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Abstract

In this study changes of uncontinuous potential functions at the interface were
“used to simulate the immiscible displacement in porous media. The elliptic partial
differential equation was changed to a seven-point molecule form algebraic equation in
three dimensions using the finite difference method. The strongly implicit procedure
was adopted to determine the potential functions at every time instant. Then the
change of int'érface was determined. The simulation was continued until the
displacement changed to unstable state. The effect of capillary pressure, wetting

property, and nonuniformity of permeability were considered.
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I. Introduction

The displacement of immiscible fluids is widely utilized in enhanced oil recovery. The
stability of the interface is very important and people have paid more and more attention to it,
because it relates to the efficiency of oil recovery. Many papers reported the characteristics of
the unstable phenomena and the instability onset. not only from experimental angle, but by
using theoretical methods as well. According to minimum energy loss principle, Scheidegger pro-
posed that whenever M = (kyor/ttw)/ (Kosw/to)>1 fingering phenomena might-appear!,
Saffman and Talor first derived the critical displacement velocity by linear perturbation theoryi?,
After that Chuoke et al® improved Saffman’s work. In fact, critical displacement velocity is
only a necessary condition. The present author’s experimenfal results showed that when
displacement velocities were far more greater than the critical velocity, the displaceinent
interfaces were still stable. Critical wave length is only a theoretical investigation. Linear
stability analysis may be able to point out in what conditions unstable phenomenon will
appear. It, however, does not point out how the unstable phenomenon happens. Qutman!¥
pointed out that it may be better to use nonlinear theory to describe the development of
fingering phenomenon. Chikhliwalal! proposed weak nonlinear theory to study the initial
change of viscous fingering without considering gravity effect.

Fagers, Odeh et al. presented an empirical model to simulate viscous fingering. The
control gquations were not used in his mode. The Monte Carlo technique has been developed in
simulating two phase flow recently. The implicit pressure equation is solved by means of
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conventional methods. However, the explicit equation describing the rate of change of
saturation (or concentration for miscible flow) of the invading fluid with time was solved
statistically, interpreting the equation as probability density function. Hughes et al® 7
provided their results in simulating unstable miscible and immiscible flow through porous
media. He pointed out that because of the statistical nature of the solution, there was an
uncertainty about the exact position of the front. If the discrete unit of saturation placement is
smaller than the flood-front height, the Monto Carlo solution will exhibit a degree of numerical
dispersion.

Many mathematical models to simulate unstable displacement by solving control
equations are presented in Hele-shaw cells, which are composed by two closely parallel glass.
plates. Fluids with different viscosity and density flow through the gap. Thus the displacement
is simplified to two dimensional flow, and the inhomogeneity of porous medium is neglected®.

There are many problems associated with simulation viscous fingering: some are a result
of the physics of frontal instability, while the othérs are mathematical in nature. There is no
reported simulation of unstable immiscible displacement in porous media which was completed
only by solving control eduations. In the present paper, the finite difference method was used
for the simulation of the unstable process of water displacing molten wax in unconsolidated
sand in physical experiments. The simulation was stopped before water breakthrough. The
simulation was treated as a three dimensional problem. The movement of interface, the effect
of capillary pressure, the wetting properties, and the nonuniformity of permeability were

considered.
II. Controlling Equations and Boundary Conditions

2.1 Statement of physical phenomenon

The unconsolidated sand packed in a square column tube was initially assumed saturated
with liquid 2 (molten wax). The immiscible fluid 1, e. g. water, was injected from the bottom of
the tube, then fluid 2 flowed out of the top of the tube. The velocity of the iriterface movement
was the displacement velocity of fluid | to fluid 2. The macroscopic interface configuration
was affected by the distribution of fluids and local permeability coefficient of the column. The
microscopic configuration was related to the packed sand size and its distribution, the
arrangement of the porous medium, the wetting properties of the fluids to the porous medium,
and the capillary number etc. The experimerits showed that if there was no connect water in
the porous medium, under the oil-wet condition and unstable displacement, the interface is
very sharp and can be regarded as a region of abrupt change in saturation of the two fluids.
2.2 Controlling equations

Because the above displacement is not rotating flow, the potential functions are defined

for both the fluids:
o= i+ P:gz ' (2.1)

where for the displacing fluid, i=1, and for the displaced fluid, i=2. Extending Darcy’s law
from one dimension to three dimensions, the continuity equation for both the fluids becomes:

0 / K1 a¢g ] Kya adR +_a_ L{L 6¢, =0 2 9
9x \ iy 6x)+ay(#4 ay) 62(#¢ 32) <')

where ;1. K¢z and K¢y are permeabilities of fluid 7 in v, y, and = directions, respectively; - s is
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the viscosity of fluid i.
2.3 Boundary conditions
For impermeable boundaries the velocity normal to the boundary is zero. This gives:

