescent mode. 

Note that for excitatory to inhibitory and for inhibitory to excitatory 
connections the scenario is different but similar in the sense that the strength of 
the connections considerably influences the dynamics of the network. 
However, in the case of inhibitory to inhibitory connections the dynamics does 
not change at all, i.e. no bifurcations involving stable regimes occur. 

Multistability. We draw attention to the presence of several multistability 
regions in the model (2) (e.g. interval (D, E) in Fig. 2, where in-phase and out- 
of-phase regimes coexist). This is closely related to the possibility of a real 
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neural network to respond to a given signal in a non-unique way; the response 
depends upon initial data which could be difficult to control. 

Evelope and chaotic oscillations. For weak coupling, we observe periodic 
oscillations, either in-phase or anti-phase. For strong coupling, we have either 
periodic oscillations of any of the three possible types, or oscillatory death. For 
intermediate coupling, however, we observe also quasiperiodic or chaotic 
behavior. Note that even for quasiperiodic and chaotic regimes some 
relationships between the phases of the oscillators may still occur (e.g. anti- 
phase envelope oscillations in Fig. 3b). Usually they can be detected by 
examining the symmetry of the attractor. Quasiperiodic oscillations were 
found in model (2) for excitatory to excitatory and for excitatory to inhibitory 
connections, and chaotic oscillations were observed for inhibitory to excitatory 
connections. 

In case connections between excitatory populations (mutual excitation) exist, 
quasi-periodic oscillations occur for a reasonably wide range of connection 
strengths. For sufficiently large values of the connection strengths, the mutual 
excitatory connections lead to synchronous oscillations and then to oscillator 
death. 

Connections from the inhibitory population to the excitatory one produce 
complex chaotic behavior. Note that two coupled neural oscillators are 
sufficient for demonstrating "random" behavior, but such a regime occurs only 
for one of the four considered types of connection. Note also that for a 
sufficiently large connection strength, the neural network exhibits out-of-phase 
periodic oscillations. 

Connections from the excitatory population to the inhibitory one lead to a 
substantial region of multistability where synchronous and nonsynchronous 
oscillatory regimes exist simultaneously. Such multistable regimes can be used 
for modeling memory and attention functions (Borisyuk, 1991). Oscillator 
death and the restoration of out-of-phase oscillations are observed when the 
strength of coupling increases. 

Connections between inhibitory populations (mutual inhibition) result in 
stable anti-phase oscillations for the whole parameter range. This is consistent 
with the behavior of many other oscillatory systems where mutual inhibition 
also leads to persistent anti-phase oscillations (see, e.g. Wang and Rinzel, 1993; 
Schutter et al., 1993). 

Finishing our discussion, let us discuss about the possible role and 
significance of chaotic and quasiperiodic oscillations for data processing in a 
brain. The advantages of chaotic behavior for brain functioning were 
considered by Nicolis (1990), Nicolis and Tsuda (1985), Tsuda (1992), Yao et 
al. (1991), Dmitriev (1993) and others. These papers focused on chaotic regimes 
in solving problems of pattern recognition, classification and memorization of 
information. An important feature of systems with chaotic dynamics, exploited 
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in many applications, is that they show easy transitions from chaos to a 
periodic oscillatory mode; this is caused by the fact that the frequency spectrum 
of chaotic behavior is a mixture of different frequencies of oscillations. 

Envelope oscillations have not received much attention yet. We believe that 
envelope oscillations may help to resolve the following problem. It is known 
that frequency encoding of stimuli is impeded by insufficiency of information 
capacity. Indeed, the range of admissible frequencies is not large, and due to 
relatively low resolution in the frequency domain, it may not be easy to 
distinguish between different frequencies. Therefore the number of admissible 
frequencies is limited, implying certain restrictions in frequency encoding. The 
presence of double-frequency, or envelope, oscillations makes it possible to 
extend frequency encoding, since the second frequency can play the role of a 
second encoding variable. Therefore, we can employ two coordinates for 
encoding instead of one. 

In the paper by Borisyuk et al. (1992b) envelope oscillations are used to 
explain the experimental evidence recorded in the primary visual cortex (Gray 
and Singer, 1989; Gray et al., 1990). Let us briefly discuss a preattention model 
which is based upon the idea that envelope oscillations play a significant role 
for the explanation of feature binding (Borisyuk et al., 1994; Borisyuk and 
Borisyuk, 1995). During the information processing in the brain, a stimulus is 
presented as a set of separate features (for example, shape, color and so on) and 
each feature is presented by a spatio-temporal pattern of activity of a neural 
assemble. The basic principles and relative neural mechanisms are investigated 
to bind separate features and to create the whole image of the presented 
stimulus. 

