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A b s t r a c t  

In this paper, an approach is proposed for taking calculations of high order 

d(fferentials of sealhTg functions in wavelet theory in order to apply the wavelet 

Galerkin FEM to numerical analysis of those boundary-value problems with order 

higher than 2. After that, it is realized that the wavelet Galerkin FEM is used to solve 

mechanical problems such as bending of beams and plates. The numerical results show 

that this method has good precision. 

Key words applications of wavelet theory, scaling functions, operation of 

high-order derivations, Galerkin FEM, bending of beams and 

plates 

I. I n t r o d u c t i o n  

It has been found that the wavelet theory is a powerful mathematical tool developed in 

recent },ears. As a new mathematical tool, it has been extensively applied in the analysis of 

signal process, partten recognition, function approximation, and solving differential equation 

(s), etc.. Since a small signal in a signal process Can be captured by the wavelet theory, its 

applications have been paid much attention both in theory and in engneering 1~-51. Recently, the 

wavelet theory has been generalized to find a numerical solution of  a differential equation. For  

example, the wavelet theory combined with the Galerkin FEM method is successfully used to 

solve twopoint boundary-value problem with the differential equation of  order two. In this 

method, the domain is attto-discretized, and the admissible function of  the Galerkin method is 

taken as the scaling functions of a wavelet theory. It is found that this method has high 

precision and fast convegence. However, its applications in tiffs area have been limited to the 

case of  the boundary-value problems with the order of  differential equations not higher than 2, 

i. e., the Laplace equations and the Poisson's equations in electromagnetic fields, since it is not 

easy to obtain the dcriw~tions of  order 2 or higher to the scaling functions. Due to the order of  

dil'ferential equations in mechanics of  beam and plate structures is 4 generally, it is a key step 

to find a way to perform the calculations of  high-order derivations and the terms of multiple 

of one derivative function with others for applying the wavelet FEM in mechanics of 

structures. 

* Project supported by the National Natural Science Foundation of China and Science Foundation 

of the National Education Committee of China for the Scholars Returned from Abroad and for the 

Exellent Young Teachers in Universities 

Department of Mechanics, Lanzhou University, Lanzhou 730000, P. R. China 

745 



746 Zhou Youhe, Wang Jizeng and Zheng Xiaojing 

Here, we will introduce a way to carry out the calculations of high order derivations of  

the Daubechies' scaling functions and their multiple terms such that the application of the 

wavelet FEM in structural mechanics is made possible. In order to show the possibility, some 

examples of applying wavelet FEM to beam and plate bending are exhibited numerically. It is 

shown that this method has high precision and reliability. 

II .  Bas ic  Concepts of Wavelet Theory 

2.1 SCal ing f u n c t i o n  a n d  w a v e l e t  f u n c t i o n  

Definition I A function ~ ( x ) E L  2.. is said to be a scaling or dilation function if it has 

the following properties or characteristics: 

(I) there is a set of sequence "[p(k)}t, Ez such that 

(~(x) = ~-~,p(k)#(2x - k) (2.1) 
k 

is held; 
(2) a set of bases of scallng functions, { #,.k (x )  ]' , ,  k(- z, satisfies the orthonomarlized condition 

f?**~,,. ,(x)~,, . t(x)dx = t~u (2.2) 

For  a function f ( x ) E  L 2 let the scaling transformation 

a.f(x)  = ~ . ,kr  (2.3) 

in which 

Sr a,,,k = ( f ( x ) ,~ , , . k ( x ) )  = _**f(x)~'*'k(x)dx (2.4) 

~ , ,k (x)  = 2"/2r - k) (2.5) 

(3) the set of function space 

v. = { ~akr ~ Z, ak E R} (2.6) 
/, 

has the relationship 

( i ) v. c v.+l; 
( i i )  A. f (x )  E V.~A.. f (2x)  E V,,§ ; 

(lii) A.f(x) E V.,--,A.f(x + 2-") E V.; 
(iV) lira V,, = UV, is densein L2(R) ; 

