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Abstract 
A speedy accurate solution to structural fuzzy finite element equilibrium equations 

(SFFEEE), by combining the definition of the solution of interval equations with the 

mechanical meaning of the structural finite element equilibrium equations (SFEEE), was 

put forward. The fitzzification of the SFFEEE, which is discussed hi this paper, originates 

from that of material property, structural boundary conditions and external loading. The 

computing quantity of this sohttion is almost equal to that of the general finite element 

method (GFEM). 

Key words finite element equilibrium equations, fuzzy numbers, interval 

equations 

I. Introduction 

In the field of the fuzzy finite element method (FFEM), to study now, to solve the equilibrium 

equations is of momentous significance. Especially for the application of the FFEM to engineering 

problems, the key work to do is to explore high-speed and high-effeciency solutions to equilibrium 

equations. Among available solutions to the SFFEEE in [1, 2], Wang Caihua et al. only took the 

SFFEEE as a general fuzzy linear algebraic equations, and they also studied its solutions on the 

basis of operation rules'of fuzzy numbers. In this paper, we f~st transformed the fuzzy equilibrium 

equations into a interval coefficient equations, and then researched the intrinsic mechanical 

meaning of the SFFEEE. As a result, a new speedy accurate solution to the SFFEEE was given. 

The computing quantity of this solution is almost equal to that of the GREM, therefore, a useful 

tool is provided for deep research on the FFEM and the engineering application of the FFEM. 

II. The  S F F E E E  

In the finite element analysis of engineering structure, s~nce the material property parameters 

of structure, boundary conditions and external loading are fuzzy, it follows that the stiffness matrix 

and the loading vector will be fuzzy, so will the unknown nodal displacement vector. And according 

to the GFEM, we have 

[ K ] { U } = { P } .  (2.i) 

where [K] is a fuzzy stiffness matrix, {U}is a fuzzy displacement vector, {p} is a fuzzy loading 

vector. It can easily be seen that if L-R type fuzzy numbers are used to express and deal with the 
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fuzzy information, all the elements of [K],  {U} and {P} are L-R type fuzzy numbers. They can 

be .denoted by 

k, ,=  (kTj, k,5, k,zj) ca 
u s = (u~, u~, n~)r.~ where n is the degree of freedom of the 

P~=(PT,  P~, P~)~J structural considered. 

(i, j = l ,  2, ..., n) 

By different 2-level cutting Eqs. (2.1), a series of linear equations can be obtained whose coefficients 
are all interval numbers, especially to a 2, the equations are 

: : " "  i : - - -  " 

[~_~, ~.,], Lk~:, ~.J, ..., [e . ,  ~,]  k[~," ~ ]  I,E~, ~3), 

where _ks., and ~(j (i, ]-~1, 2, . . . ,  n) are respectively, the lower bound value and upper bound 
value of the element of the fuzzy stiffness matrix corresponding to the 2-cut, similarly, _us (./----1, 
2, . . . ,  n) the lower bound value of the element Of fuzzy displacement vector and the ff~ (/'----- 

1, 2, . . . ,  n) the upper; L0( ( i = I ,  2, . . . ,  n) the lower bound value of the element of fuzzy 

loading vector and the ~s ( i = 1 ,  2, . . . ,  n)  the upper. All those lower bound values and 
upper bound values form different interval numbers by one-to-one. And now the above formula 
can simply be denoted b y  

K'U'=P z (2.2) 

obviously, U'----{[g,, ~,], [g~, ~/2], '", [_u., ~.]}~. The lower bound value and the 
upper bound value of' every interval number [g~, ~ ]  

be respectively obtained from the following formutae 

g ~ = m i n { u j [ K U = P ,  K E K  l, P E P ' } ,  

g s = m a x { ~ [ K U = P ,  K E K ' ,  P E P ' } ,  

which is the solution of Eq. (2.2) can 

(j=1, 2, ...; ,)} (2.3) 

in which K is a general matrix, P and U are all general column arrays. 

Denote U t by U [ ,  namely U I = U  I . In the light of the decomposition theorems of fuzzy set 
in [4], we can calculate the solution of (2.1) as 

u= U ~u~ (2.4) 
,~([0,I] 

It is easy to show that for obtaining the solution of (2.1), we only need to solve a series of 
interval equations as (2.2). 

To general interval number linear equations, many scholars have already done a large quantity 
of research work such as E. Hansen and R. Smith, who, respectively gave how to obtain the 

interval inverse matrix in [5, 6]. But they attached" additional conditions during the course of 

solving the linear equations, as inevitably placed rest/ictions on the application of the methods to a 

more general cases. In [l, 2], Wang Caihua et al. provided one iteractive solution on the basis of 

interval matrix and the other on the basis of the decomposition of interval numbers. Undoubtfully, 



Solution to Structual Fuzzy Equilibrium Equations 387 

all those methods furthered the research on the FFEM and its application. But they had"viewed 

this type of problem only from the pure mathematical standpoint rather than fully�9 utilized the 

inherent mechanical meaning of (2.2). In fact, there exists laws that disclose the change of the 

variable U I with the change of the variables K t and .PI which we can make full use of to calculate 

U t fastly and accurately. In the following sections we will first discuss two special cases and then 
synthesize them. 