The preattention model is based of an idea of Damasio (Damasio, 1989) that 
feature binding occurs due to the coherence of neural activity in multiple 
regions of the neocortex which are linked together through activation of 
convergent zones. These zones, which are located in the higher levels of the 
neocortex, communicate through feedforward and feedback pathways to 
earlier zones of the primary cortex where different features of the stimulus are 
represented. In modeling low level information processing, we propose that 
feature binding should be sought in temporally coherent phase-locking of 
neural activity. This phase-locking is provided by one or more interacting 
convergent zones and does not require a central "top level" subcortical circuit 
(e.g. the septo-hippocampal system). Thus, this is an automatic, self-organizing 
synchronization of neural activity. To study feature binding in terms of 
synchronization of oscillations in a large scale system, we choose a 
Wilson-Cowan neural oscillator as the basic functional unit of the network. 
We consider a chain of locally coupled oscillators. Such a network can show 
different types of dynamic behavior: regular oscillations with various phase 
shifts, traveling waves, envelope oscillations, and chaotic oscillations (Bori- 
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syuk and Urzhumtseva, 1990; Borisyuk and Borisyuk, 1995). The morpho- 
logical evidence and results presented there for two coupled (oscillators allow 
to control the chain and, by choosing parameters, to get the desirable dynamic 
behavior. 

Thus, to model interactive convergent zones, we consider a two-layer neural 
network of two locally interacting chains of oscillators with excitatory to 
inhibitory connections inside each layer and local connections between 
excitatory subpopulations for interlayer communications. The chain of 
oscillators models an early neocortical zone responsible for the analysis of a 
single feature of a stimulus. The first layer of the network receives the external 
input signal (stimulus). The second layer corresponds to the upper convergent 
zone where the signals from the first layer are analysed. 

Under stimulation by a simple stimulus (oscillators of some compact region 
receive high level of input signal and other ones receive zero signal) the 
oscillators of the first layer with high level of the input signal demonstrate 
synchronous envelope oscillations. The synchronization mode appears due to 
excitatory to inhibitory type of the local connections inside the layer and the 
envelope feature appears due to excitatory connections between layers. The 
synchronous activity is interpreted as the formation of an integral pattern 
related to the simple input stimulus. 

When a complex stimulus (two compact non-overlapping regions of 
oscillators receiving the input signal of a high level, other oscillators receive 
zero input signal) is applied, however, the network responds by forming two 
corresponding non-overlapping areas of oscillatory activity in the first layer. 
This activity is represented by quasiperiodic (envelope) oscillations with two 
frequencies. The low frequency is about one-tenth of the high frequency. The 
high frequency oscillations are synchronous in each area, but there is no 
synchronization between the areas. However, the low frequency oscillations 
are synchronous for oscillators of both areas. Synchronization at a low 
frequency results from convergent connections between layers. The second 
layer provides envelope oscillations and is the source of low frequency 
synchronization. Thus, the synchronization of low frequency oscillations in 

Figure 9. Low frequency synchronization using envelope oscillations. Complex 
stimulus is applied to two-layer neural network of two locally interacting chains of 
13 oscillators with excitatory to inhibitory connections inside each layer and local 
connections between excitatory subpopulations for interlayer communications. (a) 
Complex stimulus profile with two areas of excitation A and B; (b) Three examples 
of dynamic behavior of different oscillators in the first layer: E4(t ) and E 5 (t) belong 
to the excitated area A and E9(t) belongs to the excitated area B. Note characteristic 
envelope profile and synchronization between all shown oscillators at a low 
frequency. (c) Zoom of the previous picture showing that at a high frequency E 4 and 

E 5 work in-phase and they both work in anti-phase with E 9. 
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different regions of  the first layer  arises due  to the in terac t ions  be tween two 
convergen t  zones; it can be in te rpre ted  as a feature  b inding of  a complex  
stimulus.  F igure  9 shows the dynamics  of the average  act ivi ty (E~(t)) o f t h e  
exc i ta to ry  neura l  subpopu la t ions  of  the oscil lators of  the first layer  unde r  
complex  stimulus: E~(t) and  EX(t) are t aken  f rom one s t imula ted  area of  the 
chain  and  E~(t) is t aken  f rom the o ther  area.  All these oscil lat ions are enve lope  
oscil lations.  One  can see tha t  E2 and  E51 dem o n s t r a t e  sy n ch ro n o u s  oscil lat ions 
(Fig. 9c). E5 ~ and  E91 demons t r a t e  ant i -phase  high f requency  oscil lat ions (Fig. 
9c) but  low f requency  c o m p o n e n t s  are sy n ch ro n o u s  (Fig. 9b). 
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A P P E N D I X .  B I F U R C A T I O N S  O F  L I M I T  C Y C L E S  I N  A S Y S T E M  O F  
T W O  C O U P L E D  O S C I L L A T O R S .  

