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Abstract  
In this study changes of uncontinuous potential functions at the interface were 

u s e d  to simulate the immiscible displacement in porous media. The elliptic partial 

differential equation was changed to a sevep~-pohlt molecule form algebraic equation in 

three dimensions using the finite difference method. The strongly implicit procedure 

was adopted to determhTe the potential functions at erery time instant. Then the 

change of  interface was determhTed. The simulation was continued until the 

displacement changed to unstable state. The effect of capillary pressure, wetting 

propertyl and nonuniformity of permeability were considered. 
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I. In troduct ion  

The displacement of immiscible fluids is widely utilized in enhanced oil recovery. The 

stability of the interface is very important and people have paid more and more attention to it, 

because it relates to the efficiency of oil recovery. Many papers reported the characteristics of 

the unstable phenomena and the instability onset, not only from experimental angle, but by 

using theoretical methods as well. According to minimum energy loss principle, Scheidegger pro- 

posed that whenever M = (ttwor/ktw)/(~ox,~//.t0)~l fingering phenomena might~ppear ul. 
Saffman and Talor first derived the critical displacement velocity by linear perturbation theoryl21. 

After that Chuoke et al. t31 improved Saffman's work. In fact, critical displacement velocity is 

only a necessary condition. The present author's experimental results showed that when 

displacement velocities were far more greater than the critical velocity, the displacement 

interfaces were still stable. Critical wave length is only a theoretical investigation. Linear 

stability analysis may be able to point out in what conditions unstable phenomenon will 

appear. It, however, does not point out how the unstable phenomenon happens. Outman t41 

pointed out that it may be better to use nonlinear theory to describe the development of 

fingering phenomenon. Chikhliwala tSl proposed weak nonlinear theory to study the initial 

change of viscous fingering without considering gravity effect. 

Fagers, Odeh et al. presented an empirical model to simulate viscous fingering. The 

control gquations were not used in his mode. The Monte Carlo technique has been deve!oped in 

simulating two phase flow recently. The implicit pressure equation is solved by means of 
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conventional methods. However, the explicit equation describing the rate o f  change of  

saturation (or concentration for miscible flow) of the invading fluid with t ime was solved 

statistically, interpreting the equation as probability density function. Hughes et al. t~, 7] 

provided their results in simulating unstable miscible and immiscible flow t h r o u g h  porous 

media. He pointed out that because of the statistical nature of the solution, there was an 

uncertainty about the exact position of the front. If the discrete unit of saturation placement is 

smaller than the flood-front height, the Monto Carlo solution will exhibit a degree of numerical 

dispersion. 

Many mathematical models to simulate unstable displacement by solving control 

equations are presented in Hele-shaw cells, which are composed by two closely parallel glass 

plates. Fluids with different viscosity and density flow through the gap. Thus t h e  displacement 

is simplified to two dimensional flow, and the inhomogeneity of porous medium is neglected ts]. 

There are many problems associated with simulation viscous fingering: some are a result 

of  the physics of frontal instability, while the others are mathematical in nature. There is no 

reported simulation of unstable immiscible displacement in porous media which was completed 

only by solving control equations. In the present pape r , the finite difference method was used 

for the simulation of the unstable process of water displacing molten wax in unconsolidated 

sand in physical experiments. The simulation was stopped before water breakthrough. The 

simulation was treated as a three dimensional problem. The movement of interface, the effect 

of capillary pressure, the wetting properties, and the nontlniformity of permeability were 

considered. 

I I .  C o n t r o l l i n g  E q u a t i o n s  a n d  B o u n d a r y  Conditions 

2.1 S t a t e m e n t  of  p h y s i c a l  p h e n o m e n o n  

The unconsolidated sand packed in a square column tube was m~tmlly assumed saturated 

with liquid 2 (molten wax). The immiscible fluid 1, e. g. water, was injected fi:om the bottom of 

the tube, then fluid 2 flowed out of the top of the tube. The velocity of the interface movement 

was the displacement velocity of fluid 1 to fluid 2. The macroscopic interface configuration 

was affected by the distribution of fluids and local permeability coefficient of the column. The 

microscopic configuration was related to the packed sand size and its distribution, the 

arrangement of the porous medium, the wetting properties of the fluids to the porous .medium, 

and the capillary number etc. The experiments showed that if there was no connect water in 

the porous medium, under the oil-wet condition and unstable displacement, the interface is 

very sharp and can be regarded as a region of  abrupt change in saturation of  the two fluids. 

2.2 Controll ing equations  
Because the above displacement is not rotating flow, the potential functions are defined 

for both the fluids: 

r (2.1) 

where for the displacing fluid, i = 1, and for the displaced fluid, i=2 .  Extending Darcy's law 

from one dimension to three dimensions, the continuity equation for both the fluids beqomes: 

O 0r O {re,, Or 0 r  0 (2.2) ("' o , , ,  o,, #~ Ox 

where tc~t, s:t,. and s~t3 are permeabilities of fluid i in x, y, and z directions, respectively; /~t is 
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the viscosity of fluid i. 