( V )  lim [")Vn = {r 
n ~ n 

(Vi) the set {r - k)} forms a Riese or unconditional bases for V0, that is, there exist 

constants A and B, with 0 < A ~<B "< msuch that 

IE g keg k e g  

for any sequence {*k}El2 the space of all square summable sequences. Here. tize 

coefficients p ( k ) a r e  called filter coefficients and it is often the case that only a f'mite number 

of these are non-zero. 
D e f i n i t i o n  2 l f there  is a sequence { q ( k ) } t 6 z  such that the function 
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~b(x) = X,~q(x)~(2x - k) 
k 

satisfies the conditions of the form 
(1) the function sequence 

~b,,.k(x) = 2 " 2 ~ ( 2 " x -  k )  

is orthogonal, i. e., 

(2.7) 

(2.8a) 

m, n,  k, l E Z (2.8b) 

or is semi-orthogonal characteristic 

IS**~b,.k(x)~b,,,.t(x)dx = ~,,,,,, m , n , k , l  E Z (2.9)  

or bi-orthogonal behavior 

f | ~ , , k ( x ) ~ , ~ . ~ ( , , ) ~  = , ~ , ~ ,  m , , ~ , k , t  E Z (2.10) 

in which ~ , , k (x ) i s  a dual of function ~/,,;k(x); 
(2) For arbitrary coefficients bk. the set of  function space IV., spanned by i,b~.k(x) 

w. = z ,b ,  R} 
k 

has the following properties 
( l )  v.+~ = v.@ lv.; 
( 1i ) for different integers m and n, IV. is orthogonal to W,.; 

(iii)|174 w.:= L2(R); 
then the function ~b(x) is called a basic (or mother) wavelet function while the functions 

~ , ,~(x)  are the bases of the wavelet function. 
2.2 D e c o m p o s i t i o n  a n d  r e c o n s t r u c t i o n  

After a scaling function ~ ( x )  and the corresponding wavelet function ~b(x) 
definitions 1 and 2. respectively, one can find the scaling transform 

Anf(x) = ~aa,,,k~n,k(X) (2.11) 
k 

f** *f( x)~,,.t,( x)d.x a..k = (f(x),~,~.t,(x)) = (2.12) 

in which the operator 

A,,:L2(R) 9 f(.x) k.~ A,,f(x) E V,, 

and the wavelet transform 

O~,f(x) = ~,,bn.k~b~,.t,(x) 
k 

defined in 

(2.13) 

(2.14) 

(2.15) 

Here. the operator 

O.:L2(R) ~f(x) ~ O~(~) E ~V. (2.16) 
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The process of finding the coefficients an.k and bn.k iscallcd decomposition of a function or 

signal process J(x) while the summation of A,dC(x) and D,Lf(x)is referred to as reconstruction 

under the meaning of scaling function and wavelet function, respectively. When n is large 

enough, one can show 

f ( x )  ~ anf(x) = ~a,,.k~,,t,(x) (2.17) 
k 

The part of Dnf(x) reflects the high frequency part off(x) associated with symbol n. In fact, 
from the definition 2, we have 

f(x) J- ~ ~'~,bn,1,~bn.k(x) (2.18) 
rt k 

which decomposes a function f(x) into the parts of different frequencies. The symbol k 

characterizes the position of the function. Hence, b~,k behaves the characteristics of both 

frequency and position of a function or signalf(x). 

III. Daubechies' Wavelet Function and Its High Order Derivations 

3.1 Scaling function and wavelet function 

In the way of constructing Daubechies" wavelet, the coefficients p(k)  and q(k) are 

taken as even-integer terms with non-zero, which is.identified by symbol N. That is, 

2A ' - I  

k = 0  

2N-I 

~bn(x) = ~_~ qN(k)~N(2x - k) (3.1b) 

The coefficients are selected to satisfy the following conditions: 

Orthogonal Conditions 

Normalized Condition 

I S|  - k)d~ = ~0k k E z (3.2a) 

I| ~ N ( ~ ) r  = 0 (3.2b) 

J_  # , . ( , , ) ~  = 1 (3.2c) 