III.  The  Fuzz i f i cat ion  of  Material  P r o p e r t y  and the  S o l u t i o n  to  the  Correspond ing  
F F E M  

In this section, we will discuss how to calculate the fuzzy displacement of every nodal when 
structural material property is fuzzy and the loading is distinct. 

We know, the structural stiffness relates to the geometrical parameters, but mainly is hinged 
on the material property parameters, to isotropic materials, namely, on the modulus of elasticity E 

and Poisson ratio v. It is well-known that the change of E affects the mechanical behavior of a 
structure more greatly than that of v does. We will maintain that E is fuzzy and ~, is non-fuzzy in 

the following discussion. As for GFEM, the formula of the element stiffness matrix is of the form 

[k]~:l, [ B ] T [ D ] [ B ] d v  (3.1) 

where [/9] is a n  elastic matrix which embodies the material property of corresponding element. 

Because of the fuzzification of the modulus of elasticity all the elements of [D] will be fuzzy. To 
those common problems in elastic mechanics, for example, we have 

E(1-v) 
[I)] = (I +v) (I -2v) 

v / ( 1 - v )  ~ / ( l - v )  o o o " 

1 v / ( 1 - - v )  0 0 0 

1 0 0 0 

(I-2~)/2(x-~) o o 

sys. (1--2v)/2(1--y) 0 
(l-z,,)/2(l-v) 

where F: is fuzzy modulus of elasticity. E can be described by L- R type fuzzy number as follows 

�9 E---(E,, ,  EL, EB)L~ (3.2) 

where E, is the main value of E, which equals the value of E under the case of not touching upon 
fuzzification. 

In the light of dot product rule of L-R type fuzzy numbers, it follows 13j 

E=aE,, a=(l, EL/E.,, En/E.)LR ( 3 . 3 )  

Replacing[D] in (3.1) with [D], we can obtain the fuzzy stiffness matrix of an element: 

[k]"----~e[B]~[D] [B]dv 

:al. [B]T[D] [B]dv :a [k.,] ~ (3.4) 



388 Lfi Enling 

where[kin]'  is equal to the general element stiffness matrix. By assembling fuzzy element matrices 
according to the formula (3.4), the structural global fuzzy stiffness matrix is obtained. 

[K] =~t[K.] (~,,5) 

where [K.] is equal to the general structural global stiffness matrix. 
Subs.tituting (3.5) into (2. !), and noting that the loading vector is non-fuzzy, we have 

0t [ K =  ] {U} = { P }  

by A-level cutting the above formula, we furtherly obtain interval equations as following 

[ g ,  ff]~[K,n'l{_U, U]-,----{P} (3 .6)  

And its solution can be expressed a s  

{U. U},=[K.~]-'{P}/{~_. ff}~ 

Denote 

__ m m m}T {U,~}=[K~J-I{P}-{" . ,  "5, "", ". 

By (2.3), it follows the calculating formula Of thejth element of { U ,  U}x 

in which, 

(3.7) 

SO 

f,-----~f~----(f~, flzf~, flBf~)r.n . ( i=l ,  2, ..., l) (4 .2)  

Of course, non-nodal loading must be replaced equivalently at the nodal. To 2-dimensional 

plane element, for instance, if the distributed loading over the element is fuzzy then its equivalent 
fuzzy nodal loading is 

al----ff~, a.~=a~, when u'j>~O 
(/=1, 2, ..., ,)j~ (3.8) 

ai----'_ax, a z= f fx ,  when , 7 < 0  

(3.7) is'the accurate solution of (3.6). Choosing a series of 2E[0,  1] and following (2.4), we 
can constitute the fuzzy displacement solution {U}. We must point out here that we need not to 
resolve the equilibrium equations because in (3.7) only a t  and d2 have changed when 2 is chosen 
different value which belongs to the closed set [0, 1]. Therefore, the computing quatity of the above 

method is almost equal to that of the GFEM. 

IV. Fuzzi f ica t ion  of  Load ing  and  t h e  So lu t ion  to  the  Cor r e spond ing  F F E M  

In this section, we will discuss how to compute the fuzzy nodal displacement only when the 

external loading is fuzzy. 
Given that the total number of external loading is/,  and let f~ is the ith fuzzy external loading. 

Naturally, we can adopt L-R type fuzzy numbers to discribe it as following 

f , f ( f ~ ,  f~,, f~,),., ( i = 1 ,  2, - . ,  I) 

If  we properly choose the membership function of every loading, its right-extension-form f ~  

and left-extension-form f ~ ,  then we can, definitely, introduce a non-dimensional fuzzy number 13: 
13=(1, fl~, fln)zn (4.1) 
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{ P } ' :  I ,  [ N ] ~ { f } ' t d s  (4 .3)  

where [N] is the corresponding shape function matrix, {f]-" is fuzzy distributed loading, and t is the 
thick of the element. If the loading over it is fuzzy concentrated loading {f}'~, the corresponding 
equivalent fuzzy nodal loading { p }', has the following form 

{P}'----[N]T{f}" (4.4) 

Comparing (4.2), (4.3) with (4.4), we can describe them with a single tormula 

{ p } ' = ~ { p ~ } " .  (4 .5)  

where {p~}e is equal to the equivalent nodal loading column array of the element in the GFEM. 
To other types of elements, similar formulae can also be obtained. 