2.3 Boundary conditions 
For impermeable boundaries the velocity normal to the boundary is zero. This gives: 

or =o (X=0, x=x, )  
OX (2.3)  

0r = 0  ( y = 0 ,  y = y , )  
Oy (2.4) 

The potential functions at inlet and outlet sections are known as: 

r y, t) (z=o) 
r  u, r) ( z = l )  

(2.5) 
(2.6) 

The interface between fluid 1 and 2 is the movable boundary. Its height is expressed as: 

z=r/(x, v, t) (2.7) 

At the front, continuity consideration requires that the component of the velocity normal to 

the interface be the same in both regions. 

el oCt_K~ 0r (2,8) 
I~1 On #,. On 

where n is normal to the interface front. In addition to the abovC there should be some 

relationship between the p ortentials on either side of the front. 

r162162 (2.9) 

The expression of movable boundary is complex. For movable boundary z ~ r / ( x , y , t )  

Dz  Drt Ort or~ d x 017 d y 
Dt = - ~ - - = ~ +  Ox dt + av dt (2.10) 

Because 

dx -ir 0r d Y = v = - ~ t ~  04, d z  --tts 0r 
dt = n =  p---~- Ox ' -~  pe Oy ' d l = W =  #e Oz 

where e is porosi:ty of the medium. Assuming D z / D t = d z / d t ,  therefore the vertical velocity 

at the interface is given by: 

Ks 04, _ D r / _  art k~ 04, Or/ g2 04, 0r/ (2. l 1 ) 
pe O z - - - - ~ - - -  Ot #e Ox Ox #e Oy Oy 

Eq. (2.11) applies to either of the fluids. In fact, this equation expresses the transformation of 

velocity from Euler's method to Largrangian method. 

Because the interface change is Dq/Dt. Then the problem is simplified as: 

Drt _ Ks 04, (2.12)  
Dt #e Oz 

I I L  N u m e r i c a l  M e t h o d  

3.1 D i f f e r e n c e  a p p r o x i m a t i o n s  fo r  t h e  m o d e l  
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The finite difference representation of Eq. (2.2) in Cartesian coordinate system is given by: 

- -K lm I~JyJ~ / . L  " " h ~  

- I - ~  (qS,, j ,~.  t -- 2Sf,~,~ q%b~, i,~- t) -----0 ( 2 . 2 ) '  

where ~ represents fluid 1 or 2. The potential functions at the inlet and outlet o f  the tube a r e  

specified. Thus 

S m j , l = f l ( t )  inlet (2.5)  t 

~ , t , ~ = f :  (t) outlet (2.6)  t 

For impermeable boundaries Eqs. (2.3) and (2.4) are treated as related finite differential form. 

At the interface S: should be related to ~bl. If  the effect of gravity is neglected, then 

~bt--r (3.1) 
where p ,  is the capillary pressure. By Laplace theory # ,  can be expressed as: 

p,=cr + (3.2) 
r l  r t  

where a is interfacial tension between fluid 1 and 2. rt and rt are the two principal radii o f  

curvature at the points of the microscopic interfiice. For the sand pack column the capillary 

pressure can be expressed as 
a 

p~ = o ' -  Z - (3.2) '  

where d is the sand Size; a is a coefficient which is related to the wetting property of the fluids 

to the packed sand. If fluid 1 is a wetting fluid, then a is negative, and vise versa. St at the 
interface, therefore, can be obtained as: 

o 'a  
S=,t,..,,~' - - S i n  j, l . '  - d (3 ,3 )  

The interface is a moving boundary. It is determined by the following equation 

~ + I  KI,s,~,J,i ,  A t  
~,~ ----r/l,1-- (qbl,o~,~'--q~l,r " geAz (3.4) 

where At is time step at t time instant; S~,~,t,~' is the value of St at the interface r/. 

q~l,r,j,b" is the value of q~ on the point i ,  j ,  k u. tl'b',----~li,,--AZ . It should be noticed that 

~bl,,,~,~' and Sl,r,i,1," may not be the grid values, because interface height ~7 may be between 

z= and z~+t. In the numerical simulation ~bt,~,~,=, and St,f;~,~" are determined by linear 

interpolation. 

3.2 S i m u l a t i o n  p r o c e d u r e  

The immiscible displacement process is an initial boundary problem. At the beginning of 

simulation, an initial position of the interface is known. The values of inlet and outlet S are 

known. Then ~bt and q~ at all nodes can be obtained by solving the Laplace equation (Eq. 
2.2). 