Consider bifurcations of limit cycles of symmetric (SC), antisymmetric (AC) and non-symmetric 
(NC) types that may occur in a model of two identical and symmetrically coupled two- 
dimensional oscillators with a varying parameter cz, representing the strength of the coupling. We 
partially follow a paper which suggests a list of possible bifurcations (Nikolaev, 1995). However, 
the list is limited to local bifurcations. 

For all values of e, a symmetric limit cycle SC lies in the two-dimensional plane L, invariant 
under the symmetry. Therefore, it may undergo two types of bifurcations: (1) bifurcations in the 
plane (planar bifurcations); and (2) bifurcations involving directions transversal to the plane. 
Depending on the type of coupling, planar bifurcations may be present or not in the system. They 
usually occur in the case of direct coupling as in model (2), but they never occur in the case of 
diffusion-type coupling. 

A list of planar bifurcations includes: merging of SC with a symmetric equilibrium at an 
Andronov-Hopf bifurcation; the collision of SC with a distinct symmetric limit cycle at a fold 
bifurcation for limit cycles; and the disappearance of SC at a homoclinic orbit involving either a 
saddle or saddle-node in L, corresponding to a homoclinic bifurcation or a fold bifurcation, 
respectively. 

Next, there are exactly two multipliers of SC that determine its stability in the normal 
directions to L. When one or both of them cross the unit circle bifurcations of the second kind 
occur. If one multiplier passes through the value + 1, a symmetry-breaking bifurcation occurs, 
which leads to a pair of nonsymmetric limit cycles. Another possibility is that a multiplier passes 
through the value - 1, which leads to a period doubling bifurcation and to the appearance of an 
antisymmetric limit cycle with (asymptotically) doubled period. Finally, both multipliers, 
forming a complex conjugate pair, may cross the unit circle. This corresponds to a torus, or 
Neimark-Sacker bifurcation, which leads to the appearance of an antisymmetric invariant 2- 
torus. 
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We now consider bifurcations of an antisymmetric limit cycle AC. Unlike SC, it is not planar, 
yet it is not generic, since it possesses some symmetry properties. AC cannot have just one 
multiplier at - 1  and, therefore, it cannot undergo a period doubling bifurcation. However, 
other "generic" bifurcations are still possible. In particular, when a multiplier passes through + 1 
either a symmetry-breaking bifurcation occurs, leading to the appearance of a pair of 
nonsymmetric limit cycles, or a fold bifurcation for limit cycles, at which AC collides with 
another antisymmetric limit cycle so that they both disappear. To distinguish between these two 
cases, we should consider the so-called square root of the Poincar6 mapping (cf. Nikolaev, 1995). 
If a pair of complex conjugate multipliers crosses the unit circle, a torus bifurcation occurs 
leading to the appearance of an antisymmetric torus. The limit cycle AC may disappear via 
merging with a symmetric limit cycle, when the latter undergoes a period-doubling bifurcation, 
and via merging with an equilibrium in L, when the latter undergoes an Andronov-Hopf 
bifurcation (with critical two-dimensional eigenspace transversal to L). Finally, AC may 
disappear at a homoclinic or heteroclinic bifurcation. Note that two homo- or heteroclinic orbits 
symmetric to each other should appear simultaneously. In the first case, they are both associated 
with a symmetric saddle equilibrium and together they form an antisymmetric figure-of-eight 
loop. In the second case, heteroclinic orbits are associated with two nonsymmetric saddles and 
together they form an antisymmetric heteroclinic contour. 

A nonsymmetric limit cycle NC is a true generic limit cycle and therefore it may undergo any 
bifurcation allowed in generic systems. However, there are a few important remarks. The limit 
cycle NC, together with its image under the symmetry, may both merge with an antisymmetric 
limit cycle, or with a symmetric limit cycle, at a symmetry-breaking bifurcation. In both cases, a 
multiplier of NC approaches the value + 1 when the critical parameter is approached. If NC 
stays far away from symmetric or antisymmetric invariant sets, then obviously bifurcations of 
NC generate only nonsymmetric invariant sets. For  example, a torus bifurcation of NC give rise 
to a nonsymmetric 2-torus. Clearly, nonsymmetric limit cycles forming a symmetric pair 
bifurcate simultaneously and in the same fashion. 

The bifurcations mentioned above can occur in several ways. This is reflected in the following 
terminology. A bifurcation is called forward or backward if, when a critical parameter value is 
passed, the bifurcating object becomes less or more stable, respectively. This terminology reflects 
the direction of the parameter change near the critical point, in invariant terms. A bifurcation is 
called supercritical if a new invariant set emanates from the bifurcating one in those parameter 
direction where the latter set shows less stability, and subcritical if it emanates in the reverse 
direction. Usually, a bifurcation is assumed forward and supercritical, by default. 
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