Additional Conditions 

In" the Daubechies" wavelet theory, it is set that the scaling functions can be used t o  

exactly represent polynomials of order up to but not greater than N. That is 

which leads to 

At 

~a~ r = ~ et#/v(x - k) (3.3a) 
r=O k=  - ~  

f~_**xr~bN(x)dx = 0 ( r  = 0 , 1 , 2 , ' " , N )  (3.3b) 

If we choose 
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qN(k) = (- 1)kpN(l - k) (3.4) 

the Eq. (3.2b) is auto-satisfied. Substitution of Eqs. (3.1) into Eqs. (3.2) and (3.3) leads to the 

nonlinear algebraic equations on u n k n o w n s  pN(k). Table ! shows the values o f  pN(k) for N 

=2, 3, 4, 5. Once the values of pN(k) are gained, the values of  #N(k) at theinteger points 

can be obtained from Eqs. (3.1a) and (3.2c). Then repeat to use Eq. (3.1a), one can get the 
values of #N(X) at the dyadic points k2 -n. Thus, the scaling function #N(x) is constructed 
out numcrically. After that, the wavelet function ~bN(x) can be numerically generated from 

Eq. (3.1 b). Fig. t plots the curves of the Daubechies's scaling functions. 
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3.2 Operat ion of  der ivat ions  o f  Daubechies '  s c a l i n g  f u n c t i o n s  
Since a scaling function is, in general, expressed as numerical form, we have to take some 

special way to perform calculations of its differentials in order to retain a desirable precision. 
Taking derivations of  the dilation function of  Eq. (3.1a) with .d order, we symbolly denote 

2N-I 

$~/)(,,) = ~ ]  , ,~"~.~,")(2, ,  - I , )  (3.5)  
k : 0  

in which 

a~, d) = 2apN(k) (3 .6)  

supp~u(x)  = [ 0 , 2 N -  1] . one can get supp~k~v'0(x) C [ 0 , 2 N -  1]. Hence, the 

may be written 
Due to 
values of Eq. (3.5) at the integer points of the supported region [ 0 , 2 N  - 1] 

by 

~.~(0) = a~ ') ~ / ) ( o )  
~(ua)(1) = a~a)~va)(2) + a~a)~(a)(1) + a2(a)~+)(0) 

, . , . . ,  

~,%'0(2N- 2) = a ~ _ 3 r  1) + a2(P_25%~)(2N- 2) 

+ .~#_,~p(2N- 3) 

which can be compactly formulated by matrix form 

[ A ] ( a ) [ O ]  (a) = 0 (3 .7)  

where [ ~ ] ( ' 0 = [ ~ v ' 0 ( 0 ) , # ~ a ) ( l ) , ' " , r  r ,  [A] (a) is a square matrix whose 
elements are the coefficients of above aglebraic equations with unknows [~ ] ( a ) .  It is obvious 
tha t [A]  (d) is singular. In order to find the non-zero solution of Eq. (3.7), here, we add some 

conditions as follows. Let 

Thcn, wc have 

in which 

�9 ~ : ~ cr - k) (3.8) 
kl--oo 

ck = <x ~, ~M(x - k)> 

a d 

C~ka-'(x',~N(x)) = ~ C~k+t-iA, (3 .9)  
i : 0  i : 0  

Ai = (x+,~zv(x)) ( i  = 0 , 1 , 2 , ' "  , d)  (3.10)  

Considering the dilation Eq. (3.1a) and Eq. (3.10), one can find the recurrence formulas of the 

f o  r m  

2h'-I I 

A, = 2 -('+'+) ~ ~]Cik'-.ipt+Ck)Aj (3 .11)  
k-O i,,,0 
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fi'om which we can get Ao,A1," ' ,Aa.  After that, ek c a n b e  determined by Eq. (3.9). Taking 

the operation of  d order derivations of  Eq. (3.8) with respect to x, then calculating the values 

of  them at one integer point, such as x = 0  point without lossing generality, in the supported 

region, we get 

2N-I  

= d! (3 .12)  
k=0  

Adding Eq. (3.12) into Eq. (3.7), we can find the values of ~r  at all integer points in the 

supported region, that is, we can get ~ ) ( j ) ,  j ~ Z .  According to Eq. (3.5), one can write 

2N-I  

k=O 

which can give the values of  4~v't)(x)at the dyadic points { i / 2  n, i ,  n ~ Z } .  