%%‘.: (x=0, x=X%x) (2.3)

O _ - = :
5t (y=0, y=VYa) (2.4)

The poteantial functions at inlet and outlet sections are known as:
¢e=f1(x, Y, ) (2=0) (2.5)
bi=fa(x, ¥y, +)  (2=1) (2.6)
The interface between fluid 1 and 2 is the movable boundary. Its height is expressed as:
z=n(x, Y, t) (2.7)

At the front, continuity consideration requires that the component of the velocity normal to

the interface be the same in both regions.

}f] a(,’sl __K__z a¢’2 2 8)
m 0n  pp Om : (2.8

where n is normal to the interface front. In addition to the above, there should be some
relationship between the portentials on either side of the front.

$1=0¢ (1) (2.9)
The expression of movable boundary is complex. For movable boundary z==n(x,y,1)

Dz Dnp on 0n dx on dy

Dr = Dr—att ox dr T oy dtf (2.10)
Because ‘
dx =iy 96 dy_ -« 8¢ dz_ _ —ks 3¢
dt = pe 9x’ dt = pe Qdy’ dt pe 9z

where ¢ is porosity of the medium. Assuming Dz/Dt=dz/dt, therefore the vertical velocity
at the interface is given by:

w9 _Dn_9n k. 9 89 K2 06 On (2.11)

pe 9z Dt ot ue 0dx dx pe 0Oy Oy

Eq. (2.11) applies to either of the fluids. In fact, this equation expresses the transformation of
velocity from Euler’s method to Largrangian method.
Because the interface change is Dyy/Dt. Then the problem is simplified as:
Dy . lfs> 9¢
Dt~ ue 9z

(2.12)

III. Numerical Method

3.1 Difference approximations for the model
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The finite difference representation of Eq. (2.2) in Cartesian coordinate system is given by:

2‘2::(¢‘m,1,b—2¢mn+¢4 11g08) + "‘”"(45m+m—2¢cmb+¢¢u-m)

+l::axgb(¢ﬁ!’b+l*2(35{»1,)“3‘95{,},;-1) =0 (2.2)4
where « represents fluid 1 or 2. The potential functions at the inlet and outlet of the tube are
specified. Thus

‘brom=f1(1) inlet (2.5)"
$20 5w =F2(2) outlet (2.6)"

For impermeable boundaries Eqs. (2.3) and (2.4) are treated as related finite differential form.
At the interface ¢, should be related to ¢1. If the effect of gravity is neglected, then

$1—¢2=Ppo | (3.1)

where p, is the capillary pressure. By Laplace theory £o can be expressed as:

Pa=o( 1 + 1 ) (3.2)

rs T

where ¢ is interfacial tension between fluid 1 and 2. r, and r: are the two principal radii of
curvature at the points of the microscopic interface. For the sand pack column the capillary

pressure can be expressed as
a
be=07 (3.2)’

where d is the sand size; a is a coefficient which is related to the wetting property of the fluids
to the packed sand. If fluid 1 is a wetting fluid. then g is negative, and vise versa. ¢, at the
interface, therefore, can be obtained as:

oa ’
brtr 502 =Grir o' ——g— (3.3)
The interface is a moving boundary. It is determined by the following équation
. K1,
77::11 =7):)J—'(¢:1hhk'_¢;1hhk") _lﬁ‘:lé,;lAt (3.4)

where At is time step at ¢ time instant; ®{1ty50r is the value of ¢ at the interface 7.
é 1yt 40877 is the value of ¢_ on the point {, f, k7. 7’sr»=ns-— Az . It should be noticed that
G136054° and Pi,¢, 7,5’ May not be the grid values, because interface height 7 may be between
Zy and Zx:+1. In the numerical simulation @y,¢,4,a” and $1,4,4,2’" are determined by linear
interpolation. ‘
3.2 Simulation procedure

The immiscible displacement process is an initial boundary problem. At the beginning of
simulation, an initial position of the interface is known. The values of inlet and outlet ¢ are
known. Then ¢ and ¢z at all nodes can be obtamed by solving the Laplace equation (Eq.
2.2).

The permeabilities of fluid 1 and 2 at all nodes (i, /. k) of the grid are evaluated. In fluid 1
swept points the permeability of fluid 1 is effective permeability in irreducible residual
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saturation of fluid. 2. Beyond the interface the permeability of fluid 2 is absolute permeability.
Because the interface is very sharp. The inhomogeneity of porous medium is treated by
introducing nonuniform coefficients randomly distributed at all nodes.