Now, assembling every fuzzy equivalent nodal loading element-by-element the global fuzzy 
loading column array {P} is obtained. Evidently, we have 

{P}=~{P,:} (4 .6)  

where {.P'~} is composed of all the main value of every element of {P},  which is equal to the 
global loading column array in the GFEM. 

By substituting (4.6) into (2.1), it follows 

[K] {U}:~{P'} 

Similarly, by ).-level cutting the above formula, we can obtain 
,q 

[/<']{_U, ~7}~----[~, ~]~{P =} (4 .7)  

Of course, the equation is an interval equation. 
Denote 

{ U ' } = [ K ] - t { P ' } = { u T ,  u~, "", u.'} r 

on the basis of (2.3), we can obtain the calculating formula of the j th element of the solution 
{ _U, /7 }a as follows 

[u~, ~j]~=[#,u~, #,u~] ( i= I ,  2, . . . ,  n) (4 .8)  

where 

/~ '=Sx ,  /~z=~x,  when u~>j0 
(/ 1, 2, ".', n) J, (4 .9)  #l=~x, #z = ~ . ,  when u T < 0  

Here, (4.8) is also the accurate solution, of (4.7). Samely, in the light of (2.4), we can constitute the 
fuzzy displacement solution {U}. Clearly, the computing quantity is, also, almost equal to the 

GFEM. 

V. The  Solu t ion  to  the  Gene ra l  FFEM 

We are now in a position to discuss how to obtain the fuzzy displacement of every nodal when 
the modulus of elasticity and the loading over the structure are all fuzzy. According to the 
foregoing methods, at this very case, the equilibrium equations can be written as follows 

'x[K.] {U} =I3{P"} (5.t) 
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like the method in Section III and Section IV, we have 

[a, 

(5.2) is also an interval equation. 

Denote 

{U'}=[K~]-qP~}={u~, u"l, "" ,  u:}  ~ 

indeed {U '~} is completely equal to the displacement solution column array in the GFEM, and the 

value of thej th element of {~J, U}x is 

[_uj, (j--l, 2, ..., n) 

al ,  a t ,  f l , ,  flz can respectively be obtained from (3.8) or (4.9). 
(5.3) is also the accurate solution of (5.2). We can obtain the fuzzy displacement solution 

{ U } in the same way as discribed in the foregoing sections. 

VI. B o u n d a r y  Condi t ions  and  How to Deal wi th  T h e m  

It is known that the finite element equilibrium equations can not be solved if the displacement 
boundary conditions of the structure are not given. In this section, we will discuss how to deal with 

the fuzzy support conditions. 
The fuzzification of the displacement boundary conditions comes from the support conditions 

of the boundary. BUt the support conditions can be simulated by one (or more) elastic bearing, 

namely, if displacement is generated at the constraind nodal, then the corresponding bearing can 

exert a force at this nodal to hinder the nodal from generating displacement, the size of which is 

directly proportional to the size of the displacement, thereby, the effect is equivalent to that of the 

case that a spring is linked to a stiff bearing. In the GFEM, the method to deal with elastic bearing 

is that if there exists a spring constrain at rth displacement whose stiffness coefficient is k , ,  then, 

what only need to do is directly add k~ to the rth diagonal element of thekglobal stiffness matrix. 

Because a stiff bearing can be treated as a elastic bearing whose stiff coeffec'ient is infinite, k, can 

change between zero and infinite. The fuzzification of k, is just the origin of that of displacement 

boundary conditions. Therefore we can adopt the fuzzy stiff coefficient k ,  to express the 

fuzzification of support conditions. To k, ,  the membership function and the left-extension-form 

and the right-extension-form all can be properly chosen, and definitely, there has a constant (2, so 

k, = C , E  = a  (C,E,,,) (6.1) 

where E and a is defined by (3.2) and (3.3) respectively: Evidently, after adding k, to k, ,  the 
global stiffness matrix still maintains the form as (3.5). It is shown that the method to deal with the 

fuzzification of support conditions is similar to the method to do that of modulus of elasticity Of 

material. When C, is a sufficiently big number it is commensurate with the big-number-method to 

deal with the stiff constraint in the GFEM. 

VII. Conclusion 

The GFEM is the common method in modem engineering structural analysis, and the FFEM 

provides more practicable auxiliary information. But the application and dissemination of the 

FFEM will be seriously restrainted if the computing quantity of the FFEM has increased by tens 
of times as compared with that of the GFEM only in order to obtain those helpful information. 

This paper combined fuzzy theorems with interval equation theorems and the mechanical meaning 
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of the finite element equilibrium equations, gave a new speedy accurate solution to the SFFEEE. 
As a result, the computing quantity of this method is almost equal to that of the GFEM, therefore, 
this method provides a useful tool for deeply research on the theory of the FFEM and the 
application and dissemination. 
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