Following this way proposed here, once f~vd)(X) is numerically generated, the 

reconstruction of  d order derivations of a function f ( x )  E L2(R) can be conducted. 

IV.  A p p l i c a t i o n s  in B e n d i n g  o f  B e a m s  a n d  P l a t e s  

In eonventiomd Gaterkin method, the aclmissiblc function should be chosen to satisfy the 

boundary condi l ions-of  the problem. However, in wavelet Galerkin FEM, theadmissiblc 

functions arc employed as the base functions of  a scaling Ikmction. Due to independence of  

them o n  the boundary conditions, the algebraic equations to determine unknowns consist of  

two parts, one is generated from the differential equation(s) while another one is from the 

boundary conditions. 

4.1 A p p l i c a t i o n  to  b e n d i n g  o f  b e a m s  

From the Euler-Bernonlli beam theory, after the quantities are non-dimensionlized, we 

can write the governing equation of beam bending in the dimensionless form 

d 4 u 
dx 4 = q ( x ) ,  0 < x < 1 (4 .1 )  

with boundary conditions 

Rigidly Clamped Support: 

Simple Support: 

Free End: 

d~/. 
u = ~ "  = 0 x = 0 or/and x = 1 (4 .2a)  

d2u 
u - dx 2 - 0 x = 0 or/and x = 1 (4.2b)  

d 2 u d 3 u 
dx 2 - dx 3 - 0 x = 0 or/and x = 1 (4 .2e)  

Let the solution of Eq. (4.1) be 

u ( x )  ~ A. ,u(x)  = ~" am,k~m,k(x) ( 4 . 3 )  
k 

St, bslituting Eq. (4.3) into Eq. (4.1), and integrating the resulted equations multipled with the 

weighted functions ~,~,j(x)'by the Galerkin method, we have 
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Denote 

d 4 
i,,., = ,o[ +~., ('~) ~.~(,~) e~ (4,5) 

l 

/) = Jo~.,,j(~)q(~)e~ (4.6) 
[ K ]  =' [ k / k ] , [ F ]  = [ J j ] , [ a ]  = .[a,,,,k] 

Then Eq. (4.4) can be reduced into the matrix form 

[K][a] : [F] (4.7) 

Four equations from the boundary conditions have to be added into the system equations for 
unknowns [a]. For example, to a simply supported beam, the added equations are 

, , ( o )  : > - - ] .a , , .~ . , . , (o )  : o, ~" (o )  : >-2,~., . ,~7~.,(o) : e l  
k " 

u(1) ~-]am,k#.,,k(1) 0, u" (1) ~--~ a.,,k~'~,,, (1) 0 
k k 

SoLving thc solution of Eq. (4.7) with conditions of Eqs. (4.8), one can get the wavelet 

~a{erkin FEM solution to the original boundary-va{ue,problem of beam bending. 

4.2 Application to bending of plates 

For the simplicity, here, we focus our attention on bending of rectangular plates. Taking a 

Cartesian coordinate system in which x- and y- axes parallal to two sides of plate, respectively. 

By means of dimensionless, of quantities, similar to process of beam bending, we can write the 

deflection equation of plates 

7 '*u (x ,y )  = q ( x , y ) ,  0 < x , y  < 1 (4.9) 

For simply supported conditions, we have 

u I , ,=o = U 1~::1 = O, u I r : o  = u I z : t  = 0 ] 

. . o  I I I l 02u 82u = O, - -  82u = 02u = 0 
Ox2 = Ox2 .=t OY 2 r :o  /gY 2 r=t 

In wavelet theory of 2-dimension, the bases of scaling function #m,/,t(x,Y) are taken as 