By the finite difference method the elliptic partial differential qqﬁation (2.2) is changed to
a seven-point molecule form algebraic equatio_n'(2.2)'. For all nodes (i, j, k) of the region, i=1,
2,.3, vy N1, j=1,2,... Ny and k=1, 2, ..., Ns, a set of simultaneous equations

M®P=q (3.5)
are obtained. Where M is a square (n;Xn:Xn:) by (n1Xn:Xn;) matrix, ¢ is unknown
vector of length (#;Xn,X n,), and ¢ is a known vector of length (n1 X n, Xn3). By strongly
implicit procedure the values of ¢ are obtained iteratively from a staring approximation ¢
by the formula:

riM=q—Mg¢™

MS ™ =r® (3.6)

¢(u+l) =¢™ + 5™
where 7™ is the residual of the nth approximate solution ¢'®, S(®is the up-date change
vector. The maximum number of iteration, the iteration acceleration factor, the convergence
criterion to be used on the maximum absolute value of the normalized residual vector
components and the convergence criterion to be used on the maximum absolute value of the
change made at each iteration to the element of the array ¢ are input. After several times
iteration qb‘{‘) and ¢§") are obtained. And by using Eq. (3.4) the new height of interface are

determined. ,
The whole progress continued until the interface level showed great change, e. q. unstable

phenomenon appeared.
IV. Calculated Result

The data of ¢ at inlet and outlet, porosity of sand, sand size, the viscosities of fluid | and
2, and surface tension were adopted according to the experiments of water displacing molten
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wax. The nonuniform coefficients were: f=1.00, 1.05, 1.03, 1.02,‘ 0.95, and 1.15, which
randomly distributed at all the nodes, if the packed sand was of inhomogeneity. In the

simulation the change of permeability £ in x, y, and z directions was not considered.

The main parameters: Ko = 4 44mP3-S; M, = 0 4lmPass; porosity__s=0.41; the
mean sand size 4=0.7cm; surface tension ¢=4.29 Pa; Ax=Ay= Az=1cm; a=0.8, conver~

gence criterion b

90.0

90.0+

70.04

=0.06.

+70.0

vFig. 3 ¢.=20000, Nonuniform porous medium; Oil-wet

0.0

70.04

50.0

90.01

F70.0

[50.0

9.0

70.01

10 OT
]

0.044

10.0
y

0

50.0

30.0

10.0

0.0
10.0
x

[
F90.0

90.01

70.01

30.0

10.0

0.0

10.0°
Y

90.01

70.07




3-D Simulation of Unstable Immiscible Displacement

Six numerical simulations were performed. R1: ¢iia =168000; ‘Prout==x0, At=_100;(s)'
The packed sand was inhomogeneous. R2: The nonuniform coefficient f=1.00. The
other data were the same as that in Run 1. R3: $1:a7=20000, ¢10ut=0, At=150(8). The
nonuniform coefficients were the same as that in Run 1. R4: The nonuniform coefficients were
equal to 1.00. The other data were the same as that in Run 3. RS and R6: The parameters
were the same as that of Runs 1 and 2, respectively, except when a= —0.8, e. q. water-wet.

The simulated results were depicted by calling a subroutine, ALTSURF. The calculated

results of the interface changes with time are shown in Fig. 1 to Fig. 6.
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V.  Discussion

(1) The present simulation fundamentally expresses the procedure of interface changes. It
is obvious that the gradient of the potential functions greatly influences the stability of the
interface. If the value of inlet ¢ is great, the inhomogeneity of the porous medium will cause
the instability of the interface. However. if the porous medium is homogeous, even the
potential gradient is great, the interface is still stable. Under the condition of small potential
gradient, the non-homogeneity only affects the shape of the interface and the displacement is
still stable. The effects of the wetting property on the configuration of the interface has been
observed.

(2) The instability of the interface is coincident with the itcration process. At first the
iteration was below 45 times. With the unstable interface developing the number of iteration
increased, even leading to dispersion. The development of fingering phenomenon gave rise to
the instability of the numerical simulation.

(3) Same boundary conditions were used in this smulatmn in both x and y directions, but
the drawn results did not show the interface change in y direction. These may be related to the
function of the drawing progress of the computer. The calculated interface movement was in
agreement with the experimental results. The configurations of the unstable interface, however,
could not be compared with the experimental data. In the experiments the diameters of the
fingers were about 0.7—2.5cm, while in the mathematical simulation Ax=Ay=1icm. Besides
that the treatment of the interface in the mathematical modelling needs to be improved. The
present simulation is only a preliminary one.
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