The permeabilities of fluid 1 and 2 at all nodes (i, j ,  k) of the grid are evaluated. In fluid 1 

swept points the permeability of fluid 1 is effective permeability in irreducible residual 
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saturation of  fluid 2. Beyond the interface the permeability of  fluid 2 is absolute permeability. 

Because the interface is very sharp. The inhomogeneity of  porous medium is treated by 

introducing nonuniform coefficients randomly distributed at all nodes. 

By the finite difference method the elliptic partial differential equation (2.2) is changed to 

a seven-point molecule form algebraic equatl0n (2.2). For  all nodes (i, j, k) of  the region, i = 1, 

2, 3 . . . .  , N I , j  = 1, 2~..., N2, and k = I, 2, ..., N3, a set of  simultaneous equations 

McP=q (3.5) 
are obtained. Where M is a square (nlxn2Xn.~) by (n iXn2Xns )  matrix, ~b is unknown 

vector of  length (nl Xn :X  n~), and q is a known vector of length (nl Xnz • By strongly 

implicit procedure the values of q5 are obtained iteratively from a staring approximation r  

by the formula: 

r ( * ) - - - - - q -Me  (~) 

M S ( , ) = r ( " )  (3.6) 
r +S(") 

where r (~) is the residual of  the nth approximate solution r S (~) is the up-date change 

vector. The maximum .�9 number of iteration, the iteration acceleration factor, the convergence 

criterion to be used on the maximum absolute value of the normalized residual vector 

components and the convergence criterion to be used on the maximum absolute value of the 

change made at each iteration to the element of the array q5 are input. After several times 

iteration 4~(~ ") and q~(") are obtained. And by using Eq. (3.4) the new height of interface are 

determined. 
The whole progress continued until the interface level showed great change, e. q. unstable 

phenomenon appeared. 

IV.  C a l c u l a t e d  R e s u l t  

The data of q~ at inlet and outlet, porosity of sand, sand size, the viscosities of fluid 1 and 

2, and surface tension were adopted according to the experiments of water displacing molten 
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wax. The nonuniform coefficients were: f = l . 0 0 ,  1.05, 1.03, 1.02, 0.95, and 1.15, which 
randomly distributed at all the nodes, if the packed sand was of inhomogeneity. In the 
simulation the change of permeability k in x, y, and z directions was not considered. 

The main parameters: Po----- 4.44mP.a-s; /J,  = 0 .41mPa , ' s ;  porosi tys=0.41;  the 
mean sand size d = 0.7cm; surface tension o" = 4.29 Pa; /~X----Ag----- Az--.-- I c m  :, a = 0.8;. conver-, 
gence criterion b=O.06. 
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Six numerical simulations were performed. RI: ~bu, ==168000, "@so=if,0, At=ffil00=(s) 

The packed sand was inhomogeneous.  R2: The nonuniform coefficient f = l . 0 0 ~  The 

other data were the same as that in Run I.~ R3: ~11,,~20000, ~=o~t=0~ At----150 (;8). The 

nonuniform coefficients were the same as that in Run 1. R4: The nonuniform coefficients were 

equal t o l . 00 .  The other data were the same as that in Run 3. R5 and R6: The parameters 

were the same as that of  Runs 1 and 2, respectively, except when a = - 0 . 8 ,  e. q. water-wet. 

The simulated results were depicted by calling a subroutine, ALTSURF.  The calculated 

results of  the interface changes with time are shown in Fig. 1 to Fig. 6. 
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V. D i s c u s s i o n  

(1) The present simulation fundamentally expresses the procedure of  interface changes. It 

is obvious that the gradient of  the potential functions greatly influences the stability of  the 

interface. If the value of  inlet q~ is great, the inhomogeneity of the porous medium will cause 

the instability of  the interface. However. if the porous medium is homogeous, even the 

potential gradient is great, the interface is still stable. Under the condition of  small potential 

gradient, the non-homogeneity only affects the shape of the interface and the displacement is 

still stable. The effects of  the wetting property on the configuration of  the interface has been 

observed. 
(2) The instability of  the interface is coincident with the iteration process. At first the 

iteration was below 45 times. With the unstable interface developing the number of iteration 

increased, even leading to dispersion. The development of  fingering phenomenon gave rise to 

the instability of the numerical simulation. ~ 

(3) Same boundary conditions were used in this simulation in both x and y directions, but 

the drawn results did not show the interface change in y direction. These may be related to the 

function of  the drawing progress of the computer. The calculated interface movement was in 

agreement with the experimental results. The configurations of the unstable interface, however, 

could not be compared with the experimental data. In the experiments the diameters of  the 

fingers were about 0.7--2.5cm, while in the mathematical simulation A x ~ A y = l c m .  Besides 

that the treatment of the interface in the mathematical modelling needs to be improved. The 

present simulation is only a preliminary one. 
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