# , , , / , k ( x , y )  = #, , , , i(X)gm,~(y) (4.11) 

There is no deffict, lty to show that the functions #,, , , i , t(x,y) satisfy orthonormal conditions 

of bases of scaling functions. Let 

u ( x ,  y )  ~ a,, ,u(x,  y)  = ~am,~,k#, , ,a ,k(x ,  y )  (4.!2) 
j , i  

Substituting Eq. (4.12) into (4.9), taking the weighted functions as ~,,.y,t,' (x) ,  and integrating 
the resulted equation, one can get the system of algebraic equations with unknows a,,,/,~ in 

matrix form 

[K][a] : [F] (4.13) 

in which the elements of coefficient matrix [K]  and the column matrix [F] of 

inhomogcneous term are respectively 

(4.8) 
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C1 f l  , 

fl,z = oq(X,Y)~,, , , l ,k '(x,y)dxdy 

(4.14a) 

(4.14b) 

with additional conditions from boundary conditions 

u ( 0 , y )  = P ,  a m . i . ~ . ; . ~ ( 0 , y )  = 0 (4.15a) 
l ,k 

u ( l , y )  = ~-]a,.,i,k~.,,i,k(1,y) = 0 (4.15b) 
,/,,~ 

U ( x , O )  r"___. 2 a m , j . k ~ m , ] . k ( ~ g , O )  = 0 ( 4 . 1 5 C )  
j.k 

u ( x , l )  = ~a,,.i .k~,,,i .k(x,1 ) = 0 (4.15d) 
j,k 

= p , ,  ; = 0 ( 4 . 1 5 e )  ~ X2 j k ' " " 

32u(1 ,y )  = ~ ~-]a=,j,kr = 0 (4.15f) 
Ox2 j k 

a2u(x ,0 )  = /X-I, '~7]a,,.j,kr = O" (4.15g) 
052 j k 

a2u(x ' l )  = ~ ~a;.,i,k~,.,j(x)~,'~,~l) = 0 (4.15h) 
8Y 2 i k 

From Eqs. (4.13) and (4.15), we can obtain the cocfficJentsam.i3,'. Further, the approximate 

solution of Eq. (4.11) is got. For other boundary conditions, its wavelet Galerkin solution may 

be obtained similarly. 

V .  N u m e r i c a l  R e s u l t s  

Here, the scaling function of Da,t, bechies' wavelet theory is constructed in the supported 

region [ 0 , 2 N -  1] for resolution level m=0 .  
Fig. 1 ptots the scaling functions of Daubechies' 
scaling functions ~;v(x) for N=2, 3, 4, 5 (this 
is. it is identified by D4, D6, DS, and DI0, 
respectively). In c~rdcr to show the cfficience of 

calculation of high order derivations of the 

scaling functions, Fig. 2 cxhabites the 

comparison of thc numerical and exact results 
of one order differential of f ( x )  = 0.5sin2x 

with respect to x. Afterward, the bending of 

beams with different supported ends and under 

distributed load q ( x )  = 1 . 0  or q ( x ) = x  is 
solved by wavelet FEM introduced in previous 

.... f k  

_x 
I-I 

S -0.5 

-1.0 
0 2 4 6 

Fig.  2 S i m u l a t i o n  o f  d e r i v a t i v e  f u n c t i o n  
of 0.5sin2x wi th  r e s p e c t i v e  to x by 
m e a n s  o f  the  w a v e l e t  t h e o r y  

section. Fig. 3 and Fig. 4 shows tile deflection curves of a simply supported beam (S-S), and a 

beam with one clamr~cd end and another simply supported end (C-S) under these two kinds of 

transverse loads, respectively. !11 these figures, the wavelet FEM solutions are got from the 

scaling function of Daubechies" wavelet theory with m = 0  and N=5. Fig. 5 displays the 
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compar ison  of  deflection curves of  simply supported plates under  distributed load q ( ~ , y )  = 

4~r4sin(lr~)sin(lry) from wavelet FEM solutions for N = 3 ,  4, 5 and the exact solution o f  the 

problcm. From the numerical results, it is found that the wavelet FEM solutions to bending 

problems of  b e a m  and plate structures have good precision, and they approach  to exact 

solutions o f  the problems with increase o1" supl_~ortcd region of  the sculing functions or symbol 

N. In general, it is enough For the precision of  the wavelet F E M  solutions when N = 5. 
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